Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influenza A virus directly modulates mouse eosinophil responses.

Identifieur interne : 000018 ( PubMed/Corpus ); précédent : 000017; suivant : 000019

Influenza A virus directly modulates mouse eosinophil responses.

Auteurs : Kim S. Lemessurier ; Robert Rooney ; Hazem E. Ghoneim ; Baoming Liu ; Kui Li ; Heather S. Smallwood ; Amali E. Samarasinghe

Source :

RBID : pubmed:32386457

Abstract

Allergic asthma and influenza are common respiratory diseases with a high probability of co-occurrence. During the 2009 influenza pandemic, hospitalized patients with influenza experienced lower morbidity if asthma was an underlying condition. We have previously demonstrated that acute allergic asthma protects mice from severe influenza and have implicated eosinophils in the airways of mice with allergic asthma as participants in the antiviral response. However, very little is known about how eosinophils respond to direct exposure to influenza A virus (IAV) or the microenvironment in which the viral burden is high. We hypothesized that eosinophils would dynamically respond to the presence of IAV through phenotypic, transcriptomic, and physiologic changes. Using our mouse model of acute fungal asthma and influenza, we showed that eosinophils in lymphoid tissues were responsive to IAV infection in the lungs and altered surface expression of various markers necessary for cell activation in a niche-specific manner. Siglec-F expression was altered in a subset of eosinophils after virus exposure, and those expressing high Siglec-F were more active (IL-5Rαhi CD62Llo ). While eosinophils exposed to IAV decreased their overall transcriptional activity and mitochondrial oxygen consumption, transcription of genes encoding viral recognition proteins, Ddx58 (RIG-I), Tlr3, and Ifih1 (MDA5), were up-regulated. CD8+ T cells from IAV-infected mice expanded in response to IAV PB1 peptide-pulsed eosinophils, and CpG methylation in the Tbx21 promoter was reduced in these T cells. These data offer insight into how eosinophils respond to IAV and help elucidate alternative mechanisms by which they regulate antiviral immune responses during IAV infection.

DOI: 10.1002/JLB.4MA0320-343R
PubMed: 32386457

Links to Exploration step

pubmed:32386457

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influenza A virus directly modulates mouse eosinophil responses.</title>
<author>
<name sortKey="Lemessurier, Kim S" sort="Lemessurier, Kim S" uniqKey="Lemessurier K" first="Kim S" last="Lemessurier">Kim S. Lemessurier</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rooney, Robert" sort="Rooney, Robert" uniqKey="Rooney R" first="Robert" last="Rooney">Robert Rooney</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghoneim, Hazem E" sort="Ghoneim, Hazem E" uniqKey="Ghoneim H" first="Hazem E" last="Ghoneim">Hazem E. Ghoneim</name>
<affiliation>
<nlm:affiliation>Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Baoming" sort="Liu, Baoming" uniqKey="Liu B" first="Baoming" last="Liu">Baoming Liu</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Kui" sort="Li, Kui" uniqKey="Li K" first="Kui" last="Li">Kui Li</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smallwood, Heather S" sort="Smallwood, Heather S" uniqKey="Smallwood H" first="Heather S" last="Smallwood">Heather S. Smallwood</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Samarasinghe, Amali E" sort="Samarasinghe, Amali E" uniqKey="Samarasinghe A" first="Amali E" last="Samarasinghe">Amali E. Samarasinghe</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32386457</idno>
<idno type="pmid">32386457</idno>
<idno type="doi">10.1002/JLB.4MA0320-343R</idno>
<idno type="wicri:Area/PubMed/Corpus">000018</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000018</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influenza A virus directly modulates mouse eosinophil responses.</title>
<author>
<name sortKey="Lemessurier, Kim S" sort="Lemessurier, Kim S" uniqKey="Lemessurier K" first="Kim S" last="Lemessurier">Kim S. Lemessurier</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Rooney, Robert" sort="Rooney, Robert" uniqKey="Rooney R" first="Robert" last="Rooney">Robert Rooney</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ghoneim, Hazem E" sort="Ghoneim, Hazem E" uniqKey="Ghoneim H" first="Hazem E" last="Ghoneim">Hazem E. Ghoneim</name>
<affiliation>
<nlm:affiliation>Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Liu, Baoming" sort="Liu, Baoming" uniqKey="Liu B" first="Baoming" last="Liu">Baoming Liu</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Kui" sort="Li, Kui" uniqKey="Li K" first="Kui" last="Li">Kui Li</name>
<affiliation>
