Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mathematical models to characterize early epidemic growth: A Review

Identifieur interne : 000830 ( Pmc/Curation ); précédent : 000829; suivant : 000831

Mathematical models to characterize early epidemic growth: A Review

Auteurs : Gerardo Chowell [États-Unis] ; Lisa Sattenspiel [États-Unis] ; Shweta Bansal [États-Unis] ; Cécile Viboud [États-Unis]

Source :

RBID : PMC:5348083

Abstract

There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-15 Ebola epidemic in West Africa.


Url:
DOI: 10.1016/j.plrev.2016.07.005
PubMed: 27451336
PubMed Central: 5348083

Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:5348083

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mathematical models to characterize early epidemic growth: A Review</title>
<author>
<name sortKey="Chowell, Gerardo" sort="Chowell, Gerardo" uniqKey="Chowell G" first="Gerardo" last="Chowell">Gerardo Chowell</name>
<affiliation wicri:level="1">
<nlm:aff id="A1"> School of Public Health, Georgia State University, Atlanta, GA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> School of Public Health, Georgia State University, Atlanta, GA</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A2"> Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sattenspiel, Lisa" sort="Sattenspiel, Lisa" uniqKey="Sattenspiel L" first="Lisa" last="Sattenspiel">Lisa Sattenspiel</name>
<affiliation wicri:level="1">
<nlm:aff id="A3"> Department of Anthropology, University of Missouri, Columbia, MO, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> Department of Anthropology, University of Missouri, Columbia, MO</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bansal, Shweta" sort="Bansal, Shweta" uniqKey="Bansal S" first="Shweta" last="Bansal">Shweta Bansal</name>
<affiliation wicri:level="1">
<nlm:aff id="A4"> Department of Biology, Georgetown University, Washington DC, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> Department of Biology, Georgetown University, Washington DC</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A2"> Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Viboud, Cecile" sort="Viboud, Cecile" uniqKey="Viboud C" first="Cécile" last="Viboud">Cécile Viboud</name>
<affiliation wicri:level="1">
<nlm:aff id="A2"> Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">27451336</idno>
<idno type="pmc">5348083</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5348083</idno>
<idno type="RBID">PMC:5348083</idno>
<idno type="doi">10.1016/j.plrev.2016.07.005</idno>
<date when="2016">2016</date>
<idno type="wicri:Area/Pmc/Corpus">000830</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000830</idno>
<idno type="wicri:Area/Pmc/Curation">000830</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Curation">000830</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Mathematical models to characterize early epidemic growth: A Review</title>
<author>
<name sortKey="Chowell, Gerardo" sort="Chowell, Gerardo" uniqKey="Chowell G" first="Gerardo" last="Chowell">Gerardo Chowell</name>
<affiliation wicri:level="1">
<nlm:aff id="A1"> School of Public Health, Georgia State University, Atlanta, GA, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> School of Public Health, Georgia State University, Atlanta, GA</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A2"> Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Sattenspiel, Lisa" sort="Sattenspiel, Lisa" uniqKey="Sattenspiel L" first="Lisa" last="Sattenspiel">Lisa Sattenspiel</name>
<affiliation wicri:level="1">
<nlm:aff id="A3"> Department of Anthropology, University of Missouri, Columbia, MO, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> Department of Anthropology, University of Missouri, Columbia, MO</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Bansal, Shweta" sort="Bansal, Shweta" uniqKey="Bansal S" first="Shweta" last="Bansal">Shweta Bansal</name>
<affiliation wicri:level="1">
<nlm:aff id="A4"> Department of Biology, Georgetown University, Washington DC, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> Department of Biology, Georgetown University, Washington DC</wicri:regionArea>
</affiliation>
<affiliation wicri:level="1">
<nlm:aff id="A2"> Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Viboud, Cecile" sort="Viboud, Cecile" uniqKey="Viboud C" first="Cécile" last="Viboud">Cécile Viboud</name>
<affiliation wicri:level="1">
<nlm:aff id="A2"> Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea> Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Physics of life reviews</title>
<idno type="ISSN">1571-0645</idno>
<idno type="eISSN">1873-1457</idno>
<imprint>
