Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of novel disposable bioreactors on pandemic influenza virus production.

Identifieur interne : 000106 ( PubMed/Corpus ); précédent : 000105; suivant : 000107

Evaluation of novel disposable bioreactors on pandemic influenza virus production.

Auteurs : Chia-Chun Lai ; Tsai-Chuan Weng ; Yu-Fen Tseng ; Jen-Ron Chiang ; Min-Shi Lee ; Alan Yung-Chih Hu

Source :

RBID : pubmed:31404117

English descriptors

Abstract

Since 1997, the highly pathogenic influenza H5N1 virus has spread from Hong Kong. According to the WHO bulletin report, the H5N1 virus is a zoonotic disease threat that has infected more than 850 humans, causing over 450 deaths. In addition, an outbreak of another new and highly pathogenic influenza virus (H7N9) occurred in 2013 in China. These highly pathogenic influenza viruses could potentially cause a worldwide pandemic. it is crucial to develop a rapid production platform to meet this surge demand against any possible influenza pandemic. A potential solution for this problem is the use of cell-based bioreactors for rapid vaccine production. These novel bioreactors, used for cell-based vaccine production, possess various advantages. For example, they enable a short production time, allow for the handling highly pathogenic influenza in closed environments, and can be easily scaled up. In this study, two novel disposable cell-based bioreactors, BelloCell and TideCell, were used to produce H5N1 clade II and H7N9 candidate vaccine viruses (CVVs). Madin-Darby canine kidney (MDCK) cells were used for the production of these influenza CVVs. A novel bench-scale bioreactor named BelloCell bioreactor was used in the study. All culturing conditions were tested and scaled to 10 L industrial-scale bioreactor known as TideCell002. The performances of between BelloCell and TideCell were similar in cell growth, the average MDCK cell doubling time was slightly decreased to 25 hours. The systems yielded approximately 39.2 and 18.0 μg/ml of HA protein with the 10-liter TideCell002 from the H5N1 clade II and H7N9 CVVs, respectively. The results of this study not only highlight the overall effectiveness of these bioreactors but also illustrate the potential of maintaining the same outcome when scaled up to industrial production, which has many implications for faster vaccine production. Although additional studies are required for process optimization, the results of this study are promising and show that oscillating bioreactors may be a suitable platform for pandemic influenza virus production.

