Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A Single Amino Acid Substitution at Residue 218 of Hemagglutinin Improves the Growth of Influenza A(H7N9) Candidate Vaccine Viruses.

Identifieur interne : 000190 ( PubMed/Checkpoint ); précédent : 000189; suivant : 000191

A Single Amino Acid Substitution at Residue 218 of Hemagglutinin Improves the Growth of Influenza A(H7N9) Candidate Vaccine Viruses.

Auteurs : Xing Li ; Yamei Gao [États-Unis] ; Zhiping Ye

Source :

RBID : pubmed:31270231

Descripteurs français

English descriptors

Abstract

The potential avian influenza pandemic remains a threat to public health, as the avian-origin influenza A(H7N9) virus has caused more than 1,560 laboratory-confirmed human infections since 2013, with nearly 40% mortality. Development of low-pathogenic candidate vaccine viruses (CVVs) for vaccine production is essential for pandemic preparedness. However, the suboptimal growth of CVVs in mammalian cells and chicken eggs is often a challenge. By introducing a single adaptive substitution, G218E, into the hemagglutinin (HA), we generated reassortant A(H7N9)-G218E CVVs that were characterized by significantly enhanced growth in both cells and eggs. These G218E CVVs retained the original antigenicity, as determined by a hemagglutination inhibition assay, and effectively protected ferrets from lethal challenge with the highly pathogenic parental virus. We found that the suboptimal replication of the parental H7 CVVs was associated with impeded progeny virus release as a result of strong HA receptor binding relative to weak neuraminidase (NA) cleavage of receptors. In contrast, the G218E-mediated growth improvement was attributed to relatively balanced HA and NA functions, resulted from reduced HA binding to both human- and avian-type receptors, and thus facilitated NA-mediated virus release. Our findings revealed that a single amino acid mutation at residue 218 of the HA improved the growth of A(H7N9) influenza virus by balancing HA and NA functions, shedding light on an alternative approach for optimizing certain influenza CVVs.IMPORTANCE The circulating avian influenza A(H7N9) has caused recurrent epidemic waves with high mortality in China since 2013, in which the alarming fifth wave crossing 2016 and 2017 was highlighted by a large number of human infections and the emergence of highly pathogenic avian influenza (HPAI) A(H7N9) strains in human cases. We generated low-pathogenic reassortant CVVs derived from the emerging A(H7N9) with improved virus replication and protein yield in both MDCK cells and eggs by introducing a single substitution, G218E, into HA, which was associated with reducing HA receptor binding and subsequently balancing HA-NA functions. The in vitro and in vivo experiments demonstrated comparable antigenicity of the G218E CVVs with that of their wild-type (WT) counterparts, and both the WT and the G218E CVVs fully protected ferrets from parental HPAI virus challenge. With high yield traits and the anticipated antigenicity, the G218E CVVs should benefit preparedness against the threat of an A(H7N9) influenza pandemic.

