Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Advax delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single–dose influenza vaccine protection

Identifieur interne : 000E28 ( Pmc/Corpus ); précédent : 000E27; suivant : 000E29

Advax delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single–dose influenza vaccine protection

Auteurs : Yoshikazu Honda-Okubo ; Chun Hao Ong ; Nikolai Petrovsky

Source :

RBID : PMC:4562881

Abstract

Highlights

A single dose of Advax-adjuvanted influenza vaccine in 7-day-old pups protected against lethal influenza infection.

Advax adjuvant enhanced both B-cell and T-cell memory in neonates.

Influenza protection in Advax-immunized neonates was dependent on memory B-cells.

Advax adjuvant confirmed to be safe and well tolerated in neonates.


Url:
DOI: 10.1016/j.vaccine.2015.07.051
PubMed: 26232344
PubMed Central: 4562881

Links to Exploration step

PMC:4562881

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Advax delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single–dose influenza vaccine protection</title>
<author>
<name sortKey="Honda Okubo, Yoshikazu" sort="Honda Okubo, Yoshikazu" uniqKey="Honda Okubo Y" first="Yoshikazu" last="Honda-Okubo">Yoshikazu Honda-Okubo</name>
<affiliation>
<nlm:aff id="aff0005">Vaxine Pty Ltd., Bedford Park, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff0010">Flinders Medical Centre, Adelaide 5042, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ong, Chun Hao" sort="Ong, Chun Hao" uniqKey="Ong C" first="Chun Hao" last="Ong">Chun Hao Ong</name>
<affiliation>
<nlm:aff id="aff0005">Vaxine Pty Ltd., Bedford Park, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff0010">Flinders Medical Centre, Adelaide 5042, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Petrovsky, Nikolai" sort="Petrovsky, Nikolai" uniqKey="Petrovsky N" first="Nikolai" last="Petrovsky">Nikolai Petrovsky</name>
<affiliation>
<nlm:aff id="aff0005">Vaxine Pty Ltd., Bedford Park, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff0010">Flinders Medical Centre, Adelaide 5042, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff0015">Department of Endocrinology, Flinders University, Adelaide 5042, Australia</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26232344</idno>
<idno type="pmc">4562881</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4562881</idno>
<idno type="RBID">PMC:4562881</idno>
<idno type="doi">10.1016/j.vaccine.2015.07.051</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000E28</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000E28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Advax delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single–dose influenza vaccine protection</title>
<author>
<name sortKey="Honda Okubo, Yoshikazu" sort="Honda Okubo, Yoshikazu" uniqKey="Honda Okubo Y" first="Yoshikazu" last="Honda-Okubo">Yoshikazu Honda-Okubo</name>
<affiliation>
<nlm:aff id="aff0005">Vaxine Pty Ltd., Bedford Park, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff0010">Flinders Medical Centre, Adelaide 5042, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Ong, Chun Hao" sort="Ong, Chun Hao" uniqKey="Ong C" first="Chun Hao" last="Ong">Chun Hao Ong</name>
<affiliation>
<nlm:aff id="aff0005">Vaxine Pty Ltd., Bedford Park, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff0010">Flinders Medical Centre, Adelaide 5042, Australia</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Petrovsky, Nikolai" sort="Petrovsky, Nikolai" uniqKey="Petrovsky N" first="Nikolai" last="Petrovsky">Nikolai Petrovsky</name>
<affiliation>
<nlm:aff id="aff0005">Vaxine Pty Ltd., Bedford Park, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff0010">Flinders Medical Centre, Adelaide 5042, Australia</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff0015">Department of Endocrinology, Flinders University, Adelaide 5042, Australia</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Vaccine</title>
<idno type="ISSN">0264-410X</idno>
<idno type="eISSN">1873-2518</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Highlights</title>
<p>
<list list-type="simple" id="lis0005">
<list-item id="lsti0005">
<label></label>
<p id="par0005">A single dose of Advax-adjuvanted influenza vaccine in 7-day-old pups protected against lethal influenza infection.</p>
</list-item>
<list-item id="lsti0010">
<label></label>
<p id="par0010">Advax adjuvant enhanced both B-cell and T-cell memory in neonates.</p>
</list-item>
<list-item id="lsti0015">
<label></label>
<p id="par0015">Influenza protection in Advax-immunized neonates was dependent on memory B-cells.</p>
</list-item>
<list-item id="lsti0020">
<label></label>
<p id="par0020">Advax adjuvant confirmed to be safe and well tolerated in neonates.</p>