<nlm:affiliation>Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Smallwood, Heather S" sort="Smallwood, Heather S" uniqKey="Smallwood H" first="Heather S" last="Smallwood">Heather S. Smallwood</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Samarasinghe, Amali E" sort="Samarasinghe, Amali E" uniqKey="Samarasinghe A" first="Amali E" last="Samarasinghe">Amali E. Samarasinghe</name>
<affiliation>
<nlm:affiliation>Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of leukocyte biology</title>
<idno type="eISSN">1938-3673</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Allergic asthma and influenza are common respiratory diseases with a high probability of co-occurrence. During the 2009 influenza pandemic, hospitalized patients with influenza experienced lower morbidity if asthma was an underlying condition. We have previously demonstrated that acute allergic asthma protects mice from severe influenza and have implicated eosinophils in the airways of mice with allergic asthma as participants in the antiviral response. However, very little is known about how eosinophils respond to direct exposure to influenza A virus (IAV) or the microenvironment in which the viral burden is high. We hypothesized that eosinophils would dynamically respond to the presence of IAV through phenotypic, transcriptomic, and physiologic changes. Using our mouse model of acute fungal asthma and influenza, we showed that eosinophils in lymphoid tissues were responsive to IAV infection in the lungs and altered surface expression of various markers necessary for cell activation in a niche-specific manner. Siglec-F expression was altered in a subset of eosinophils after virus exposure, and those expressing high Siglec-F were more active (IL-5Rα
<sup>hi</sup>
CD62L
<sup>lo</sup>
). While eosinophils exposed to IAV decreased their overall transcriptional activity and mitochondrial oxygen consumption, transcription of genes encoding viral recognition proteins, Ddx58 (RIG-I), Tlr3, and Ifih1 (MDA5), were up-regulated. CD8
<sup>+</sup>
T cells from IAV-infected mice expanded in response to IAV PB1 peptide-pulsed eosinophils, and CpG methylation in the Tbx21 promoter was reduced in these T cells. These data offer insight into how eosinophils respond to IAV and help elucidate alternative mechanisms by which they regulate antiviral immune responses during IAV infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32386457</PMID>
<DateRevised>
<Year>2020</Year>
<Month>05</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1938-3673</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>May</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Journal of leukocyte biology</Title>
<ISOAbbreviation>J. Leukoc. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Influenza A virus directly modulates mouse eosinophil responses.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/JLB.4MA0320-343R</ELocationID>
<Abstract>
<AbstractText>Allergic asthma and influenza are common respiratory diseases with a high probability of co-occurrence. During the 2009 influenza pandemic, hospitalized patients with influenza experienced lower morbidity if asthma was an underlying condition. We have previously demonstrated that acute allergic asthma protects mice from severe influenza and have implicated eosinophils in the airways of mice with allergic asthma as participants in the antiviral response. However, very little is known about how eosinophils respond to direct exposure to influenza A virus (IAV) or the microenvironment in which the viral burden is high. We hypothesized that eosinophils would dynamically respond to the presence of IAV through phenotypic, transcriptomic, and physiologic changes. Using our mouse model of acute fungal asthma and influenza, we showed that eosinophils in lymphoid tissues were responsive to IAV infection in the lungs and altered surface expression of various markers necessary for cell activation in a niche-specific manner. Siglec-F expression was altered in a subset of eosinophils after virus exposure, and those expressing high Siglec-F were more active (IL-5Rα
<sup>hi</sup>
CD62L
<sup>lo</sup>
). While eosinophils exposed to IAV decreased their overall transcriptional activity and mitochondrial oxygen consumption, transcription of genes encoding viral recognition proteins, Ddx58 (RIG-I), Tlr3, and Ifih1 (MDA5), were up-regulated. CD8
<sup>+</sup>
T cells from IAV-infected mice expanded in response to IAV PB1 peptide-pulsed eosinophils, and CpG methylation in the Tbx21 promoter was reduced in these T cells. These data offer insight into how eosinophils respond to IAV and help elucidate alternative mechanisms by which they regulate antiviral immune responses during IAV infection.</AbstractText>
<CopyrightInformation>©2020 Society for Leukocyte Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>LeMessurier</LastName>
