Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reconstructing disease outbreaks from genetic data: a graph approach.

Identifieur interne : 000E65 ( PubMed/Checkpoint ); précédent : 000E64; suivant : 000E66

Reconstructing disease outbreaks from genetic data: a graph approach.

Auteurs : T. Jombart [Royaume-Uni] ; R M Eggo ; P J Dodd ; F. Balloux

Source :

RBID : pubmed:20551981

Descripteurs français

English descriptors

Abstract

Epidemiology and public health planning will increasingly rely on the analysis of genetic sequence data. In particular, genetic data coupled with dates and locations of sampled isolates can be used to reconstruct the spatiotemporal dynamics of pathogens during outbreaks. Thus far, phylogenetic methods have been used to tackle this issue. Although these approaches have proved useful for informing on the spread of pathogens, they do not aim at directly reconstructing the underlying transmission tree. Instead, phylogenetic models infer most recent common ancestors between pairs of isolates, which can be inadequate for densely sampled recent outbreaks, where the sample includes ancestral and descendent isolates. In this paper, we introduce a novel method based on a graph approach to reconstruct transmission trees directly from genetic data. Using simulated data, we show that our approach can efficiently reconstruct genealogies of isolates in situations where classical phylogenetic approaches fail to do so. We then illustrate our method by analyzing data from the early stages of the swine-origin A/H1N1 influenza pandemic. Using 433 isolates sequenced at both the hemagglutinin and neuraminidase genes, we reconstruct the likely history of the worldwide spread of this new influenza strain. The presented methodology opens new perspectives for the analysis of genetic data in the context of disease outbreaks.