DOI: 10.1371/journal.pone.0220803
PubMed: 31404117

Links to Exploration step

pubmed:31404117

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evaluation of novel disposable bioreactors on pandemic influenza virus production.</title>
<author>
<name sortKey="Lai, Chia Chun" sort="Lai, Chia Chun" uniqKey="Lai C" first="Chia-Chun" last="Lai">Chia-Chun Lai</name>
<affiliation>
<nlm:affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weng, Tsai Chuan" sort="Weng, Tsai Chuan" uniqKey="Weng T" first="Tsai-Chuan" last="Weng">Tsai-Chuan Weng</name>
<affiliation>
<nlm:affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tseng, Yu Fen" sort="Tseng, Yu Fen" uniqKey="Tseng Y" first="Yu-Fen" last="Tseng">Yu-Fen Tseng</name>
<affiliation>
<nlm:affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chiang, Jen Ron" sort="Chiang, Jen Ron" uniqKey="Chiang J" first="Jen-Ron" last="Chiang">Jen-Ron Chiang</name>
<affiliation>
<nlm:affiliation>Vaccine Center, Centers for Disease Control, Taipei, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Min Shi" sort="Lee, Min Shi" uniqKey="Lee M" first="Min-Shi" last="Lee">Min-Shi Lee</name>
<affiliation>
<nlm:affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Alan Yung Chih" sort="Hu, Alan Yung Chih" uniqKey="Hu A" first="Alan Yung-Chih" last="Hu">Alan Yung-Chih Hu</name>
<affiliation>
<nlm:affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31404117</idno>
<idno type="pmid">31404117</idno>
<idno type="doi">10.1371/journal.pone.0220803</idno>
<idno type="wicri:Area/PubMed/Corpus">000106</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000106</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evaluation of novel disposable bioreactors on pandemic influenza virus production.</title>
<author>
<name sortKey="Lai, Chia Chun" sort="Lai, Chia Chun" uniqKey="Lai C" first="Chia-Chun" last="Lai">Chia-Chun Lai</name>
<affiliation>
<nlm:affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Weng, Tsai Chuan" sort="Weng, Tsai Chuan" uniqKey="Weng T" first="Tsai-Chuan" last="Weng">Tsai-Chuan Weng</name>
<affiliation>
<nlm:affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tseng, Yu Fen" sort="Tseng, Yu Fen" uniqKey="Tseng Y" first="Yu-Fen" last="Tseng">Yu-Fen Tseng</name>
<affiliation>
<nlm:affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chiang, Jen Ron" sort="Chiang, Jen Ron" uniqKey="Chiang J" first="Jen-Ron" last="Chiang">Jen-Ron Chiang</name>
<affiliation>
<nlm:affiliation>Vaccine Center, Centers for Disease Control, Taipei, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Min Shi" sort="Lee, Min Shi" uniqKey="Lee M" first="Min-Shi" last="Lee">Min-Shi Lee</name>
<affiliation>
<nlm:affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hu, Alan Yung Chih" sort="Hu, Alan Yung Chih" uniqKey="Hu A" first="Alan Yung-Chih" last="Hu">Alan Yung-Chih Hu</name>
<affiliation>
<nlm:affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Bioreactors</term>
<term>Chlorocebus aethiops</term>
<term>Disposable Equipment</term>
<term>Dogs</term>
<term>Humans</term>
<term>Influenza A Virus, H5N1 Subtype (growth & development)</term>
<term>Influenza A Virus, H7N9 Subtype (growth & development)</term>
<term>Influenza Vaccines (biosynthesis)</term>
<term>Influenza, Human (epidemiology)</term>
<term>Influenza, Human (virology)</term>
<term>Madin Darby Canine Kidney Cells (virology)</term>
<term>Pandemics</term>
<term>Vero Cells (virology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Influenza Vaccines</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Influenza A Virus, H5N1 Subtype</term>
<term>Influenza A Virus, H7N9 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza, Human</term>
<term>Madin Darby Canine Kidney Cells</term>
<term>Vero Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Bioreactors</term>
<term>Chlorocebus aethiops</term>
<term>Disposable Equipment</term>
<term>Dogs</term>
<term>Humans</term>
<term>Pandemics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Since 1997, the highly pathogenic influenza H5N1 virus has spread from Hong Kong. According to the WHO bulletin report, the H5N1 virus is a zoonotic disease threat that has infected more than 850 humans, causing over 450 deaths. In addition, an outbreak of another new and highly pathogenic influenza virus (H7N9) occurred in 2013 in China. These highly pathogenic influenza viruses could potentially cause a worldwide pandemic. it is crucial to develop a rapid production platform to meet this surge demand against any possible influenza pandemic. A potential solution for this problem is the use of cell-based bioreactors for rapid vaccine production. These novel bioreactors, used for cell-based vaccine production, possess various advantages. For example, they enable a short production time, allow for the handling highly pathogenic influenza in closed environments, and can be easily scaled up. In this study, two novel disposable cell-based bioreactors, BelloCell and TideCell, were used to produce H5N1 clade II and H7N9 candidate vaccine viruses (CVVs). Madin-Darby canine kidney (MDCK) cells were used for the production of these influenza CVVs. A novel bench-scale bioreactor named BelloCell bioreactor was used in the study. All culturing conditions were tested and scaled to 10 L industrial-scale bioreactor known as TideCell002. The performances of between BelloCell and TideCell were similar in cell growth, the average MDCK cell doubling time was slightly decreased to 25 hours. The systems yielded approximately 39.2 and 18.0 μg/ml of HA protein with the 10-liter TideCell002 from the H5N1 clade II and H7N9 CVVs, respectively. The results of this study not only highlight the overall effectiveness of these bioreactors but also illustrate the potential of maintaining the same outcome when scaled up to industrial production, which has many implications for faster vaccine production. Although additional studies are required for process optimization, the results of this study are promising and show that oscillating bioreactors may be a suitable platform for pandemic influenza virus production.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31404117</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS ONE</ISOAbbreviation>
</Journal>
<ArticleTitle>Evaluation of novel disposable bioreactors on pandemic influenza virus production.</ArticleTitle>
<Pagination>
<MedlinePgn>e0220803</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0220803</ELocationID>
<Abstract>