<ForeName>Kim S</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Children's Foundation Research Institute, Memphis, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rooney</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Genetics, Genomics & Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Children's Foundation Research Institute, Memphis, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ghoneim</LastName>
<ForeName>Hazem E</ForeName>
<Initials>HE</Initials>
<AffiliationInfo>
<Affiliation>Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbial Infection and Immunity, College of Medicine, Ohio State University, Columbus, Ohio, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Baoming</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Pathology, Division of Medical Microbiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Kui</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Smallwood</LastName>
<ForeName>Heather S</ForeName>
<Initials>HS</Initials>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Children's Foundation Research Institute, Memphis, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Samarasinghe</LastName>
<ForeName>Amali E</ForeName>
<Initials>AE</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-3104-2823</Identifier>
<AffiliationInfo>
<Affiliation>Department of Pediatrics, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology & Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Children's Foundation Research Institute, Memphis, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI125481</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI-125483</GrantID>
<Acronym>NH</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI-125481</GrantID>
<Acronym>NH</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Leukoc Biol</MedlineTA>
<NlmUniqueID>8405628</NlmUniqueID>
<ISSNLinking>0741-5400</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">allergy</Keyword>
<Keyword MajorTopicYN="N">asthma</Keyword>
<Keyword MajorTopicYN="N">co-morbidity</Keyword>
<Keyword MajorTopicYN="N">flow cytometry</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>10</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32386457</ArticleId>
<ArticleId IdType="doi">10.1002/JLB.4MA0320-343R</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Collins PD, Marleau S, Griffiths-Johnson DA, Jose PJ, Williams TJ. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med. 1995;182:1169-1174.</Citation>
</Reference>
<Reference>
<Citation>Carvalho AT, Elia CC, de Souza HS, et al. Immunohistochemical study of intestinal eosinophils in inflammatory bowel disease. J Clin Gastroenterol. 2003;36:120-125.</Citation>
</Reference>
<Reference>
<Citation>Klion AD, Nutman TB. The role of eosinophils in host defense against helminth parasites. J Allergy Clin Immunol. 2004;113:30-37.</Citation>
</Reference>
<Reference>
<Citation>LeMessurier KS, Samarasinghe AE. Eosinophils: nemeses of pulmonary pathogens? Curr Allergy Asthma Rep. 2019;19:36.</Citation>
</Reference>
<Reference>
<Citation>Rosenberg HF, Dyer KD, Domachowske JB. Eosinophils and their interactions with respiratory virus pathogens. Immunol Res. 2009;43:128-137.</Citation>
</Reference>
<Reference>
<Citation>Hogan SP, Waddell A, Fulkerson PC. Eosinophils in infection and intestinal immunity. Curr Opin Gastroenterol. 2013;29:7-14.</Citation>
</Reference>
<Reference>
<Citation>Ueki S, Tokunaga T, Fujieda S, et al. Eosinophil ETosis and DNA traps: a new look at eosinophilic inflammation. Curr Allergy Asthma Rep. 2016;16:54.</Citation>
</Reference>
<Reference>
<Citation>Klion AD, Ackerman SJ, Bochner BS. Contributions of eosinophils to human health and disease. Annu Rev Pathol. 2020;15:179-209.</Citation>
</Reference>
<Reference>
<Citation>Akuthota P, Wang H, Weller PF. Eosinophils as antigen-presenting cells in allergic upper airway disease. Curr Opin Allergy Clin Immunol. 2010;10:14-19.</Citation>
</Reference>
<Reference>
<Citation>Lucey DR, Nicholson-Weller A, Weller PF. Mature human eosinophils have the capacity to express HLA-DR. PNAS. 1989;86:1348-1351.</Citation>
</Reference>
<Reference>
<Citation>Mawhorter SD, Pearlman E, Kazura JW, Boom WH. Class II major histocompatibility complex molecule expression on murine eosinophils activated in vivo by Brugia malayi. Infect Immun. 1993;61:5410-5412.</Citation>
</Reference>
<Reference>
<Citation>Samarasinghe AE, Melo RC, Duan S, et al. Eosinophils promote antiviral immunity in mice infected with influenza A virus. J Immunol. 2017;198:3214-3226.</Citation>
</Reference>
<Reference>
<Citation>Weller PF, Rand TH, Barrett T, Elovic A, Wong DT, Finberg RW. Accessory cell function of human eosinophils. HLA-DR-dependent, MHC-restricted antigen-presentation and IL-1 alpha expression. J Immunol. 1993;150:2554-2562.</Citation>
</Reference>
<Reference>
<Citation>Blanchard C, Rothenberg ME. Biology of the eosinophil. Adv Immunol. 2009;101:81-121.</Citation>