DOI: 10.1038/hdy.2010.78
PubMed: 20551981


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20551981

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reconstructing disease outbreaks from genetic data: a graph approach.</title>
<author>
<name sortKey="Jombart, T" sort="Jombart, T" uniqKey="Jombart T" first="T" last="Jombart">T. Jombart</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis and Modelling, Imperial College Faculty of Medicine, London, UK. t.jombart@imperial.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis and Modelling, Imperial College Faculty of Medicine, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eggo, R M" sort="Eggo, R M" uniqKey="Eggo R" first="R M" last="Eggo">R M Eggo</name>
</author>
<author>
<name sortKey="Dodd, P J" sort="Dodd, P J" uniqKey="Dodd P" first="P J" last="Dodd">P J Dodd</name>
</author>
<author>
<name sortKey="Balloux, F" sort="Balloux, F" uniqKey="Balloux F" first="F" last="Balloux">F. Balloux</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:20551981</idno>
<idno type="pmid">20551981</idno>
<idno type="doi">10.1038/hdy.2010.78</idno>
<idno type="wicri:Area/PubMed/Corpus">001315</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001315</idno>
<idno type="wicri:Area/PubMed/Curation">001315</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001315</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000E65</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000E65</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reconstructing disease outbreaks from genetic data: a graph approach.</title>
<author>
<name sortKey="Jombart, T" sort="Jombart, T" uniqKey="Jombart T" first="T" last="Jombart">T. Jombart</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis and Modelling, Imperial College Faculty of Medicine, London, UK. t.jombart@imperial.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis and Modelling, Imperial College Faculty of Medicine, London</wicri:regionArea>
<placeName>
<settlement type="city">Londres</settlement>
<region type="country">Angleterre</region>
<region type="région" nuts="1">Grand Londres</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Eggo, R M" sort="Eggo, R M" uniqKey="Eggo R" first="R M" last="Eggo">R M Eggo</name>
</author>
<author>
<name sortKey="Dodd, P J" sort="Dodd, P J" uniqKey="Dodd P" first="P J" last="Dodd">P J Dodd</name>
</author>
<author>
<name sortKey="Balloux, F" sort="Balloux, F" uniqKey="Balloux F" first="F" last="Balloux">F. Balloux</name>
</author>
</analytic>
<series>
<title level="j">Heredity</title>
<idno type="eISSN">1365-2540</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Simulation</term>
<term>Hemagglutinins (genetics)</term>
<term>Humans</term>
<term>Influenza A Virus, H1N1 Subtype (genetics)</term>
<term>Influenza A Virus, H1N1 Subtype (isolation & purification)</term>
<term>Influenza, Human (epidemiology)</term>
<term>Influenza, Human (virology)</term>
<term>Models, Genetic</term>
<term>Neuraminidase (genetics)</term>
<term>Pandemics</term>
<term>Pedigree</term>
<term>Phylogeny</term>
<term>Poisson Distribution</term>
<term>Population Dynamics</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Dynamique des populations</term>
<term>Grippe humaine (virologie)</term>
<term>Grippe humaine (épidémiologie)</term>
<term>Humains</term>
<term>Hémagglutinines (génétique)</term>
<term>Loi de Poisson</term>
<term>Modèles génétiques</term>
<term>Pandémies</term>
<term>Pedigree</term>
<term>Phylogénie</term>
<term>Sialidase (génétique)</term>
<term>Simulation numérique</term>
<term>Sous-type H1N1 du virus de la grippe A (génétique)</term>
<term>Sous-type H1N1 du virus de la grippe A (isolement et purification)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Hemagglutinins</term>
<term>Neuraminidase</term>
</keywords>
<keywords scheme="MESH" qualifier="epidemiology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Hémagglutinines</term>
<term>Sialidase</term>
<term>Sous-type H1N1 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Influenza A Virus, H1N1 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Sous-type H1N1 du virus de la grippe A</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Influenza, Human</term>
</keywords>
<keywords scheme="MESH" qualifier="épidémiologie" xml:lang="fr">
<term>Grippe humaine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Humans</term>
<term>Models, Genetic</term>
<term>Pandemics</term>
<term>Pedigree</term>
<term>Phylogeny</term>
<term>Poisson Distribution</term>
<term>Population Dynamics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dynamique des populations</term>
<term>Humains</term>
<term>Loi de Poisson</term>
<term>Modèles génétiques</term>
<term>Pandémies</term>
<term>Pedigree</term>
<term>Phylogénie</term>
<term>Simulation numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Epidemiology and public health planning will increasingly rely on the analysis of genetic sequence data. In particular, genetic data coupled with dates and locations of sampled isolates can be used to reconstruct the spatiotemporal dynamics of pathogens during outbreaks. Thus far, phylogenetic methods have been used to tackle this issue. Although these approaches have proved useful for informing on the spread of pathogens, they do not aim at directly reconstructing the underlying transmission tree. Instead, phylogenetic models infer most recent common ancestors between pairs of isolates, which can be inadequate for densely sampled recent outbreaks, where the sample includes ancestral and descendent isolates. In this paper, we introduce a novel method based on a graph approach to reconstruct transmission trees directly from genetic data. Using simulated data, we show that our approach can efficiently reconstruct genealogies of isolates in situations where classical phylogenetic approaches fail to do so. We then illustrate our method by analyzing data from the early stages of the swine-origin A/H1N1 influenza pandemic. Using 433 isolates sequenced at both the hemagglutinin and neuraminidase genes, we reconstruct the likely history of the worldwide spread of this new influenza strain. The presented methodology opens new perspectives for the analysis of genetic data in the context of disease outbreaks.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20551981</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>05</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2540</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>106</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2011</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Heredity</Title>
<ISOAbbreviation>Heredity (Edinb)</ISOAbbreviation>
</Journal>
<ArticleTitle>Reconstructing disease outbreaks from genetic data: a graph approach.</ArticleTitle>
<Pagination>
<MedlinePgn>383-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/hdy.2010.78</ELocationID>
<Abstract>
<AbstractText>Epidemiology and public health planning will increasingly rely on the analysis of genetic sequence data. In particular, genetic data coupled with dates and locations of sampled isolates can be used to reconstruct the spatiotemporal dynamics of pathogens during outbreaks. Thus far, phylogenetic methods have been used to tackle this issue. Although these approaches have proved useful for informing on the spread of pathogens, they do not aim at directly reconstructing the underlying transmission tree. Instead, phylogenetic models infer most recent common ancestors between pairs of isolates, which can be inadequate for densely sampled recent outbreaks, where the sample includes ancestral and descendent isolates. In this paper, we introduce a novel method based on a graph approach to reconstruct transmission trees directly from genetic data. Using simulated data, we show that our approach can efficiently reconstruct genealogies of isolates in situations where classical phylogenetic approaches fail to do so. We then illustrate our method by analyzing data from the early stages of the swine-origin A/H1N1 influenza pandemic. Using 433 isolates sequenced at both the hemagglutinin and neuraminidase genes, we reconstruct the likely history of the worldwide spread of this new influenza strain. The presented methodology opens new perspectives for the analysis of genetic data in the context of disease outbreaks.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jombart</LastName>
