Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolution of influenza A virus nucleoprotein genes: implications for the origins of H1N1 human and classical swine viruses.

Identifieur interne : 001E36 ( PubMed/Checkpoint ); précédent : 001E35; suivant : 001E37

Evolution of influenza A virus nucleoprotein genes: implications for the origins of H1N1 human and classical swine viruses.

Auteurs : O T Gorman [États-Unis] ; W J Bean ; Yoshihiro Kawaoka [États-Unis] ; I. Donatelli ; Y J Guo ; R G Webster

Source :

RBID : pubmed:2041090

Descripteurs français

English descriptors

Abstract

A phylogenetic analysis of 52 published and 37 new nucleoprotein (NP) gene sequences addressed the evolution and origin of human and swine influenza A viruses. H1N1 human and classical swine viruses (i.e., those related to Swine/Iowa/15/30) share a single common ancestor, which was estimated to have occurred in 1912 to 1913. From this common ancestor, human and classical swine virus NP genes have evolved at similar rates that are higher than in avian virus NP genes (3.31 to 3.41 versus 1.90 nucleotide changes per year). At the protein level, human virus NPs have evolved twice as fast as classical swine virus NPs (0.66 versus 0.34 amino acid change per year). Despite evidence of frequent interspecies transmission of human and classical swine viruses, our analysis indicates that these viruses have evolved independently since well before the first isolates in the early 1930s. Although our analysis cannot reveal the original host, the ancestor virus was avianlike, showing only five amino acid differences from the root of the avian virus NP lineage. The common pattern of relationship and origin for the NP and other genes of H1N1 human and classical swine viruses suggests that the common ancestor was an avian virus and not a reassortant derived from previous human or swine influenza A viruses. The new avianlike H1N1 swine viruses in Europe may provide a model for the evolution of newly introduced avian viruses into the swine host reservoir. The NPs of these viruses are evolving more rapidly than those of human or classical swine viruses (4.50 nucleotide changes and 0.74 amino acid change per year), and when these rates are applied to pre-1930s human and classical swine virus NPs, the predicted date of a common ancestor is 1918 rather than 1912 to 1913. Thus, our NP phylogeny is consistent with historical records and the proposal that a short time before 1918, a new H1N1 avianlike virus entered human or swine hosts (O. T. Gorman, R. O. Donis, Y. Kawaoka, and R. G. Webster, J. Virol. 64:4893-4902, 1990). This virus provided the ancestors of all known human influenza A virus genes, except for HA, NA, and PB1, which have since been reassorted from avian viruses. We propose that during 1918 a virulent strain of this new avianlike virus caused a severe human influenza pandemic and that the pandemic virus was introduced into North American swine populations, constituting the origin of classical swine virus.