</Reference>
<Reference>
<Citation>Davoine F, Lacy P. Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol. 2014;5:570.</Citation>
</Reference>
<Reference>
<Citation>Rojas JM, Avia M, Martin V, Sevilla N. IL-10: a multifunctional cytokine in viral infections. J Immunol Res. 2017;2017:6104054.</Citation>
</Reference>
<Reference>
<Citation>Lee AJ, Ashkar AA. The dual nature of type I and type II interferons. Front Immunol. 2018;9:2061.</Citation>
</Reference>
<Reference>
<Citation>Seo SH, Webster RG. Tumor necrosis factor alpha exerts powerful anti-influenza virus effects in lung epithelial cells. J Virol. 2002;76:1071-1076.</Citation>
</Reference>
<Reference>
<Citation>Dyer KD, Percopo CM, Fischer ER, Gabryszewski SJ, Rosenberg HF. Pneumoviruses infect eosinophils and elicit MyD88-dependent release of chemoattractant cytokines and interleukin-6. Blood. 2009;114:2649-2656.</Citation>
</Reference>
<Reference>
<Citation>Fraenkel DJ, Bardin PG, Sanderson G, Lampe F, Johnston SL, Holgate ST. Lower airways inflammation during rhinovirus colds in normal and in asthmatic subjects. Am J Respir Crit Care Med. 1995;151:879-886.</Citation>
</Reference>
<Reference>
<Citation>Harrison AM, Bonville CA, Rosenberg HF, Domachowske JB. Respiratory syncytical virus-induced chemokine expression in the lower airways: eosinophil recruitment and degranulation. Am J Respir Crit Care Med. 1999;159:1918-1924.</Citation>
</Reference>
<Reference>
<Citation>Uhl EW, Castleman WL, Sorkness RL, Busse WW, Lemanske RF, Jr, McAllister PK. Parainfluenza virus-induced persistence of airway inflammation, fibrosis, and dysfunction associated with TGF-beta 1 expression in brown Norway rats. Am J Respir Crit Care Med. 1996;154:1834-1842.</Citation>
</Reference>
<Reference>
<Citation>Samarasinghe AE, Woolard SN, Boyd KL, Hoselton SA, Schuh JM, McCullers JA. The immune profile associated with acute allergic asthma accelerates clearance of influenza virus. Immunol Cell Biol. 2014;92:449-459.</Citation>
</Reference>
<Reference>
<Citation>Centers for Disease Control and Prevention. 2018, Most recent asthma data.</Citation>
</Reference>
<Reference>
<Citation>Juhn YJ. Risks for infection in patients with asthma (or other atopic conditions): is asthma more than a chronic airway disease?. J Allergy Clin Immunol. 2014;134:247-257. quiz 258-9.</Citation>
</Reference>
<Reference>
<Citation>Busse WW, Lemanske RF, Jr, Gern JE. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet. 2010;376:826-834.</Citation>
</Reference>
<Reference>
<Citation>Busse WW. The precipitation of asthma by upper respiratory infections. Chest. 1985;87:44S-48S.</Citation>
</Reference>
<Reference>
<Citation>Patel DA, You Y, Huang G, et al. Interferon response and respiratory virus control are preserved in bronchial epithelial cells in asthma. J Allergy Clin Immunol. 2014;134:1402-1412. e7.</Citation>
</Reference>
<Reference>
<Citation>Moskwa S, Piotrowski W, Marczak J, et al. Innate immune response to viral infections in primary bronchial epithelial cells is modified by the atopic status of asthmatic patients. Allergy Asthma Immunol Res. 2018;10:144-154.</Citation>
</Reference>
<Reference>
<Citation>Johnston SL, Pattemore PK, Sanderson G, et al. Community study of role of viral infections in exacerbations of asthma in 9-11 year old children. BMJ. 1995;310:1225-1229.</Citation>
</Reference>
<Reference>
<Citation>Gern JE. Viral and bacterial infections in the development and progression of asthma. J Allergy Clin Immunol. 2000;105:S497-502.</Citation>
</Reference>
<Reference>
<Citation>Jain S, Kamimoto L, Bramley AM, et al, Pandemic Influenza, A. V. H. I. T.. Hospitalized patients with 2009 H1N1 influenza in the United States, April-June 2009. N Engl J Med. 2009;361:1935-1944.</Citation>
</Reference>
<Reference>
<Citation>McKenna JJ, Bramley AM, Skarbinski J, Fry AM, Finelli L, Jain S, Pandemic Influenza, A. V. H. I. T.. Asthma in patients hospitalized with pandemic influenza A(H1N1)pdm09 virus infection-United States, 2009. BMC Infect Dis. 2013;13:57.</Citation>
</Reference>
<Reference>
<Citation>Van Kerkhove MD, Vandemaele KA, Shinde V, et al. Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis. PLoS Med. 2011;8:e1001053.</Citation>
</Reference>
<Reference>
<Citation>Bramley AM, Dasgupta S, Skarbinski J, et al, Pandemic Influenza, A. V. H. I. T.. Intensive care unit patients with 2009 pandemic influenza A (H1N1pdm09) virus infection - United States, 2009. Influenza Other Respir Viruses. 2012;6:e134-e142.</Citation>
</Reference>
<Reference>
<Citation>Veerapandian R, Snyder JD, Samarasinghe AE. Influenza in asthmatics: for better or for worse? Front Immunol. 2018;9:1843.</Citation>
</Reference>
<Reference>
<Citation>Hoselton SA, Samarasinghe AE, Seydel JM, Schuh JM. An inhalation model of airway allergic response to inhalation of environmental Aspergillus fumigatus conidia in sensitized BALB/c mice. Med Mycol. 2010;48:1056-1065.</Citation>