</list-item>
</list>
</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Wong, K K" uniqKey="Wong K">K.K. Wong</name>
</author>
<author>
<name sortKey="Jain, S" uniqKey="Jain S">S. Jain</name>
</author>
<author>
<name sortKey="Blanton, L" uniqKey="Blanton L">L. Blanton</name>
</author>
<author>
<name sortKey="Dhara, R" uniqKey="Dhara R">R. Dhara</name>
</author>
<author>
<name sortKey="Brammer, L" uniqKey="Brammer L">L. Brammer</name>
</author>
<author>
<name sortKey="Fry, A M" uniqKey="Fry A">A.M. Fry</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brotherton, J" uniqKey="Brotherton J">J. Brotherton</name>
</author>
<author>
<name sortKey="Mcintyre, P" uniqKey="Mcintyre P">P. McIntyre</name>
</author>
<author>
<name sortKey="Puech, M" uniqKey="Puech M">M. Puech</name>
</author>
<author>
<name sortKey="Wang, H" uniqKey="Wang H">H. Wang</name>
</author>
<author>
<name sortKey="Gidding, H" uniqKey="Gidding H">H. Gidding</name>
</author>
<author>
<name sortKey="Hull, B" uniqKey="Hull B">B. Hull</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, J T" uniqKey="Wu J">J.T. Wu</name>
</author>
<author>
<name sortKey="Ma, E S" uniqKey="Ma E">E.S. Ma</name>
</author>
<author>
<name sortKey="Lee, C K" uniqKey="Lee C">C.K. Lee</name>
</author>
<author>
<name sortKey="Chu, D K" uniqKey="Chu D">D.K. Chu</name>
</author>
<author>
<name sortKey="Ho, P L" uniqKey="Ho P">P.L. Ho</name>
</author>
<author>
<name sortKey="Shen, A L" uniqKey="Shen A">A.L. Shen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bekker, A" uniqKey="Bekker A">A. Bekker</name>
</author>
<author>
<name sortKey="Chou, C" uniqKey="Chou C">C. Chou</name>
</author>
<author>
<name sortKey="Bernstein, H H" uniqKey="Bernstein H">H.H. Bernstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jefferson, T" uniqKey="Jefferson T">T. Jefferson</name>
</author>
<author>
<name sortKey="Rivetti, A" uniqKey="Rivetti A">A. Rivetti</name>
</author>
<author>
<name sortKey="Harnden, A" uniqKey="Harnden A">A. Harnden</name>
</author>
<author>
<name sortKey="Di Pietrantonj, C" uniqKey="Di Pietrantonj C">C. Di Pietrantonj</name>
</author>
<author>
<name sortKey="Demicheli, V" uniqKey="Demicheli V">V. Demicheli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vesikari, T" uniqKey="Vesikari T">T. Vesikari</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaczmarek, M C" uniqKey="Kaczmarek M">M.C. Kaczmarek</name>
</author>
<author>
<name sortKey="Duong, U T" uniqKey="Duong U">U.T. Duong</name>
</author>
<author>
<name sortKey="Ware, R S" uniqKey="Ware R">R.S. Ware</name>
</author>
<author>
<name sortKey="Lambert, S B" uniqKey="Lambert S">S.B. Lambert</name>
</author>
<author>
<name sortKey="Kelly, H A" uniqKey="Kelly H">H.A. Kelly</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dowdle, W R" uniqKey="Dowdle W">W.R. Dowdle</name>
</author>
<author>
<name sortKey="Millar, J D" uniqKey="Millar J">J.D. Millar</name>
</author>
<author>
<name sortKey="Schonberger, L B" uniqKey="Schonberger L">L.B. Schonberger</name>
</author>
<author>
<name sortKey="Ennis, F A" uniqKey="Ennis F">F.A. Ennis</name>
</author>
<author>
<name sortKey="Lamontagne, J R" uniqKey="Lamontagne J">J.R. LaMontagne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Acip" uniqKey="Acip">ACIP</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kelly, H" uniqKey="Kelly H">H. Kelly</name>
</author>
<author>
<name sortKey="Carcione, D" uniqKey="Carcione D">D. Carcione</name>
</author>
<author>
<name sortKey="Dowse, G" uniqKey="Dowse G">G. Dowse</name>
</author>
<author>
<name sortKey="Effler, P" uniqKey="Effler P">P. Effler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Partinen, M" uniqKey="Partinen M">M. Partinen</name>
</author>
<author>
<name sortKey="Saarenpaa Heikkila, O" uniqKey="Saarenpaa Heikkila O">O. Saarenpaa-Heikkila</name>
</author>
<author>
<name sortKey="Ilveskloski, I" uniqKey="Ilveskloski I">I. Ilveskloski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nolan, T" uniqKey="Nolan T">T. Nolan</name>
</author>
<author>
<name sortKey="Bravo, L" uniqKey="Bravo L">L. Bravo</name>
</author>
<author>
<name sortKey="Ceballos, A" uniqKey="Ceballos A">A. Ceballos</name>
</author>
<author>
<name sortKey="Mitha, E" uniqKey="Mitha E">E. Mitha</name>
</author>
<author>
<name sortKey="Gray, G" uniqKey="Gray G">G. Gray</name>
</author>
<author>
<name sortKey="Quiambao, B" uniqKey="Quiambao B">B. Quiambao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cooper, P D" uniqKey="Cooper P">P.D. Cooper</name>
</author>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N. Petrovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cristillo, A D" uniqKey="Cristillo A">A.D. Cristillo</name>
</author>
<author>
<name sortKey="Ferrari, M G" uniqKey="Ferrari M">M.G. Ferrari</name>