DOI: 10.1128/JVI.00570-19
PubMed: 31270231


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:31270231

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A Single Amino Acid Substitution at Residue 218 of Hemagglutinin Improves the Growth of Influenza A(H7N9) Candidate Vaccine Viruses.</title>
<author>
<name sortKey="Li, Xing" sort="Li, Xing" uniqKey="Li X" first="Xing" last="Li">Xing Li</name>
<affiliation>
<nlm:affiliation>Division of Viral Products, Center for Biologics Evaluation and Research, Silver Spring, Maryland, USA xing.li@fda.hhs.gov Zhiping.ye@fda.hhs.gov.</nlm:affiliation>
<wicri:noCountry code="subField">USA xing.li@fda.hhs.gov</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gao, Yamei" sort="Gao, Yamei" uniqKey="Gao Y" first="Yamei" last="Gao">Yamei Gao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Viral Products, Center for Biologics Evaluation and Research, Silver Spring, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Viral Products, Center for Biologics Evaluation and Research, Silver Spring, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ye, Zhiping" sort="Ye, Zhiping" uniqKey="Ye Z" first="Zhiping" last="Ye">Zhiping Ye</name>
<affiliation>
<nlm:affiliation>Division of Viral Products, Center for Biologics Evaluation and Research, Silver Spring, Maryland, USA xing.li@fda.hhs.gov Zhiping.ye@fda.hhs.gov.</nlm:affiliation>
<wicri:noCountry code="subField">USA xing.li@fda.hhs.gov</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31270231</idno>
<idno type="pmid">31270231</idno>
<idno type="doi">10.1128/JVI.00570-19</idno>
<idno type="wicri:Area/PubMed/Corpus">000120</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">000120</idno>
<idno type="wicri:Area/PubMed/Curation">000120</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">000120</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000190</idno>
<idno type="wicri:explorRef" wicri:stream="Checkpoint" wicri:step="PubMed">000190</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A Single Amino Acid Substitution at Residue 218 of Hemagglutinin Improves the Growth of Influenza A(H7N9) Candidate Vaccine Viruses.</title>
<author>
<name sortKey="Li, Xing" sort="Li, Xing" uniqKey="Li X" first="Xing" last="Li">Xing Li</name>
<affiliation>
<nlm:affiliation>Division of Viral Products, Center for Biologics Evaluation and Research, Silver Spring, Maryland, USA xing.li@fda.hhs.gov Zhiping.ye@fda.hhs.gov.</nlm:affiliation>
<wicri:noCountry code="subField">USA xing.li@fda.hhs.gov</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gao, Yamei" sort="Gao, Yamei" uniqKey="Gao Y" first="Yamei" last="Gao">Yamei Gao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Viral Products, Center for Biologics Evaluation and Research, Silver Spring, Maryland, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Viral Products, Center for Biologics Evaluation and Research, Silver Spring, Maryland</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ye, Zhiping" sort="Ye, Zhiping" uniqKey="Ye Z" first="Zhiping" last="Ye">Zhiping Ye</name>
<affiliation>
<nlm:affiliation>Division of Viral Products, Center for Biologics Evaluation and Research, Silver Spring, Maryland, USA xing.li@fda.hhs.gov Zhiping.ye@fda.hhs.gov.</nlm:affiliation>
<wicri:noCountry code="subField">USA xing.li@fda.hhs.gov</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Biological</term>
<term>Amino Acid Substitution</term>
<term>Animals</term>
<term>Chick Embryo</term>
<term>Disease Models, Animal</term>
<term>Dogs</term>
<term>Ferrets</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (genetics)</term>
<term>Hemagglutinin Glycoproteins, Influenza Virus (metabolism)</term>
<term>Influenza A Virus, H7N9 Subtype (genetics)</term>
<term>Influenza A Virus, H7N9 Subtype (growth & development)</term>
<term>Influenza A Virus, H7N9 Subtype (immunology)</term>
<term>Influenza Vaccines (administration & dosage)</term>
<term>Influenza Vaccines (genetics)</term>
<term>Influenza Vaccines (immunology)</term>
<term>Madin Darby Canine Kidney Cells</term>
<term>Mutant Proteins (genetics)</term>
<term>Mutant Proteins (metabolism)</term>
<term>Orthomyxoviridae Infections (prevention & control)</term>
<term>Reassortant Viruses (genetics)</term>
<term>Reassortant Viruses (growth & development)</term>
<term>Survival Analysis</term>
<term>Vaccines, Attenuated (administration & dosage)</term>
<term>Vaccines, Attenuated (genetics)</term>
<term>Vaccines, Attenuated (immunology)</term>
<term>Virus Attachment</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation biologique</term>
<term>Analyse de survie</term>
<term>Animaux</term>
<term>Attachement viral</term>
<term>Cellules rénales canines Madin-Darby</term>
<term>Chiens</term>
<term>Embryon de poulet</term>
<term>Furets</term>
<term>Glycoprotéine hémagglutinine du virus influenza (génétique)</term>
<term>Glycoprotéine hémagglutinine du virus influenza (métabolisme)</term>
<term>Infections à Orthomyxoviridae ()</term>
<term>Modèles animaux de maladie humaine</term>
<term>Protéines mutantes (génétique)</term>
<term>Protéines mutantes (métabolisme)</term>
<term>Réplication virale</term>
<term>Sous-type H7N9 du virus de la grippe A (croissance et développement)</term>
<term>Sous-type H7N9 du virus de la grippe A (génétique)</term>
<term>Sous-type H7N9 du virus de la grippe A (immunologie)</term>
<term>Substitution d'acide aminé</term>
<term>Vaccins antigrippaux (administration et posologie)</term>
<term>Vaccins antigrippaux (génétique)</term>
<term>Vaccins antigrippaux (immunologie)</term>
<term>Vaccins atténués (administration et posologie)</term>
<term>Vaccins atténués (génétique)</term>
<term>Vaccins atténués (immunologie)</term>
<term>Virus recombinants (croissance et développement)</term>
<term>Virus recombinants (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Influenza Vaccines</term>
<term>Vaccines, Attenuated</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
<term>Influenza Vaccines</term>
<term>Mutant Proteins</term>
<term>Vaccines, Attenuated</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Influenza Vaccines</term>