</Reference>
<Reference>
<Citation>Samarasinghe AE, Hoselton SA, Schuh JM. The absence of the VPAC(2) receptor does not protect mice from Aspergillus induced allergic asthma. Peptides. 2010;31:1068-1075.</Citation>
</Reference>
<Reference>
<Citation>Dyer KD, Moser JM, Czapiga M, Siegel SJ, Percopo CM, Rosenberg HF. Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow. J Immunol. 2008;181:4004-4009.</Citation>
</Reference>
<Reference>
<Citation>Balish AL, Katz JM, Klimov AI. Influenza: propagation, quantification, and storage. Current Protoc Microbiol. 2013;15. Unit 15G.1.</Citation>
</Reference>
<Reference>
<Citation>Chu C, Lugovtsev V, Golding H, Betenbaugh M, Shiloach J. Conversion of MDCK cell line to suspension culture by transfecting with human siat7e gene and its application for influenza virus production. PNAS. 2009;106:14802-14807.</Citation>
</Reference>
<Reference>
<Citation>Liu B, Li NL, Shen Y, et al. The C-terminal tail of TRIM56 dictates antiviral restriction of influenza A and B viruses by impeding viral RNA synthesis. J Virol. 2016;90:4369-4382.</Citation>
</Reference>
<Reference>
<Citation>Kumthip K, Yang D, Li NL, et al. Pivotal role for the ESCRT-II complex subunit EAP30/SNF8 in IRF3-dependent innate antiviral defense. PLoS Pathog. 2017;13:e1006713.</Citation>
</Reference>
<Reference>
<Citation>Liu B, Li NL, Wang J, et al. Overlapping and distinct molecular determinants dictating the antiviral activities of TRIM56 against flaviviruses and coronavirus. J Virol. 2014;88:13821-13835.</Citation>
</Reference>
<Reference>
<Citation>Wang N, Dong Q, Li J, et al. Viral induction of the zinc finger antiviral protein is IRF3-dependent but NF-kappaB-independent. J Biol Chem. 2010;285:6080-6090.</Citation>
</Reference>
<Reference>
<Citation>Wei D, Li NL, Zeng Y, et al. The molecular chaperone GRP78 contributes to Toll-like receptor 3-mediated innate immune response to hepatitis C virus in hepatocytes. J Biol Chem. 2016;291:12294-12309.</Citation>
</Reference>
<Reference>
<Citation>Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45:W130-w137.</Citation>
</Reference>
<Reference>
<Citation>Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362-D368.</Citation>
</Reference>
<Reference>
<Citation>O'Callaghan-Sunol C, Sherman MY. Heat shock transcription factor (HSF1) plays a critical role in cell migration via maintaining MAP kinase signaling. Cell Cycle. 2006;5:1431-1437.</Citation>
</Reference>
<Reference>
<Citation>Tang Z, Dai S, He Y, et al. MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1. Cell. 2015;160:729-744.</Citation>
</Reference>
<Reference>
<Citation>Dolfini D, Zambelli F, Pedrazzoli M, Mantovani R, Pavesi G. A high definition look at the NF-Y regulome reveals genome-wide associations with selected transcription factors. Nucleic Acids Res. 2016;44:4684-4702.</Citation>
</Reference>
<Reference>
<Citation>Fleming JD, Pavesi G, Benatti P, Imbriano C, Mantovani R, Struhl K. NF-Y coassociates with FOS at promoters, enhancers, repetitive elements, and inactive chromatin regions, and is stereo-positioned with growth-controlling transcription factors. Genome Res. 2013;23:1195-1209.</Citation>
</Reference>
<Reference>
<Citation>Ghoneim HE, Fan Y, Moustaki A, et al. De Novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell. 2017;170:142-157. e19.</Citation>
</Reference>
<Reference>
<Citation>Dyer KD, Garcia-Crespo KE, Killoran KE, Rosenberg HF. Antigen profiles for the quantitative assessment of eosinophils in mouse tissues by flow cytometry. J Immunol Methods. 2011;369:91-97.</Citation>
</Reference>
<Reference>
<Citation>Sehmi R, Howie K, Sutherland DR, Schragge W, O'Byrne PM, Denburg JA. Increased levels of CD34+ hemopoietic progenitor cells in atopic subjects. Am J Respir Cell Mol Biol. 1996;15:645-655.</Citation>
</Reference>
<Reference>
<Citation>Sehmi R, Wood LJ, Watson R, et al. Allergen-induced increases in IL-5 receptor alpha-subunit expression on bone marrow-derived CD34+ cells from asthmatic subjects. A novel marker of progenitor cell commitment towards eosinophilic differentiation. J Clin Invest. 1997;100:2466-2475.</Citation>
</Reference>
<Reference>
<Citation>Southam DS, Widmer N, Ellis R, Hirota JA, Inman MD, Sehmi R. Increased eosinophil-lineage committed progenitors in the lung of allergen-challenged mice. J Allergy Clin Immunol. 2005;115:95-102.</Citation>
</Reference>
<Reference>
<Citation>Nutku E, Aizawa H, Hudson SA, Bochner BS. Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood. 2003;101:5014-5020.</Citation>
</Reference>
<Reference>
<Citation>Zimmermann N, McBride ML, Yamada Y, et al. Siglec-F antibody administration to mice selectively reduces blood and tissue eosinophils. Allergy. 2008;63:1156-1163.</Citation>