</author>
<author>
<name sortKey="Hudacik, L" uniqKey="Hudacik L">L. Hudacik</name>
</author>
<author>
<name sortKey="Lewis, B" uniqKey="Lewis B">B. Lewis</name>
</author>
<author>
<name sortKey="Galmin, L" uniqKey="Galmin L">L. Galmin</name>
</author>
<author>
<name sortKey="Bowen, B" uniqKey="Bowen B">B. Bowen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eckersley, A M" uniqKey="Eckersley A">A.M. Eckersley</name>
</author>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N. Petrovsky</name>
</author>
<author>
<name sortKey="Kinne, J" uniqKey="Kinne J">J. Kinne</name>
</author>
<author>
<name sortKey="Wernery, R" uniqKey="Wernery R">R. Wernery</name>
</author>
<author>
<name sortKey="Wernery, U" uniqKey="Wernery U">U. Wernery</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feinen, B" uniqKey="Feinen B">B. Feinen</name>
</author>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N. Petrovsky</name>
</author>
<author>
<name sortKey="Verma, A" uniqKey="Verma A">A. Verma</name>
</author>
<author>
<name sortKey="Merkel, T J" uniqKey="Merkel T">T.J. Merkel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Larena, M" uniqKey="Larena M">M. Larena</name>
</author>
<author>
<name sortKey="Prow, N A" uniqKey="Prow N">N.A. Prow</name>
</author>
<author>
<name sortKey="Hall, R A" uniqKey="Hall R">R.A. Hall</name>
</author>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N. Petrovsky</name>
</author>
<author>
<name sortKey="Lobigs, M" uniqKey="Lobigs M">M. Lobigs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lobigs, M" uniqKey="Lobigs M">M. Lobigs</name>
</author>
<author>
<name sortKey="Pavy, M" uniqKey="Pavy M">M. Pavy</name>
</author>
<author>
<name sortKey="Hall, R A" uniqKey="Hall R">R.A. Hall</name>
</author>
<author>
<name sortKey="Lobigs, P" uniqKey="Lobigs P">P. Lobigs</name>
</author>
<author>
<name sortKey="Cooper, P" uniqKey="Cooper P">P. Cooper</name>
</author>
<author>
<name sortKey="Komiya, T" uniqKey="Komiya T">T. Komiya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N. Petrovsky</name>
</author>
<author>
<name sortKey="Larena, M" uniqKey="Larena M">M. Larena</name>
</author>
<author>
<name sortKey="Siddharthan, V" uniqKey="Siddharthan V">V. Siddharthan</name>
</author>
<author>
<name sortKey="Prow, N A" uniqKey="Prow N">N.A. Prow</name>
</author>
<author>
<name sortKey="Hall, R A" uniqKey="Hall R">R.A. Hall</name>
</author>
<author>
<name sortKey="Lobigs, M" uniqKey="Lobigs M">M. Lobigs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rodriguez Del Rio, E" uniqKey="Rodriguez Del Rio E">E. Rodriguez-Del Rio</name>
</author>
<author>
<name sortKey="Marradi, M" uniqKey="Marradi M">M. Marradi</name>
</author>
<author>
<name sortKey="Calderon Gonzalez, R" uniqKey="Calderon Gonzalez R">R. Calderon-Gonzalez</name>
</author>
<author>
<name sortKey="Frande Cabanes, E" uniqKey="Frande Cabanes E">E. Frande-Cabanes</name>
</author>
<author>
<name sortKey="Penades, S" uniqKey="Penades S">S. Penades</name>
</author>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N. Petrovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saade, F" uniqKey="Saade F">F. Saade</name>
</author>
<author>
<name sortKey="Honda Okubo, Y" uniqKey="Honda Okubo Y">Y. Honda-Okubo</name>
</author>
<author>
<name sortKey="Trec, S" uniqKey="Trec S">S. Trec</name>
</author>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N. Petrovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honda Okubo, Y" uniqKey="Honda Okubo Y">Y. Honda-Okubo</name>
</author>
<author>
<name sortKey="Saade, F" uniqKey="Saade F">F. Saade</name>
</author>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N. Petrovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honda Okubo, Y" uniqKey="Honda Okubo Y">Y. Honda-Okubo</name>
</author>
<author>
<name sortKey="Kolpe, A" uniqKey="Kolpe A">A. Kolpe</name>
</author>
<author>
<name sortKey="Li, L" uniqKey="Li L">L. Li</name>
</author>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N. Petrovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Layton, R C" uniqKey="Layton R">R.C. Layton</name>
</author>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N. Petrovsky</name>
</author>
<author>
<name sortKey="Gigliotti, A P" uniqKey="Gigliotti A">A.P. Gigliotti</name>
</author>
<author>
<name sortKey="Pollock, Z" uniqKey="Pollock Z">Z. Pollock</name>
</author>
<author>
<name sortKey="Knight, J" uniqKey="Knight J">J. Knight</name>
</author>
<author>
<name sortKey="Donart, N" uniqKey="Donart N">N. Donart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gordon, D L" uniqKey="Gordon D">D.L. Gordon</name>
</author>
<author>
<name sortKey="Sajkov, D" uniqKey="Sajkov D">D. Sajkov</name>
</author>
<author>
<name sortKey="Woodman, R J" uniqKey="Woodman R">R.J. Woodman</name>