<ForeName>T</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Infectious Disease Epidemiology, MRC Centre for Outbreak Analysis and Modelling, Imperial College Faculty of Medicine, London, UK. t.jombart@imperial.ac.uk</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Eggo</LastName>
<ForeName>R M</ForeName>
<Initials>RM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dodd</LastName>
<ForeName>P J</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Balloux</LastName>
<ForeName>F</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/H008802/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>G0600719</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>06</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Heredity (Edinb)</MedlineTA>
<NlmUniqueID>0373007</NlmUniqueID>
<ISSNLinking>0018-067X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006388">Hemagglutinins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.18</RegistryNumber>
<NameOfSubstance UI="D009439">Neuraminidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="Y">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006388" MajorTopicYN="N">Hemagglutinins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053118" MajorTopicYN="N">Influenza A Virus, H1N1 Subtype</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
<QualifierName UI="Q000453" MajorTopicYN="Y">epidemiology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="Y">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009439" MajorTopicYN="N">Neuraminidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010375" MajorTopicYN="N">Pedigree</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016012" MajorTopicYN="N">Poisson Distribution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011157" MajorTopicYN="N">Population Dynamics</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20551981</ArticleId>
<ArticleId IdType="pii">hdy201078</ArticleId>
<ArticleId IdType="doi">10.1038/hdy.2010.78</ArticleId>
<ArticleId IdType="pmc">PMC3183872</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2009 Jun 25;459(7250):1122-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19516283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 2008 Apr 22;275(1637):887-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18230598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 21;312(5772):447-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16574822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2003 Feb 1;187(3):352-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12552418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 19;324(5934):1557-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19433588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Curr. 2009 Aug 18;1:RRN1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20025195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Sep;3(10):e401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16968115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jan 16;303(5656):327-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14726583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007 Nov 08;7:214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17996036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 10;325(5937):197-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19465683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):6974-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10860959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2006 Jun;3(6):e212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16640458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Epidemiol. 2009 May;33(4):281-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19025788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2009 Sep;5(9):e1000520</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19779555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 22;327(5964):469-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20093474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Curr. 2009 Sep 02;1:RRN1031</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20029613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Curr. 2009 Aug 27;1:RRN1014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20029608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D5-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17170002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 18;320(5874):340-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18420927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 May 29;453(7195):615-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18418375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 May 1;25(9):1189-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19151095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Med. 2009 May 19;6(5):e1000085</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19440354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Apr 18;4(4):e1000050</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18421380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Jul 27;442(7101):448-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16642006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1998 Apr;7(4):381-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9627999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Jun 1;24(11):1403-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18397895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2008 May;8(5):289-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18471774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5935-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16585506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Jan 22;20(2):289-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14734327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4425-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15767575</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Londres</li>
</region>
<settlement>
<li>Londres</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Balloux, F" sort="Balloux, F" uniqKey="Balloux F" first="F" last="Balloux">F. Balloux</name>
<name sortKey="Dodd, P J" sort="Dodd, P J" uniqKey="Dodd P" first="P J" last="Dodd">P J Dodd</name>
<name sortKey="Eggo, R M" sort="Eggo, R M" uniqKey="Eggo R" first="R M" last="Eggo">R M Eggo</name>
</noCountry>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Jombart, T" sort="Jombart, T" uniqKey="Jombart T" first="T" last="Jombart">T. Jombart</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E65 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000E65 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:20551981
   |texte=   Reconstructing disease outbreaks from genetic data: a graph approach.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:20551981" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021