PubMed: 2041090


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:2041090

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolution of influenza A virus nucleoprotein genes: implications for the origins of H1N1 human and classical swine viruses.</title>
<author>
<name sortKey="Gorman, O T" sort="Gorman, O T" uniqKey="Gorman O" first="O T" last="Gorman">O T Gorman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101-0318.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bean, W J" sort="Bean, W J" uniqKey="Bean W" first="W J" last="Bean">W J Bean</name>
</author>
<author>
<name sortKey="Kawaoka, Y" sort="Kawaoka, Y" uniqKey="Kawaoka Y" first="Y" last="Kawaoka">Yoshihiro Kawaoka</name>
<affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Madison (Wisconsin)</settlement>
<region type="state">Wisconsin</region>
</placeName>
<orgName type="university" n="3">Université du Wisconsin à Madison</orgName>
</affiliation>
</author>
<author>
<name sortKey="Donatelli, I" sort="Donatelli, I" uniqKey="Donatelli I" first="I" last="Donatelli">I. Donatelli</name>
</author>
<author>
<name sortKey="Guo, Y J" sort="Guo, Y J" uniqKey="Guo Y" first="Y J" last="Guo">Y J Guo</name>
</author>
<author>
<name sortKey="Webster, R G" sort="Webster, R G" uniqKey="Webster R" first="R G" last="Webster">R G Webster</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1991">1991</date>
<idno type="RBID">pubmed:2041090</idno>
<idno type="pmid">2041090</idno>
<idno type="wicri:Area/PubMed/Corpus">002061</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002061</idno>
<idno type="wicri:Area/PubMed/Curation">002061</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002061</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001E36</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">001E36</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolution of influenza A virus nucleoprotein genes: implications for the origins of H1N1 human and classical swine viruses.</title>
<author>
<name sortKey="Gorman, O T" sort="Gorman, O T" uniqKey="Gorman O" first="O T" last="Gorman">O T Gorman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101-0318.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Tennessee</region>
</placeName>
<wicri:cityArea>Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Bean, W J" sort="Bean, W J" uniqKey="Bean W" first="W J" last="Bean">W J Bean</name>
</author>
<author>
<name sortKey="Kawaoka, Y" sort="Kawaoka, Y" uniqKey="Kawaoka Y" first="Y" last="Kawaoka">Yoshihiro Kawaoka</name>
<affiliation>
<country>États-Unis</country>
<placeName>
<settlement type="city">Madison (Wisconsin)</settlement>
<region type="state">Wisconsin</region>
</placeName>
<orgName type="university" n="3">Université du Wisconsin à Madison</orgName>
</affiliation>
</author>
<author>
<name sortKey="Donatelli, I" sort="Donatelli, I" uniqKey="Donatelli I" first="I" last="Donatelli">I. Donatelli</name>
</author>
<author>
<name sortKey="Guo, Y J" sort="Guo, Y J" uniqKey="Guo Y" first="Y J" last="Guo">Y J Guo</name>
</author>
<author>
<name sortKey="Webster, R G" sort="Webster, R G" uniqKey="Webster R" first="R G" last="Webster">R G Webster</name>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="ISSN">0022-538X</idno>
<imprint>
<date when="1991" type="published">1991</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Biological Evolution</term>
<term>Cloning, Molecular</term>
<term>HN Protein (genetics)</term>
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Influenza A virus (genetics)</term>
<term>Molecular Sequence Data</term>
<term>Nucleocapsid Proteins</term>
<term>Nucleoproteins (genetics)</term>
<term>Viral Core Proteins (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Nucléoprotéines (génétique)</term>
<term>Protéine HN (génétique)</term>
<term>Protéines du core viral (génétique)</term>
<term>Protéines nucléocapside</term>
<term>Sous-type H1N1 du virus de la grippe A</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Virus de la grippe A (génétique)</term>
<term>Évolution biologique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>HN Protein</term>
<term>Nucleoproteins</term>
<term>Viral Core Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Nucléoprotéines</term>
<term>Protéine HN</term>
<term>Protéines du core viral</term>
<term>Virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Animals</term>
<term>Base Sequence</term>
<term>Biological Evolution</term>
<term>Cloning, Molecular</term>
<term>Influenza A Virus, H1N1 Subtype</term>
<term>Molecular Sequence Data</term>
<term>Nucleocapsid Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Protéines nucléocapside</term>
<term>Sous-type H1N1 du virus de la grippe A</term>
<term>Séquence d'acides aminés</term>
<term>Séquence nucléotidique</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A phylogenetic analysis of 52 published and 37 new nucleoprotein (NP) gene sequences addressed the evolution and origin of human and swine influenza A viruses. H1N1 human and classical swine viruses (i.e., those related to Swine/Iowa/15/30) share a single common ancestor, which was estimated to have occurred in 1912 to 1913. From this common ancestor, human and classical swine virus NP genes have evolved at similar rates that are higher than in avian virus NP genes (3.31 to 3.41 versus 1.90 nucleotide changes per year). At the protein level, human virus NPs have evolved twice as fast as classical swine virus NPs (0.66 versus 0.34 amino acid change per year). Despite evidence of frequent interspecies transmission of human and classical swine viruses, our analysis indicates that these viruses have evolved independently since well before the first isolates in the early 1930s. Although our analysis cannot reveal the original host, the ancestor virus was avianlike, showing only five amino acid differences from the root of the avian virus NP lineage. The common pattern of relationship and origin for the NP and other genes of H1N1 human and classical swine viruses suggests that the common ancestor was an avian virus and not a reassortant derived from previous human or swine influenza A viruses. The new avianlike H1N1 swine viruses in Europe may provide a model for the evolution of newly introduced avian viruses into the swine host reservoir. The NPs of these viruses are evolving more rapidly than those of human or classical swine viruses (4.50 nucleotide changes and 0.74 amino acid change per year), and when these rates are applied to pre-1930s human and classical swine virus NPs, the predicted date of a common ancestor is 1918 rather than 1912 to 1913. Thus, our NP phylogeny is consistent with historical records and the proposal that a short time before 1918, a new H1N1 avianlike virus entered human or swine hosts (O. T. Gorman, R. O. Donis, Y. Kawaoka, and R. G. Webster, J. Virol. 64:4893-4902, 1990). This virus provided the ancestors of all known human influenza A virus genes, except for HA, NA, and PB1, which have since been reassorted from avian viruses. We propose that during 1918 a virulent strain of this new avianlike virus caused a severe human influenza pandemic and that the pandemic virus was introduced into North American swine populations, constituting the origin of classical swine virus.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">2041090</PMID>