</author>
<author>
<name sortKey="Honda Okubo, Y" uniqKey="Honda Okubo Y">Y. Honda-Okubo</name>
</author>
<author>
<name sortKey="Cox, M M" uniqKey="Cox M">M.M. Cox</name>
</author>
<author>
<name sortKey="Heinzel, S" uniqKey="Heinzel S">S. Heinzel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barrios, C" uniqKey="Barrios C">C. Barrios</name>
</author>
<author>
<name sortKey="Brandt, C" uniqKey="Brandt C">C. Brandt</name>
</author>
<author>
<name sortKey="Berney, M" uniqKey="Berney M">M. Berney</name>
</author>
<author>
<name sortKey="Lambert, P H" uniqKey="Lambert P">P.H. Lambert</name>
</author>
<author>
<name sortKey="Siegrist, C A" uniqKey="Siegrist C">C.A. Siegrist</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Debock, I" uniqKey="Debock I">I. Debock</name>
</author>
<author>
<name sortKey="Jaworski, K" uniqKey="Jaworski K">K. Jaworski</name>
</author>
<author>
<name sortKey="Chadlaoui, H" uniqKey="Chadlaoui H">H. Chadlaoui</name>
</author>
<author>
<name sortKey="Delbauve, S" uniqKey="Delbauve S">S. Delbauve</name>
</author>
<author>
<name sortKey="Passon, N" uniqKey="Passon N">N. Passon</name>
</author>
<author>
<name sortKey="Twyffels, L" uniqKey="Twyffels L">L. Twyffels</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bot, A" uniqKey="Bot A">A. Bot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Khalil, S M" uniqKey="Khalil S">S.M. Khalil</name>
</author>
<author>
<name sortKey="Tonkin, D R" uniqKey="Tonkin D">D.R. Tonkin</name>
</author>
<author>
<name sortKey="Snead, A T" uniqKey="Snead A">A.T. Snead</name>
</author>
<author>
<name sortKey="Parks, G D" uniqKey="Parks G">G.D. Parks</name>
</author>
<author>
<name sortKey="Johnston, R E" uniqKey="Johnston R">R.E. Johnston</name>
</author>
<author>
<name sortKey="White, L J" uniqKey="White L">L.J. White</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pihlgren, M" uniqKey="Pihlgren M">M. Pihlgren</name>
</author>
<author>
<name sortKey="Tougne, C" uniqKey="Tougne C">C. Tougne</name>
</author>
<author>
<name sortKey="Bozzotti, P" uniqKey="Bozzotti P">P. Bozzotti</name>
</author>
<author>
<name sortKey="Fulurija, A" uniqKey="Fulurija A">A. Fulurija</name>
</author>
<author>
<name sortKey="Duchosal, M A" uniqKey="Duchosal M">M.A. Duchosal</name>
</author>
<author>
<name sortKey="Lambert, P H" uniqKey="Lambert P">P.H. Lambert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mastelic Gavillet, B" uniqKey="Mastelic Gavillet B">B. Mastelic Gavillet</name>
</author>
<author>
<name sortKey="Eberhardt, C S" uniqKey="Eberhardt C">C.S. Eberhardt</name>
</author>
<author>
<name sortKey="Auderset, F" uniqKey="Auderset F">F. Auderset</name>
</author>
<author>
<name sortKey="Castellino, F" uniqKey="Castellino F">F. Castellino</name>
</author>
<author>
<name sortKey="Seubert, A" uniqKey="Seubert A">A. Seubert</name>
</author>
<author>
<name sortKey="Tregoning, J S" uniqKey="Tregoning J">J.S. Tregoning</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lines, J L" uniqKey="Lines J">J.L. Lines</name>
</author>
<author>
<name sortKey="Hoskins, S" uniqKey="Hoskins S">S. Hoskins</name>
</author>
<author>
<name sortKey="Hollifield, M" uniqKey="Hollifield M">M. Hollifield</name>
</author>
<author>
<name sortKey="Cauley, L S" uniqKey="Cauley L">L.S. Cauley</name>
</author>
<author>
<name sortKey="Garvy, B A" uniqKey="Garvy B">B.A. Garvy</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fernandez, M A" uniqKey="Fernandez M">M.A. Fernandez</name>
</author>
<author>
<name sortKey="Evans, I A" uniqKey="Evans I">I.A. Evans</name>
</author>
<author>
<name sortKey="Hassan, E H" uniqKey="Hassan E">E.H. Hassan</name>
</author>
<author>
<name sortKey="Carbone, F R" uniqKey="Carbone F">F.R. Carbone</name>
</author>
<author>
<name sortKey="Jones, C A" uniqKey="Jones C">C.A. Jones</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mastelic, B" uniqKey="Mastelic B">B. Mastelic</name>
</author>
<author>
<name sortKey="Kamath, A T" uniqKey="Kamath A">A.T. Kamath</name>
</author>
<author>
<name sortKey="Fontannaz, P" uniqKey="Fontannaz P">P. Fontannaz</name>
</author>
<author>
<name sortKey="Tougne, C" uniqKey="Tougne C">C. Tougne</name>
</author>
<author>
<name sortKey="Rochat, A F" uniqKey="Rochat A">A.F. Rochat</name>
</author>
<author>
<name sortKey="Belnoue, E" uniqKey="Belnoue E">E. Belnoue</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bjarnarson, S P" uniqKey="Bjarnarson S">S.P. Bjarnarson</name>
</author>
<author>
<name sortKey="Adarna, B C" uniqKey="Adarna B">B.C. Adarna</name>
</author>
<author>
<name sortKey="Benonisson, H" uniqKey="Benonisson H">H. Benonisson</name>
</author>
<author>
<name sortKey="Del Giudice, G" uniqKey="Del Giudice G">G. Del Giudice</name>
</author>
<author>