</Reference>
<Reference>
<Citation>Zhang M, Angata T, Cho JY, Miller M, Broide DH, Varki A. Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eosinophils. Blood. 2007;109:4280-4287.</Citation>
</Reference>
<Reference>
<Citation>Ben Baruch-Morgenstern N, Shik D, Moshkovits I, et al. Paired immunoglobulin-like receptor A is an intrinsic, self-limiting suppressor of IL-5-induced eosinophil development. Nat Immunol. 2014;15:36-44.</Citation>
</Reference>
<Reference>
<Citation>Munitz A, McBride ML, Bernstein JS, Rothenberg ME. A dual activation and inhibition role for the paired immunoglobulin-like receptor B in eosinophils. Blood. 2008;111:5694-5703.</Citation>
</Reference>
<Reference>
<Citation>Mengelers HJ, Maikoe T, Hooibrink B, et al. Down modulation of L-selectin expression on eosinophils recovered from bronchoalveolar lavage fluid after allergen provocation. Clin Exp Allergy. 1993;23:196-204.</Citation>
</Reference>
<Reference>
<Citation>Neeley SP, Hamann KJ, White SR, Baranowski SL, Burch RA, Leff AR. Selective regulation of expression of surface adhesion molecules Mac-1, L-selectin, and VLA-4 on human eosinophils and neutrophils. Am J Respir Cell Mol Biol. 1993;8:633-639.</Citation>
</Reference>
<Reference>
<Citation>Wong CK, Hu S, Cheung PF, Lam CW. Thymic stromal lymphopoietin induces chemotactic and prosurvival effects in eosinophils: implications in allergic inflammation. Am J Respir Cell Mol Biol. 2010;43:305-315.</Citation>
</Reference>
<Reference>
<Citation>Georas SN, Liu MC, Newman W, Beall LD, Stealey BA, Bochner BS. Altered adhesion molecule expression and endothelial cell activation accompany the recruitment of human granulocytes to the lung after segmental antigen challenge. Am J Respir Cell Mol Biol. 1992;7:261-269.</Citation>
</Reference>
<Reference>
<Citation>Koeffler HP, Billing R, Levine AM, Golde DW. Ia antigen is a differentiation marker on human eosinophils. Blood. 1980;56:11-14.</Citation>
</Reference>
<Reference>
<Citation>Padigel UM, Lee JJ, Nolan TJ, Schad GA, Abraham D. Eosinophils can function as antigen-presenting cells to induce primary and secondary immune responses to Strongyloides stercoralis. Infect Immun. 2006;74:3232-3238.</Citation>
</Reference>
<Reference>
<Citation>Johansson MW. Activation states of blood eosinophils in asthma. Clin Exp Allergy. 2014;44:482-498.</Citation>
</Reference>
<Reference>
<Citation>Mesnil C, Raulier S, Paulissen G, et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest. 2016;126:3279-3295.</Citation>
</Reference>
<Reference>
<Citation>Graham AC, Hilmer KM, Zickovich JM, Obar JJ. Inflammatory response of mast cells during influenza A virus infection is mediated by active infection and RIG-I signaling. J Immunol. 2013;190:4676-4684.</Citation>
</Reference>
<Reference>
<Citation>Pichlmair A, Schulz O, Tan CP, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science. 2006;314:997-1001.</Citation>
</Reference>
<Reference>
<Citation>Guillot L, Le Goffic R, Bloch S, et al. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem. 2005;280:5571-5580.</Citation>
</Reference>
<Reference>
<Citation>Porter L, Toepfner N, Bashant KR, et al. Metabolic profiling of human eosinophils. Front Immunol. 2018;9:1404.</Citation>
</Reference>
<Reference>
<Citation>Karnovsky ML. The metabolism of leukocytes. Semin Hematol. 1968;5:156-165.</Citation>
</Reference>
<Reference>
<Citation>Fossati G, Moulding DA, Spiller DG, Moots RJ, White MR, Edwards SW. The mitochondrial network of human neutrophils: role in chemotaxis, phagocytosis, respiratory burst activation, and commitment to apoptosis. J Immunol. 2003;170:1964-1972.</Citation>
</Reference>
<Reference>
<Citation>Maianski NA, Geissler J, Srinivasula SM, Alnemri ES, Roos D, Kuijpers TW. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death Differ. 2004;11:143-153.</Citation>
</Reference>
<Reference>
<Citation>Geering B, Simon HU. Peculiarities of cell death mechanisms in neutrophils. Cell Death Differ. 2011;18:1457-1469.</Citation>
</Reference>
<Reference>
<Citation>Peachman KK, Lyles DS, Bass DA. Mitochondria in eosinophils: functional role in apoptosis but not respiration. PNAS. 2001;98:1717-1722.</Citation>
</Reference>
<Reference>
<Citation>Russ BE, Olshanksy M, Smallwood HS, et al. Distinct epigenetic signatures delineate transcriptional programs during virus-specific CD8(+) T cell differentiation. Immunity. 2014;41:853-865.</Citation>
</Reference>
<Reference>
<Citation>Intlekofer AM, Banerjee A, Takemoto N, et al. Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science. 2008;321:408-411.</Citation>
</Reference>
<Reference>
<Citation>Intlekofer AM, Takemoto N, Wherry EJ, et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat Immunol. 2005;6:1236-1244.</Citation>
</Reference>
<Reference>
<Citation>WHO (2014) Influenza.</Citation>
</Reference>