<AbstractText>Since 1997, the highly pathogenic influenza H5N1 virus has spread from Hong Kong. According to the WHO bulletin report, the H5N1 virus is a zoonotic disease threat that has infected more than 850 humans, causing over 450 deaths. In addition, an outbreak of another new and highly pathogenic influenza virus (H7N9) occurred in 2013 in China. These highly pathogenic influenza viruses could potentially cause a worldwide pandemic. it is crucial to develop a rapid production platform to meet this surge demand against any possible influenza pandemic. A potential solution for this problem is the use of cell-based bioreactors for rapid vaccine production. These novel bioreactors, used for cell-based vaccine production, possess various advantages. For example, they enable a short production time, allow for the handling highly pathogenic influenza in closed environments, and can be easily scaled up. In this study, two novel disposable cell-based bioreactors, BelloCell and TideCell, were used to produce H5N1 clade II and H7N9 candidate vaccine viruses (CVVs). Madin-Darby canine kidney (MDCK) cells were used for the production of these influenza CVVs. A novel bench-scale bioreactor named BelloCell bioreactor was used in the study. All culturing conditions were tested and scaled to 10 L industrial-scale bioreactor known as TideCell002. The performances of between BelloCell and TideCell were similar in cell growth, the average MDCK cell doubling time was slightly decreased to 25 hours. The systems yielded approximately 39.2 and 18.0 μg/ml of HA protein with the 10-liter TideCell002 from the H5N1 clade II and H7N9 CVVs, respectively. The results of this study not only highlight the overall effectiveness of these bioreactors but also illustrate the potential of maintaining the same outcome when scaled up to industrial production, which has many implications for faster vaccine production. Although additional studies are required for process optimization, the results of this study are promising and show that oscillating bioreactors may be a suitable platform for pandemic influenza virus production.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lai</LastName>
<ForeName>Chia-Chun</ForeName>
<Initials>CC</Initials>
<AffiliationInfo>
<Affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Life Science Biology, National Tsing Hua University, Hsinchu, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weng</LastName>
<ForeName>Tsai-Chuan</ForeName>
<Initials>TC</Initials>
<AffiliationInfo>
<Affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tseng</LastName>
<ForeName>Yu-Fen</ForeName>
<Initials>YF</Initials>
<AffiliationInfo>
<Affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chiang</LastName>
<ForeName>Jen-Ron</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Vaccine Center, Centers for Disease Control, Taipei, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Min-Shi</ForeName>
<Initials>MS</Initials>
<AffiliationInfo>
<Affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Alan Yung-Chih</ForeName>
<Initials>AY</Initials>
<Identifier Source="ORCID">0000-0003-4501-8645</Identifier>
<AffiliationInfo>
<Affiliation>National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019149" MajorTopicYN="Y">Bioreactors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002522" MajorTopicYN="N">Chlorocebus aethiops</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004209" MajorTopicYN="Y">Disposable Equipment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004285" MajorTopicYN="N">Dogs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053124" MajorTopicYN="N">Influenza A Virus, H5N1 Subtype</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064766" MajorTopicYN="N">Influenza A Virus, H7N9 Subtype</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="N">Influenza Vaccines</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="N">epidemiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061985" MajorTopicYN="N">Madin Darby Canine Kidney Cells</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014709" MajorTopicYN="N">Vero Cells</DescriptorName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31404117</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0220803</ArticleId>
<ArticleId IdType="pii">PONE-D-19-01177</ArticleId>
<ArticleId IdType="pmc">PMC6690526</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Gene Med. 2004 Feb;6 Suppl 1:S184-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14978761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2005 Aug 4;118(2):135-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2005 Aug;27(15):1059-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16132854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biologicals. 2007 Oct;35(4):221-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Gene Ther. 2007 Nov;18(11):1161-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17944574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Feb;82(4):1798-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18077726</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytotechnology. 2003 Sep;42(3):145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19002936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2009 Feb 1;102(2):348-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19090536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2009 Nov;85(1):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19521697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2009 Oct 30;27(46):6420-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19559120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2010 Sep;88(2):461-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20617311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Jan 24;6(1):e14578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21283675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2011 Jan-Feb;27(1):241-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21312371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biotechnol. 2011 Aug 11;11:81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21835017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2011 Aug;10(8):1183-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21854311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e24057</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22022351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2012 Mar;20(3):103-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22257962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2013 Jan;97(1):111-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22821436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 2013 Mar;31(3):147-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23178074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(3):e59892</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23555825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2014 Feb 12;32(8):1003-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24269322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2014 May 19;32(24):2770-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24583003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2014 Nov;9(11):2663-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25321410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2015 Feb 5;370(1661):20140040</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25533097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2015;2015:504831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25815321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2015 Jun 2;204:40-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25892718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Vaccines. 2015 Jun;14(6):789-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25968069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Microbes Infect. 2012 Sep;1(9):e25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26038430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Nov 05;10(11):e0141686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26540170</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000106 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000106 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:31404117
   |texte=   Evaluation of novel disposable bioreactors on pandemic influenza virus production.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:31404117" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021