<name sortKey="Jonsdottir, I" uniqKey="Jonsdottir I">I. Jonsdottir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Adkins, B" uniqKey="Adkins B">B. Adkins</name>
</author>
<author>
<name sortKey="Du, R Q" uniqKey="Du R">R.Q. Du</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, H H" uniqKey="Lee H">H.H. Lee</name>
</author>
<author>
<name sortKey="Hoeman, C M" uniqKey="Hoeman C">C.M. Hoeman</name>
</author>
<author>
<name sortKey="Hardaway, J C" uniqKey="Hardaway J">J.C. Hardaway</name>
</author>
<author>
<name sortKey="Guloglu, F B" uniqKey="Guloglu F">F.B. Guloglu</name>
</author>
<author>
<name sortKey="Ellis, J S" uniqKey="Ellis J">J.S. Ellis</name>
</author>
<author>
<name sortKey="Jain, R" uniqKey="Jain R">R. Jain</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goriely, S" uniqKey="Goriely S">S. Goriely</name>
</author>
<author>
<name sortKey="Vincart, B" uniqKey="Vincart B">B. Vincart</name>
</author>
<author>
<name sortKey="Stordeur, P" uniqKey="Stordeur P">P. Stordeur</name>
</author>
<author>
<name sortKey="Vekemans, J" uniqKey="Vekemans J">J. Vekemans</name>
</author>
<author>
<name sortKey="Willems, F" uniqKey="Willems F">F. Willems</name>
</author>
<author>
<name sortKey="Goldman, M" uniqKey="Goldman M">M. Goldman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honda Okubo, Y" uniqKey="Honda Okubo Y">Y. Honda-Okubo</name>
</author>
<author>
<name sortKey="Barnard, D" uniqKey="Barnard D">D. Barnard</name>
</author>
<author>
<name sortKey="Ong, C H" uniqKey="Ong C">C.H. Ong</name>
</author>
<author>
<name sortKey="Peng, B H" uniqKey="Peng B">B.H. Peng</name>
</author>
<author>
<name sortKey="Tseng, C T" uniqKey="Tseng C">C.T. Tseng</name>
</author>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N. Petrovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="You, D" uniqKey="You D">D. You</name>
</author>
<author>
<name sortKey="Marr, N" uniqKey="Marr N">N. Marr</name>
</author>
<author>
<name sortKey="Saravia, J" uniqKey="Saravia J">J. Saravia</name>
</author>
<author>
<name sortKey="Shrestha, B" uniqKey="Shrestha B">B. Shrestha</name>
</author>
<author>
<name sortKey="Lee, G I" uniqKey="Lee G">G.I. Lee</name>
</author>
<author>
<name sortKey="Turvey, S E" uniqKey="Turvey S">S.E. Turvey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gordon, D" uniqKey="Gordon D">D. Gordon</name>
</author>
<author>
<name sortKey="Kelley, P" uniqKey="Kelley P">P. Kelley</name>
</author>
<author>
<name sortKey="Heinzel, S" uniqKey="Heinzel S">S. Heinzel</name>
</author>
<author>
<name sortKey="Cooper, P" uniqKey="Cooper P">P. Cooper</name>
</author>
<author>
<name sortKey="Petrovsky, N" uniqKey="Petrovsky N">N. Petrovsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Han, Y" uniqKey="Han Y">Y. Han</name>
</author>
<author>
<name sortKey="Bo, Z J" uniqKey="Bo Z">Z.J. Bo</name>
</author>
<author>
<name sortKey="Xu, M Y" uniqKey="Xu M">M.Y. Xu</name>
</author>
<author>
<name sortKey="Sun, N" uniqKey="Sun N">N. Sun</name>
</author>
<author>
<name sortKey="Liu, D H" uniqKey="Liu D">D.H. Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Parvizi, P" uniqKey="Parvizi P">P. Parvizi</name>
</author>
<author>
<name sortKey="Abdul Careem, M F" uniqKey="Abdul Careem M">M.F. Abdul-Careem</name>
</author>
<author>
<name sortKey="Mallick, A I" uniqKey="Mallick A">A.I. Mallick</name>
</author>
<author>
<name sortKey="Haq, K" uniqKey="Haq K">K. Haq</name>
</author>
<author>
<name sortKey="Haghighi, H R" uniqKey="Haghighi H">H.R. Haghighi</name>
</author>
<author>
<name sortKey="Orouji, S" uniqKey="Orouji S">S. Orouji</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Vaccine</journal-id>
<journal-id journal-id-type="iso-abbrev">Vaccine</journal-id>
<journal-title-group>
<journal-title>Vaccine</journal-title>
</journal-title-group>
<issn pub-type="ppub">0264-410X</issn>
<issn pub-type="epub">1873-2518</issn>
<publisher>
<publisher-name>Elsevier Ltd. Published by Elsevier Ltd.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26232344</article-id>
<article-id pub-id-type="pmc">4562881</article-id>
<article-id pub-id-type="publisher-id">S0264-410X(15)01012-9</article-id>
<article-id pub-id-type="doi">10.1016/j.vaccine.2015.07.051</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Advax delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single–dose influenza vaccine protection</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="aut0005">
<name>
<surname>Honda-Okubo</surname>
<given-names>Yoshikazu</given-names>
</name>
<xref rid="aff0005" ref-type="aff">a</xref>
<xref rid="aff0010" ref-type="aff">b</xref>
</contrib>
<contrib contrib-type="author" id="aut0010">
<name>
<surname>Ong</surname>
<given-names>Chun Hao</given-names>
</name>
<xref rid="aff0005" ref-type="aff">a</xref>