<Reference>
<Citation>Myles P, Nguyen-Van-Tam JS, Semple MG, et al, Influenza Clinical Information Network, F.-C.. Differences between asthmatics and nonasthmatics hospitalised with influenza A infection. Eur Respir J. 2013;41:824-831.</Citation>
</Reference>
<Reference>
<Citation>Liu Q, Zhou YH, Yang ZQ. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016;13:3-10.</Citation>
</Reference>
<Reference>
<Citation>Malacco N, Rachid MA, Gurgel I, et al. Eosinophil-associated innate IL-17 response promotes Aspergillus fumigatus lung pathology. Front Cell Infect Microbiol. 2018;8:453.</Citation>
</Reference>
<Reference>
<Citation>Garth JM, Reeder KM, Godwin MS, et al. IL-33 signaling regulates innate IL-17A and IL-22 production via suppression of prostaglandin E2 during lung fungal infection. J Immunol. 2017;199:2140-2148.</Citation>
</Reference>
<Reference>
<Citation>Le Goffic R, Arshad MI, Rauch M, et al. Infection with influenza virus induces IL-33 in murine lungs. Am J Respir Cell Mol Biol. 2011;45:1125-1132.</Citation>
</Reference>
<Reference>
<Citation>Stolarski B, Kurowska-Stolarska M, Kewin P, Xu D, Liew FY. IL-33 exacerbates eosinophil-mediated airway inflammation. J Immunol. 2010;185:3472-3480.</Citation>
</Reference>
<Reference>
<Citation>Suzukawa M, Koketsu R, Iikura M, et al. Interleukin-33 enhances adhesion, CD11b expression and survival in human eosinophils. Lab Invest. 2008;88:1245-1253.</Citation>
</Reference>
<Reference>
<Citation>Wen T, Rothenberg ME. The regulatory function of eosinophils. Microbiol Spectr. 2016;4:MCHD-0020-2015.</Citation>
</Reference>
<Reference>
<Citation>Ramirez GA, Yacoub MR, Ripa M, et al. Eosinophils from physiology to disease: a comprehensive review. Biomed Res Int. 2018;2018:9095275.</Citation>
</Reference>
<Reference>
<Citation>Lee JJ, Jacobsen EA, McGarry MP, Schleimer RP, Lee NA. Eosinophils in health and disease: the LIAR hypothesis. Clin Exp Allergy. 2010;40:563-575.</Citation>
</Reference>
<Reference>
<Citation>Walker C, Braun RK, Boer C, Kroegel C, Virchow JC, Hansel TT. Cytokine control of eosinophils in pulmonary diseases. J Allergy Clin Immunol. 1994;94:1262-1271.</Citation>
</Reference>
<Reference>
<Citation>Palframan RT, Collins PD, Severs NJ, Rothery S, Williams TJ, Rankin SM. Mechanisms of acute eosinophil mobilization from the bone marrow stimulated by interleukin 5: the role of specific adhesion molecules and phosphatidylinositol 3-kinase. J Exp Med. 1998;188:1621-1632.</Citation>
</Reference>
<Reference>
<Citation>Schratl P, Royer JF, Kostenis E, et al. The role of the prostaglandin D2 receptor, DP, in eosinophil trafficking. J Immunol. 2007;179:4792-4799.</Citation>
</Reference>
<Reference>
<Citation>Sriramarao P, von Andrian UH, Butcher EC, Bourdon MA, Broide DH. L-selectin and very late antigen-4 integrin promote eosinophil rolling at physiological shear rates in vivo. J Immunol. 1994;153:4238-4246.</Citation>
</Reference>
<Reference>
<Citation>Bennett TA, Lynam EB, Sklar LA, Rogelj S. Hydroxamate-based metalloprotease inhibitor blocks shedding of L-selectin adhesion molecule from leukocytes: functional consequences for neutrophil aggregation. J Immunol. 1996;156:3093-3097.</Citation>
</Reference>
<Reference>
<Citation>Schleimer RP, Bochner BS. The effects of glucocorticoids on human eosinophils. J Allergy Clin Immunol. 1994;94:1202-1213.</Citation>
</Reference>
<Reference>
<Citation>de Groot JC, Ten Brinke A, Bel EH. Management of the patient with eosinophilic asthma: a new era begins. ERJ Open Res. 2015:1.</Citation>
</Reference>
<Reference>
<Citation>Allen DB, Bielory L, Derendorf H, Dluhy R, Colice GL, Szefler SJ. Inhaled corticosteroids: past lessons and future issues. J Allergy Clin Immunol. 2003;112:S1-40.</Citation>
</Reference>
<Reference>
<Citation>Wadhwa R, Dua K, Adcock IM, Horvat JC, Kim RY, Hansbro PM. Cellular mechanisms underlying steroid-resistant asthma. Eur Respir Rev. 2019:28.</Citation>
</Reference>
<Reference>
<Citation>Kouro T, Takatsu K. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int Immunol. 2009;21:1303-1309.</Citation>
</Reference>
<Reference>
<Citation>Yamaguchi Y, Suda T, Ohta S, Tominaga K, Miura Y, Kasahara T. Analysis of the survival of mature human eosinophils: interleukin-5 prevents apoptosis in mature human eosinophils. Blood. 1991;78:2542-2547.</Citation>
</Reference>
<Reference>
<Citation>Lloyd CM, Hessel EM. Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol. 2010;10:838-848.</Citation>
</Reference>
<Reference>
<Citation>Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 1996;183:195-201.</Citation>
</Reference>
<Reference>
<Citation>Busse W, Chupp G, Nagase H, et al. Anti-IL-5 treatments in patients with severe asthma by blood eosinophil thresholds: indirect treatment comparison. J Allergy Clin Immunol. 2019;143:190-200. e20.</Citation>
</Reference>