<DateCompleted>
<Year>1991</Year>
<Month>07</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-538X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>65</Volume>
<Issue>7</Issue>
<PubDate>
<Year>1991</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolution of influenza A virus nucleoprotein genes: implications for the origins of H1N1 human and classical swine viruses.</ArticleTitle>
<Pagination>
<MedlinePgn>3704-14</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>A phylogenetic analysis of 52 published and 37 new nucleoprotein (NP) gene sequences addressed the evolution and origin of human and swine influenza A viruses. H1N1 human and classical swine viruses (i.e., those related to Swine/Iowa/15/30) share a single common ancestor, which was estimated to have occurred in 1912 to 1913. From this common ancestor, human and classical swine virus NP genes have evolved at similar rates that are higher than in avian virus NP genes (3.31 to 3.41 versus 1.90 nucleotide changes per year). At the protein level, human virus NPs have evolved twice as fast as classical swine virus NPs (0.66 versus 0.34 amino acid change per year). Despite evidence of frequent interspecies transmission of human and classical swine viruses, our analysis indicates that these viruses have evolved independently since well before the first isolates in the early 1930s. Although our analysis cannot reveal the original host, the ancestor virus was avianlike, showing only five amino acid differences from the root of the avian virus NP lineage. The common pattern of relationship and origin for the NP and other genes of H1N1 human and classical swine viruses suggests that the common ancestor was an avian virus and not a reassortant derived from previous human or swine influenza A viruses. The new avianlike H1N1 swine viruses in Europe may provide a model for the evolution of newly introduced avian viruses into the swine host reservoir. The NPs of these viruses are evolving more rapidly than those of human or classical swine viruses (4.50 nucleotide changes and 0.74 amino acid change per year), and when these rates are applied to pre-1930s human and classical swine virus NPs, the predicted date of a common ancestor is 1918 rather than 1912 to 1913. Thus, our NP phylogeny is consistent with historical records and the proposal that a short time before 1918, a new H1N1 avianlike virus entered human or swine hosts (O. T. Gorman, R. O. Donis, Y. Kawaoka, and R. G. Webster, J. Virol. 64:4893-4902, 1990). This virus provided the ancestors of all known human influenza A virus genes, except for HA, NA, and PB1, which have since been reassorted from avian viruses. We propose that during 1918 a virulent strain of this new avianlike virus caused a severe human influenza pandemic and that the pandemic virus was introduced into North American swine populations, constituting the origin of classical swine virus.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gorman</LastName>
<ForeName>O T</ForeName>
<Initials>OT</Initials>
<AffiliationInfo>
<Affiliation>Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38101-0318.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bean</LastName>
<ForeName>W J</ForeName>
<Initials>WJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kawaoka</LastName>
<ForeName>Y</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Donatelli</LastName>
<ForeName>I</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Y J</ForeName>
<Initials>YJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Webster</LastName>
<ForeName>R G</ForeName>
<Initials>RG</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="N">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>M30747</AccessionNumber>
<AccessionNumber>M30748</AccessionNumber>
<AccessionNumber>M30750</AccessionNumber>
<AccessionNumber>M30751</AccessionNumber>
<AccessionNumber>M30752</AccessionNumber>
<AccessionNumber>M30753</AccessionNumber>
<AccessionNumber>M30754</AccessionNumber>
<AccessionNumber>M30755</AccessionNumber>
<AccessionNumber>M30756</AccessionNumber>
<AccessionNumber>M30757</AccessionNumber>
<AccessionNumber>M30758</AccessionNumber>
<AccessionNumber>M30760</AccessionNumber>
<AccessionNumber>M30761</AccessionNumber>
<AccessionNumber>M30762</AccessionNumber>
<AccessionNumber>M30763</AccessionNumber>
<AccessionNumber>M30764</AccessionNumber>
<AccessionNumber>M30765</AccessionNumber>
<AccessionNumber>M30766</AccessionNumber>
<AccessionNumber>M30767</AccessionNumber>
<AccessionNumber>M30768</AccessionNumber>
<AccessionNumber>M30769</AccessionNumber>
<AccessionNumber>M63773</AccessionNumber>
<AccessionNumber>M63774</AccessionNumber>
<AccessionNumber>M63775</AccessionNumber>
<AccessionNumber>M63776</AccessionNumber>
<AccessionNumber>M63777</AccessionNumber>
<AccessionNumber>M63778</AccessionNumber>
<AccessionNumber>M63779</AccessionNumber>
<AccessionNumber>M63780</AccessionNumber>
<AccessionNumber>M63781</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>AI-08831</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI-29599</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AI-29680</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015707">HN Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019590">Nucleocapsid Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009698">Nucleoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014758">Viral Core Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015707" MajorTopicYN="N">HN Protein</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="Y">Influenza A Virus, H1N1 Subtype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019590" MajorTopicYN="N">Nucleocapsid Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009698" MajorTopicYN="N">Nucleoproteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014758" MajorTopicYN="N">Viral Core Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1991</Year>
<Month>7</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1991</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1991</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">2041090</ArticleId>