<xref rid="aff0010" ref-type="aff">b</xref>
</contrib>
<contrib contrib-type="author" id="aut0015">
<name>
<surname>Petrovsky</surname>
<given-names>Nikolai</given-names>
</name>
<email>nikolai.petrovsky@flinders.edu.au</email>
<xref rid="aff0005" ref-type="aff">a</xref>
<xref rid="aff0010" ref-type="aff">b</xref>
<xref rid="aff0015" ref-type="aff">c</xref>
<xref rid="cor0005" ref-type="corresp"></xref>
</contrib>
</contrib-group>
<aff id="aff0005">
<label>a</label>
Vaxine Pty Ltd., Bedford Park, Australia</aff>
<aff id="aff0010">
<label>b</label>
Flinders Medical Centre, Adelaide 5042, Australia</aff>
<aff id="aff0015">
<label>c</label>
Department of Endocrinology, Flinders University, Adelaide 5042, Australia</aff>
<author-notes>
<corresp id="cor0005">
<label></label>
Corresponding author at: Department of Diabetes and Endocrinology, Flinders Medical Centre, Adelaide 5042, SA, Australia. Tel.: +61 8 82044572; fax: +61 8 82045987.
<email>nikolai.petrovsky@flinders.edu.au</email>
</corresp>
</author-notes>
<pub-date pub-type="pmc-release">
<day>29</day>
<month>7</month>
<year>2015</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="ppub">
<day>11</day>
<month>9</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="epub">
<day>29</day>
<month>7</month>
<year>2015</year>
</pub-date>
<volume>33</volume>
<issue>38</issue>
<fpage>4892</fpage>
<lpage>4900</lpage>
<history>
<date date-type="received">
<day>19</day>
<month>3</month>
<year>2015</year>
</date>
<date date-type="rev-recd">
<day>10</day>
<month>6</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>17</day>
<month>7</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-statement>Copyright © 2015 Elsevier Ltd. Published by Elsevier Ltd. All rights reserved.</copyright-statement>
<copyright-year>2015</copyright-year>
<copyright-holder>Elsevier Ltd</copyright-holder>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract abstract-type="author-highlights" id="abs0005">
<title>Highlights</title>
<p>
<list list-type="simple" id="lis0005">
<list-item id="lsti0005">
<label></label>
<p id="par0005">A single dose of Advax-adjuvanted influenza vaccine in 7-day-old pups protected against lethal influenza infection.</p>
</list-item>
<list-item id="lsti0010">
<label></label>
<p id="par0010">Advax adjuvant enhanced both B-cell and T-cell memory in neonates.</p>
</list-item>
<list-item id="lsti0015">
<label></label>
<p id="par0015">Influenza protection in Advax-immunized neonates was dependent on memory B-cells.</p>
</list-item>
<list-item id="lsti0020">
<label></label>
<p id="par0020">Advax adjuvant confirmed to be safe and well tolerated in neonates.</p>
</list-item>
</list>
</p>
</abstract>
<abstract id="abs0010">
<p>Neonates are at high risk for influenza morbidity and mortality due to immune immaturity and lack of priming by prior influenza virus exposure. Inactivated influenza vaccines are ineffective in infants under six months and to provide protection in older children generally require two doses given a month apart. This leaves few options for rapid protection of infants,
<italic>e.g.</italic>
during an influenza pandemic. We investigated whether Advax™, a novel polysaccharide adjuvant based on delta inulin microparticles could help overcome neonatal immune hypo-responsiveness. We first tested whether it was possible to use Advax to obtain single-dose vaccine protection of neonatal pups against lethal influenza infection. Inactivated influenza A/H1N1 vaccine (iH1N1) combined with Advax™ adjuvant administered as a single subcutaneous immunization to 7-day-old mouse pups significantly enhanced serum influenza-specific IgM, IgG1, IgG2a and IgG2b levels and was associated with a 3–4 fold increase in the frequency of splenic influenza-specific IgM and IgG antibody secreting cells. Pups immunized with Advax had significantly higher splenocyte influenza-stimulated IFN-γ, IL-2, IL-4, and IL-10 production by CBA and a 3–10 fold higher frequency of IFN-γ, IL-2, IL-4 or IL-17 secreting T cells by ELISPOT. Immunization with iH1N1 + Advax induced robust protection of pups against virus challenge 3 weeks later, whereas pups immunized with iH1N1 antigen alone had no protection. Protection by Advax-adjuvanted iH1N1 was dependent on memory B cells rather than memory T cells, with no protection in neonatal μMT mice that are B-cell deficient. Hence, Advax adjuvant overcame neonatal immune hypo-responsiveness and enabled single-dose protection of pups against otherwise lethal influenza infection, thereby supporting ongoing development of Advax™ as a neonatal vaccine adjuvant.</p>
</abstract>
<kwd-group id="kwd0005">
<title>Keywords</title>
<kwd>Vaccine</kwd>
<kwd>Neonate</kwd>
<kwd>Adjuvant</kwd>
<kwd>Influenza</kwd>