<term>Vaccines, Attenuated</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Hemagglutinin Glycoproteins, Influenza Virus</term>
<term>Mutant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="administration et posologie" xml:lang="fr">
<term>Vaccins antigrippaux</term>
<term>Vaccins atténués</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Sous-type H7N9 du virus de la grippe A</term>
<term>Virus recombinants</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Influenza A Virus, H7N9 Subtype</term>
<term>Reassortant Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Influenza A Virus, H7N9 Subtype</term>
<term>Reassortant Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycoprotéine hémagglutinine du virus influenza</term>
<term>Protéines mutantes</term>
<term>Sous-type H7N9 du virus de la grippe A</term>
<term>Vaccins antigrippaux</term>
<term>Vaccins atténués</term>
<term>Virus recombinants</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Sous-type H7N9 du virus de la grippe A</term>
<term>Vaccins antigrippaux</term>
<term>Vaccins atténués</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Influenza A Virus, H7N9 Subtype</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glycoprotéine hémagglutinine du virus influenza</term>
<term>Protéines mutantes</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Orthomyxoviridae Infections</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Biological</term>
<term>Amino Acid Substitution</term>
<term>Animals</term>
<term>Chick Embryo</term>
<term>Disease Models, Animal</term>
<term>Dogs</term>
<term>Ferrets</term>
<term>Madin Darby Canine Kidney Cells</term>
<term>Survival Analysis</term>
<term>Virus Attachment</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation biologique</term>
<term>Analyse de survie</term>
<term>Animaux</term>
<term>Attachement viral</term>
<term>Cellules rénales canines Madin-Darby</term>
<term>Chiens</term>
<term>Embryon de poulet</term>
<term>Furets</term>
<term>Infections à Orthomyxoviridae</term>
<term>Modèles animaux de maladie humaine</term>
<term>Réplication virale</term>
<term>Substitution d'acide aminé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The potential avian influenza pandemic remains a threat to public health, as the avian-origin influenza A(H7N9) virus has caused more than 1,560 laboratory-confirmed human infections since 2013, with nearly 40% mortality. Development of low-pathogenic candidate vaccine viruses (CVVs) for vaccine production is essential for pandemic preparedness. However, the suboptimal growth of CVVs in mammalian cells and chicken eggs is often a challenge. By introducing a single adaptive substitution, G218E, into the hemagglutinin (HA), we generated reassortant A(H7N9)-G218E CVVs that were characterized by significantly enhanced growth in both cells and eggs. These G218E CVVs retained the original antigenicity, as determined by a hemagglutination inhibition assay, and effectively protected ferrets from lethal challenge with the highly pathogenic parental virus. We found that the suboptimal replication of the parental H7 CVVs was associated with impeded progeny virus release as a result of strong HA receptor binding relative to weak neuraminidase (NA) cleavage of receptors. In contrast, the G218E-mediated growth improvement was attributed to relatively balanced HA and NA functions, resulted from reduced HA binding to both human- and avian-type receptors, and thus facilitated NA-mediated virus release. Our findings revealed that a single amino acid mutation at residue 218 of the HA improved the growth of A(H7N9) influenza virus by balancing HA and NA functions, shedding light on an alternative approach for optimizing certain influenza CVVs.
<b>IMPORTANCE</b>
The circulating avian influenza A(H7N9) has caused recurrent epidemic waves with high mortality in China since 2013, in which the alarming fifth wave crossing 2016 and 2017 was highlighted by a large number of human infections and the emergence of highly pathogenic avian influenza (HPAI) A(H7N9) strains in human cases. We generated low-pathogenic reassortant CVVs derived from the emerging A(H7N9) with improved virus replication and protein yield in both MDCK cells and eggs by introducing a single substitution, G218E, into HA, which was associated with reducing HA receptor binding and subsequently balancing HA-NA functions. The
<i>in vitro</i>
and
<i>in vivo</i>
experiments demonstrated comparable antigenicity of the G218E CVVs with that of their wild-type (WT) counterparts, and both the WT and the G218E CVVs fully protected ferrets from parental HPAI virus challenge. With high yield traits and the anticipated antigenicity, the G218E CVVs should benefit preparedness against the threat of an A(H7N9) influenza pandemic.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31270231</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>06</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>06</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>93</Volume>
<Issue>19</Issue>
<PubDate>
<Year>2019</Year>
<Month>10</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J. Virol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A Single Amino Acid Substitution at Residue 218 of Hemagglutinin Improves the Growth of Influenza A(H7N9) Candidate Vaccine Viruses.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e00570-19</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.00570-19</ELocationID>
<Abstract>