<Reference>
<Citation>Kiwamoto T, Kawasaki N, Paulson JC, Bochner BS. Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol Ther. 2012;135:327-336.</Citation>
</Reference>
<Reference>
<Citation>Johnston LK, Hsu CL, Krier-Burris RA, et al. IL-33 precedes IL-5 in regulating eosinophil commitment and is required for eosinophil homeostasis. J Immunol. 2016;197:3445-3453.</Citation>
</Reference>
<Reference>
<Citation>Liu LY, Sedgwick JB, Bates ME, et al. Decreased expression of membrane IL-5 receptor alpha on human eosinophils: iI. IL-5 down-modulates its receptor via a proteinase-mediated process. J Immunol. 2002;169:6459-6466.</Citation>
</Reference>
<Reference>
<Citation>Melo RC, Liu L, Xenakis JJ, Spencer LA. Eosinophil-derived cytokines in health and disease: unraveling novel mechanisms of selective secretion. Allergy. 2013;68:274-284.</Citation>
</Reference>
<Reference>
<Citation>Spencer LA, Szela CT, Perez SA, et al. Human eosinophils constitutively express multiple Th1, Th2, and immunoregulatory cytokines that are secreted rapidly and differentially. J Leukoc Biol. 2009;85:117-123.</Citation>
</Reference>
<Reference>
<Citation>Barnig C, Alsaleh G, Jung N, et al. Circulating human eosinophils share a similar transcriptional profile in asthma and other hypereosinophilic disorders. PLoS One. 2015;10:e0141740.</Citation>
</Reference>
<Reference>
<Citation>Smallwood HS, Duan S, Morfouace M, et al. Targeting metabolic reprogramming by influenza infection for therapeutic intervention. Cell Rep. 2017;19:1640-1653.</Citation>
</Reference>
<Reference>
<Citation>Chang CW, Li HC, Hsu CF, Chang CY, Lo SY. Increased ATP generation in the host cell is required for efficient vaccinia virus production. J Biomed Sci. 2009;16:80.</Citation>
</Reference>
<Reference>
<Citation>Meyer L, Leymarie O, Chevalier C, et al. Transcriptomic profiling of a chicken lung epithelial cell line (CLEC213) reveals a mitochondrial respiratory chain activity boost during influenza virus infection. PLoS One. 2017;12:e0176355.</Citation>
</Reference>
<Reference>
<Citation>Zhang X, Marcucci F, Firestein S. High-throughput microarray detection of vomeronasal receptor gene expression in rodents. Front Neurosci. 2010;4:164.</Citation>
</Reference>
<Reference>
<Citation>Zhang X, Bedigian AV, Wang W, Eggert US. G protein-coupled receptors participate in cytokinesis. Cytoskeleton. 2012;69:810-818.</Citation>
</Reference>
<Reference>
<Citation>Zhao W, Ho L, Varghese M, et al. Decreased level of olfactory receptors in blood cells following traumatic brain injury and potential association with tauopathy. J Alzheimers Dis. 2013;34:417-429.</Citation>
</Reference>
<Reference>
<Citation>Luig C, Kother K, Dudek SE, et al. MAP kinase-activated protein kinases 2 and 3 are required for influenza A virus propagation and act via inhibition of PKR. FASEB J. 2010;24:4068-4077.</Citation>
</Reference>
<Reference>
<Citation>Borgeling Y, Schmolke M, Viemann D, Nordhoff C, Roth J, Ludwig S. Inhibition of p38 mitogen-activated protein kinase impairs influenza virus-induced primary and secondary host gene responses and protects mice from lethal H5N1 infection. J Biol Chem. 2014;289:13-27.</Citation>
</Reference>
<Reference>
<Citation>Growcott EJ, Bamba D, Galarneau JR, et al. The effect of P38 MAP kinase inhibition in a mouse model of influenza. J Med Microbiol. 2018;67:452-462.</Citation>
</Reference>
<Reference>
<Citation>Smed-Sorensen A, Chalouni C, Chatterjee B, et al. Influenza A virus infection of human primary dendritic cells impairs their ability to cross-present antigen to CD8 T cells. PLoS Pathog. 2012;8:e1002572.</Citation>
</Reference>
<Reference>
<Citation>Muller E. Localization of eosinophils in the thymus by the peroxidase reaction. Histochemistry. 1977;52:273-279.</Citation>
</Reference>
<Reference>
<Citation>Throsby M, Herbelin A, Pleau JM, Dardenne M. CD11c+ eosinophils in the murine thymus: developmental regulation and recruitment upon MHC class I-restricted thymocyte deletion. J Immunol. 2000;165:1965-1975.</Citation>
</Reference>
<Reference>
<Citation>Sullivan BM, Juedes A, Szabo SJ, von Herrath M, Glimcher LH. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc Natl Acad Sci USA. 2003;100:15818-15823.</Citation>
</Reference>
<Reference>
<Citation>Prier JE, Li J, Gearing LJ, et al. Early T-BET expression ensures an appropriate CD8(+) lineage-specific transcriptional landscape after influenza A virus infection. J Immunol. 2019;203:1044-1054.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000018 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000018 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:32386457
   |texte=   Influenza A virus directly modulates mouse eosinophil responses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:32386457" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021