<kwd>Immunity</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="sec0005">
<label>1</label>
<title>Introduction</title>
<p id="par0025">Young children, after the elderly, have the next highest influenza disease burden with pediatric cases representing ∼1–5% of annual influenza deaths
<xref rid="bib0220" ref-type="bibr">[1]</xref>
. Indeed, influenza-related hospitalization rates in children under 4 years are comparable to hospitalization rates in those over 85 years old
<xref rid="bib0225" ref-type="bibr">[2]</xref>
. Increased disease burden in young children reflects immune system immaturity, lack of previous influenza exposure, poor hygiene, and high communal contact in schools. Highlighting the high influenza transmission risk in children serological data from Hong Kong during the H1N1/2009 pandemic showed that 43% of children aged 5–14 years were infected early in the pandemic compared to ∼5% of those aged 30–59 years
<xref rid="bib0230" ref-type="bibr">[3]</xref>
. The Advisory Committee on Immunization Practices of the Centers for Disease Control and Prevention and the American Academy of Pediatrics recommend that annual influenza vaccination be extended to all children over 6 months of age
<xref rid="bib0235" ref-type="bibr">[4]</xref>
. Because they are mostly immunologically naive to influenza young children generally require two doses a month apart to achieve seroprotection
<xref rid="bib0235" ref-type="bibr">[4]</xref>
. A recent Cochrane review estimated the efficacy of trivalent inactivated influenza virus (TIV) vaccine in preventing influenza at 59% in children over two years old
<xref rid="bib0240" ref-type="bibr">[5]</xref>
. Neither TIV or live attenuated influenza virus (LAIV) vaccines are indicated for children under 6 months due to poor neonatal immune responses to inactivated vaccines and increased respiratory side effects from LAIV vaccines
<xref rid="bib0245" ref-type="bibr">[6]</xref>
. This leaves infants under 6 months of age highly vulnerable to influenza infection, making it imperative to identify strategies to better protect this population.</p>
<p id="par0030">Safety considerations must always be paramount when developing vaccines for young children given their sensitivity to pyrogens and febrile convulsions
<xref rid="bib0250" ref-type="bibr">[7]</xref>
. For this reason whole virus vaccines are relatively contraindicated in young children and highly purified split or subunit antigens are preferred
<xref rid="bib0255" ref-type="bibr">[8]</xref>
. This reduces vaccine pyrogenicity but at the expense of reduced immunogenicity. Adjuvants could be used to enhance the immunogenicity of influenza vaccines, however only a very limited number of adjuvants have been tested in young children and there is no guarantee that an adjuvant effective in adults will be similarly effective in neonates. Highlighting the potential difficulties in developing safe and effective influenza vaccines for young children, a split TIV vaccine (Fluvax
<sup>®</sup>
, CSL, Australia) was withdrawn from pediatric use after causing increased febrile convulsions
<xref rid="bib0260" ref-type="bibr">[9]</xref>
, with an estimated three excess hospitalizations with febrile convulsions for every influenza hospitalization prevented
<xref rid="bib0265" ref-type="bibr">[10]</xref>
. Furthermore, Pandemrix
<sup>®</sup>
, a monovalent inactivated vaccine adjuvanted with AS03 (an emulsion of squalene oil,
<sc>dl</sc>
-α-tocopherol and polysorbate 80) was found during the 2009 influenza pandemic to be associated with an increased rate of narcolepsy among European children aged 4–19 years
<xref rid="bib0270" ref-type="bibr">[11]</xref>
. An MF59-adjuvanted influenza vaccine was recently shown after two immunizations a month apart to induce higher antibody titers than unadjuvanted vaccine in children aged 6–36 months
<xref rid="bib0275" ref-type="bibr">[12]</xref>
. However, no influenza vaccine has yet been shown to be effective and safe for infants under 6 months of age making it imperative to develop an effective influenza vaccine for these very young infants.</p>
<p id="par0035">Advax™ adjuvant is a novel polysaccharide adjuvant derived from microparticles of polyfructofuranosyl-
<sc>d</sc>
-glucose (delta inulin)
<xref rid="bib0280" ref-type="bibr">[13]</xref>
that when formulated with inactivated or recombinant vaccine antigens has proved effective in enhancing humoral and cellular immunity in adult animals against a broad range of pathogens including Japanese encephalitis virus, West Nile virus, anthrax, African horse sickness, HIV, listeria and hepatitis B, amongst others
<xref rid="bib0285" ref-type="bibr">[14]</xref>
,
<xref rid="bib0290" ref-type="bibr">[15]</xref>
,
<xref rid="bib0295" ref-type="bibr">[16]</xref>
,