<ArticleId IdType="pmc">PMC241390</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am Rev Respir Dis. 1970 Sep;102(3):356-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5465431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1989 Nov;63(11):4603-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2795713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1977 Jun 24;196(4297):1454-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">867041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1978 Jan;84(1):51-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">74123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1978 Jul 27;274(5669):334-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">672956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1978 Sep;89(2):613-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">716220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zentralbl Veterinarmed B. 1978 Dec;25(10):853-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">217205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1989 Oct;172(2):601-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2800339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Apr;64(4):1487-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2319644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1990 Mar;7(2):194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2319943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1990 May;176(1):255-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2330674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Oct;64(10):4893-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2398532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1953 Dec;98(6):641-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13109114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1958 Feb;80(2):114-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13514080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 1958 Apr 19;1(7025):810-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13526279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1964 Dec 1;120:1087-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14238927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1955 Nov;75(5):401-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13271762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1989 Aug;70 ( Pt 8):2111-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2769232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Intervirology. 1979;11(1):9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">218894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1979 Jul;44(1):251-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">91663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Virol. 1979 May;23(3):240-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">41437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1981 Oct 30;114(2):423-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7292985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1982 Feb 11;10(3):1029-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6278431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1982 Jan 30;116(2):562-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7064347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1982 Feb;117(1):93-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7064355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1982 Mar;117(2):485-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7064356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1982 Sep;62 (Pt 1):171-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6182266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1983 Sep;129(2):521-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6623931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1984 Mar;133(2):438-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6710867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1984 Mar;133(2):448-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6324462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1984 Oct;20(4):833-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6092435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1984 Nov;139(1):194-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6495656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 1985 Jul;3(1):35-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4024728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1985 Dec;147(2):287-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2416114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1986 May 23;232(4753):980-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2939560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1986 Dec;155(2):345-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3788059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1987 Sep;61(9):2857-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2441080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1988 Jan 21;331(6153):215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2827036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1988 Jan;162(1):160-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3336940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1988 Dec;167(2):554-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2974219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 1988;103(1-2):139-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3214270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 1989 Feb;12(2):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2705330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1989 May;170(1):71-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2718389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Nov 28;228(5274):857</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5477012</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
<li>Wisconsin</li>
</region>
<settlement>
<li>Madison (Wisconsin)</li>
</settlement>
<orgName>
<li>Université du Wisconsin à Madison</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bean, W J" sort="Bean, W J" uniqKey="Bean W" first="W J" last="Bean">W J Bean</name>
<name sortKey="Donatelli, I" sort="Donatelli, I" uniqKey="Donatelli I" first="I" last="Donatelli">I. Donatelli</name>
<name sortKey="Guo, Y J" sort="Guo, Y J" uniqKey="Guo Y" first="Y J" last="Guo">Y J Guo</name>
<name sortKey="Webster, R G" sort="Webster, R G" uniqKey="Webster R" first="R G" last="Webster">R G Webster</name>
</noCountry>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Gorman, O T" sort="Gorman, O T" uniqKey="Gorman O" first="O T" last="Gorman">O T Gorman</name>
</region>
<name sortKey="Kawaoka, Y" sort="Kawaoka, Y" uniqKey="Kawaoka Y" first="Y" last="Kawaoka">Yoshihiro Kawaoka</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E36 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001E36 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:2041090
   |texte=   Evolution of influenza A virus nucleoprotein genes: implications for the origins of H1N1 human and classical swine viruses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:2041090" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021