<date when="2016">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P1">There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-15 Ebola epidemic in West Africa.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">101229718</journal-id>
<journal-id journal-id-type="pubmed-jr-id">36246</journal-id>
<journal-id journal-id-type="nlm-ta">Phys Life Rev</journal-id>
<journal-id journal-id-type="iso-abbrev">Phys Life Rev</journal-id>
<journal-title-group>
<journal-title>Physics of life reviews</journal-title>
</journal-title-group>
<issn pub-type="ppub">1571-0645</issn>
<issn pub-type="epub">1873-1457</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">27451336</article-id>
<article-id pub-id-type="pmc">5348083</article-id>
<article-id pub-id-type="doi">10.1016/j.plrev.2016.07.005</article-id>
<article-id pub-id-type="manuscript">NIHMS802148</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Mathematical models to characterize early epidemic growth: A Review</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Chowell</surname>
<given-names>Gerardo</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Sattenspiel</surname>
<given-names>Lisa</given-names>
</name>
<xref ref-type="aff" rid="A3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Bansal</surname>
<given-names>Shweta</given-names>
</name>
<xref ref-type="aff" rid="A4">4</xref>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Viboud</surname>
<given-names>Cécile</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
School of Public Health, Georgia State University, Atlanta, GA, USA</aff>
<aff id="A2">
<label>2</label>
Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA</aff>
<aff id="A3">
<label>3</label>
Department of Anthropology, University of Missouri, Columbia, MO, USA</aff>
<aff id="A4">
<label>4</label>
Department of Biology, Georgetown University, Washington DC, USA</aff>
<author-notes>
<corresp id="CR1">
<bold>Corresponding author:</bold>
Gerardo Chowell, PhD, School of Public Health, Georgia State University, Atlanta, GA, USA, Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA,
<email>gchowell@gsu.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>15</day>
<month>7</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="epub">
<day>11</day>
<month>7</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="ppub">
<month>9</month>
<year>2016</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>01</day>
<month>9</month>
<year>2017</year>
</pub-date>
<volume>18</volume>
<fpage>66</fpage>
<lpage>97</lpage>
<pmc-comment>elocation-id from pubmed: 10.1016/j.plrev.2016.07.005</pmc-comment>
<abstract>
<p id="P1">There is a long tradition of using mathematical models to generate insights into the transmission dynamics of infectious diseases and assess the potential impact of different intervention strategies. The increasing use of mathematical models for epidemic forecasting has highlighted the importance of designing reliable models that capture the baseline transmission characteristics of specific pathogens and social contexts. More refined models are needed however, in particular to account for variation in the early growth dynamics of real epidemics and to gain a better understanding of the mechanisms at play. Here, we review recent progress on modeling and characterizing early epidemic growth patterns from infectious disease outbreak data, and survey the types of mathematical formulations that are most useful for capturing a diversity of early epidemic growth profiles, ranging from sub-exponential to exponential growth dynamics. Specifically, we review mathematical models that incorporate spatial details or realistic population mixing structures, including meta-population models, individual-based network models, and simple SIR-type models that incorporate the effects of reactive behavior changes or inhomogeneous mixing. In this process, we also analyze simulation data stemming from detailed large-scale agent-based models previously designed and calibrated to study how realistic social networks and disease transmission characteristics shape early epidemic growth patterns, general transmission dynamics, and control of international disease emergencies such as the 2009 A/H1N1 influenza pandemic and the 2014-15 Ebola epidemic in West Africa.</p>
</abstract>
</article-meta>
</front>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/Pmc/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000830 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd -nk 000830 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    Pmc
   |étape=   Curation
   |type=    RBID
   |clé=     PMC:5348083
   |texte=   Mathematical models to characterize early epidemic growth: A Review
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Curation/RBID.i   -Sk "pubmed:27451336" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021