<AbstractText>The potential avian influenza pandemic remains a threat to public health, as the avian-origin influenza A(H7N9) virus has caused more than 1,560 laboratory-confirmed human infections since 2013, with nearly 40% mortality. Development of low-pathogenic candidate vaccine viruses (CVVs) for vaccine production is essential for pandemic preparedness. However, the suboptimal growth of CVVs in mammalian cells and chicken eggs is often a challenge. By introducing a single adaptive substitution, G218E, into the hemagglutinin (HA), we generated reassortant A(H7N9)-G218E CVVs that were characterized by significantly enhanced growth in both cells and eggs. These G218E CVVs retained the original antigenicity, as determined by a hemagglutination inhibition assay, and effectively protected ferrets from lethal challenge with the highly pathogenic parental virus. We found that the suboptimal replication of the parental H7 CVVs was associated with impeded progeny virus release as a result of strong HA receptor binding relative to weak neuraminidase (NA) cleavage of receptors. In contrast, the G218E-mediated growth improvement was attributed to relatively balanced HA and NA functions, resulted from reduced HA binding to both human- and avian-type receptors, and thus facilitated NA-mediated virus release. Our findings revealed that a single amino acid mutation at residue 218 of the HA improved the growth of A(H7N9) influenza virus by balancing HA and NA functions, shedding light on an alternative approach for optimizing certain influenza CVVs.
<b>IMPORTANCE</b>
The circulating avian influenza A(H7N9) has caused recurrent epidemic waves with high mortality in China since 2013, in which the alarming fifth wave crossing 2016 and 2017 was highlighted by a large number of human infections and the emergence of highly pathogenic avian influenza (HPAI) A(H7N9) strains in human cases. We generated low-pathogenic reassortant CVVs derived from the emerging A(H7N9) with improved virus replication and protein yield in both MDCK cells and eggs by introducing a single substitution, G218E, into HA, which was associated with reducing HA receptor binding and subsequently balancing HA-NA functions. The
<i>in vitro</i>
and
<i>in vivo</i>
experiments demonstrated comparable antigenicity of the G218E CVVs with that of their wild-type (WT) counterparts, and both the WT and the G218E CVVs fully protected ferrets from parental HPAI virus challenge. With high yield traits and the anticipated antigenicity, the G218E CVVs should benefit preparedness against the threat of an A(H7N9) influenza pandemic.</AbstractText>
<CopyrightInformation>Copyright © 2019 Li et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Xing</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Division of Viral Products, Center for Biologics Evaluation and Research, Silver Spring, Maryland, USA xing.li@fda.hhs.gov Zhiping.ye@fda.hhs.gov.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Yamei</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Division of Viral Products, Center for Biologics Evaluation and Research, Silver Spring, Maryland, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ye</LastName>
<ForeName>Zhiping</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Division of Viral Products, Center for Biologics Evaluation and Research, Silver Spring, Maryland, USA xing.li@fda.hhs.gov Zhiping.ye@fda.hhs.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>09</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019267">Hemagglutinin Glycoproteins, Influenza Virus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007252">Influenza Vaccines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050505">Mutant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014613">Vaccines, Attenuated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C483468">hemagglutinin, human influenza A virus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000220" MajorTopicYN="N">Adaptation, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="Y">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002642" MajorTopicYN="N">Chick Embryo</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004195" MajorTopicYN="N">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004285" MajorTopicYN="N">Dogs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005289" MajorTopicYN="N">Ferrets</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019267" MajorTopicYN="N">Hemagglutinin Glycoproteins, Influenza Virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064766" MajorTopicYN="N">Influenza A Virus, H7N9 Subtype</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007252" MajorTopicYN="N">Influenza Vaccines</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061985" MajorTopicYN="N">Madin Darby Canine Kidney Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050505" MajorTopicYN="N">Mutant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009976" MajorTopicYN="N">Orthomyxoviridae Infections</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016865" MajorTopicYN="N">Reassortant Viruses</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016019" MajorTopicYN="N">Survival Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014613" MajorTopicYN="N">Vaccines, Attenuated</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053585" MajorTopicYN="N">Virus Attachment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">balancing HA and NA functions</Keyword>
<Keyword MajorTopicYN="Y">influenza A(H7N9) virus</Keyword>
<Keyword MajorTopicYN="Y">pandemic preparedness</Keyword>
<Keyword MajorTopicYN="Y">pathogenesis in ferret</Keyword>
<Keyword MajorTopicYN="Y">vaccine protein yield</Keyword>
<Keyword MajorTopicYN="Y">virus replication</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>06</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>7</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31270231</ArticleId>
<ArticleId IdType="pii">JVI.00570-19</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.00570-19</ArticleId>
<ArticleId IdType="pmc">PMC6744242</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 23;97(11):6108-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Jul;74(13):6015-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10846083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2003 Mar-Apr;13(2):85-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12627392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2009 May;83(9):4023-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19224999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Sep 10;285(37):28403-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20538598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Jan;86(1):121-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22013054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2012 Jul;6(4):245-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22085243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 May;86(9):4724-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22379077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;865:25-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22528152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Sep;86(17):9221-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22718832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Apr;87(8):4642-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23408613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2013 May 16;368(20):1888-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23577628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Jul;87(14):8235-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23698299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jun 20;153(7):1486-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23746830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jul 25;499(7459):496-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23787694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jul 25;499(7459):500-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23823727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Sep 26;501(7468):551-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23842494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Sep 26;501(7468):556-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23842497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2013 Nov;94(Pt 11):2417-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2013;19(9):1521-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23965618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Oct 11;342(6155):243-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24009358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Sep 13;8(9):e75014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24058646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Apr;1838(4):1153-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24161712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2013 Oct 28;3:3058</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24162312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jun;88(12):6623-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24696487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2014 Jun;88(12):7016-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24719414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Apr 24;290(17):10627-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25673693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Apr 08;6:6553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25850788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2015 Sep;9(5):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25962412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Sep 25;10(9):e0138951</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26405798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2016 Jan 12;34(3):328-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26657023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2016 Jan 20;90(7):3794-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26792744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2017 Mar 7;35(10):1424-1430</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28162820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2017 Apr 13;91(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28202753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2017 May 12;91(11):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28356530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2017 Aug;17(8):822-832</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28583578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2017 Nov 8;22(5):615-626.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29056430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2018 Jan 2;92(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29070694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Infect Dis. 2019 Jan 1;219(1):19-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29982588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2018 Dec 10;93(1):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30305359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2019 Feb;27(2):93-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30553653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 May;6(5):1459-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3608984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1983 Jul 7-13;304(5921):76-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6191220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Microbiol. 1980 Sep;12(3):426-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6260835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1984 Sep;137(2):314-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6485252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1997 Apr;71(4):3357-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9060710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11808-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9342319</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Li, Xing" sort="Li, Xing" uniqKey="Li X" first="Xing" last="Li">Xing Li</name>
<name sortKey="Ye, Zhiping" sort="Ye, Zhiping" uniqKey="Ye Z" first="Zhiping" last="Ye">Zhiping Ye</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Gao, Yamei" sort="Gao, Yamei" uniqKey="Gao Y" first="Yamei" last="Gao">Yamei Gao</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000190 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000190 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:31270231
   |texte=   A Single Amino Acid Substitution at Residue 218 of Hemagglutinin Improves the Growth of Influenza A(H7N9) Candidate Vaccine Viruses.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:31270231" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021