<xref rid="bib0300" ref-type="bibr">[17]</xref>
,
<xref rid="bib0305" ref-type="bibr">[18]</xref>
,
<xref rid="bib0310" ref-type="bibr">[19]</xref>
,
<xref rid="bib0315" ref-type="bibr">[20]</xref>
,
<xref rid="bib0320" ref-type="bibr">[21]</xref>
. Advax enhanced humoral and cellular immunity in mice to inactivated influenza antigen, translating into improved protection against influenza challenge
<xref rid="bib0325" ref-type="bibr">[22]</xref>
. This vaccine was safe even when administered to pregnant mice, overcoming pregnancy-associated immune suppression and enhancing vaccine immunogenicity in pregnant dams and with a secondary benefit of enhanced protection of pups
<italic>via</italic>
breast milk transfer of influenza-specific IgG
<xref rid="bib0330" ref-type="bibr">[23]</xref>
. Advax similarly enhanced vaccine protection of adult ferrets against high pathogenicity avian H5N1 influenza
<xref rid="bib0335" ref-type="bibr">[24]</xref>
. In a clinical trial of a pandemic influenza vaccine it was confirmed in adults to enhance seroprotection with minimal side effects
<xref rid="bib0340" ref-type="bibr">[25]</xref>
. To date, Advax adjuvant has not been tested in infants. Given the problem of vaccine hyporesponsiveness in young children, the current study was undertaken to test the ability of Advax adjuvant to improve influenza vaccine immunogenicity and protection in neonatal mice. A particular objective was to test whether Advax adjuvant could be used to achieve single-dose influenza protection of neonates, thereby helping avoid the need for two immunizations as currently recommended for influenza protection of young children over 6 months of age
<xref rid="bib0235" ref-type="bibr">[4]</xref>
.</p>
</sec>
<sec id="sec0010">
<label>2</label>
<title>Materials and methods</title>
<sec id="sec0015">
<label>2.1</label>
<title>Mice and immunization procedure</title>
<p id="par0040">BALB/c, C57BL/6 (BL6) and μMT (BL6 background) mice were supplied by the central animal facility of Flinders University of South Australia. Each litter of neonatal mice (4–8 mice/group) were immunized at 7 days of age with a single subcutaneous (s.c.) injection in both hind thighs with 25 μl each of 1 to 15 μg β-propiolactone (BPL)-inactivated influenza A/Puerto Rico/8/34 (iH1N1) (Advanced Biotechnologies Inc., Columbia, MD, USA) alone or together with 1 mg Advax delta inulin adjuvant (Vaxine Pty Ltd., Adelaide, Australia). Control groups were injected with saline alone. All procedures were performed in accordance with the Animal Experimentation Guidelines of the National Health and Medical Research Council of Australia and approved by the Flinders Animal Welfare Committee. Three weeks post immunization, blood samples were collected by cheek vein bleeding or by retro-orbital plexus bleeding under anesthesia by intraperitoneal (i.p.) injection of 75 mg/kg ketamine and 1 mg/kg medetomidine. All immunization and challenge experiments were repeated at least 3 times to confirm reproducibility of results.</p>
</sec>
<sec id="sec0020">
<label>2.2</label>
<title>Influenza challenges</title>
<p id="par0045">The virus used for challenge experiments was a mouse-adapted Influenza A/Puerto Rico/8/34 (H1N1) virus propagated in allantoic fluid of 10-day old embryonated hen's eggs and purified by sucrose density gradient ultracentrifugation and stored at −80 °C until used. The 50% mouse lethal dose (LD
<sub>50</sub>
) was estimated in adult BALB/c mice by the Reed-Muench method. One adult LD
<sub>50</sub>
corresponded to 1250 TCID
<sub>50</sub>
on MDCK cells. Unless otherwise indicated the virus challenge dose used was 6250 TCID
<sub>50</sub>
(5 × LD
<sub>50</sub>
). This dose gave 100% lethality in unimmunized neonatal mice. For challenge studies, unimmunized control groups were routinely included to ensure that the challenge dose was completely lethal. In all cases, 100% lethality was always observed in control unimmunized infant mice. Mice were infected by intranasal administration of 30 μl of A/H1N1 virus. A sickness scoring system based on coat condition, posture and activity was used to assess the extent of clinical disease. Mice were evaluated daily and scored for individual symptoms. Ruffled fur (absent = 0; slightly present = 1; present = 2), hunched back (absent = 0; slightly present = 1; present = 2) and activity (normal = 0; reduced = 1; severely reduced = 2) were evaluated. The final score was the addition of each individual symptom score (
<italic>e.g.</italic>
an animal showing slightly ruffled fur (1), slightly hunched back (1) and reduced activity (1) was scored as 3. Mice were euthanized if they became moribund or developed a clinical score of 6. Although it was not possible to blind the challenges, bodyweight and clinical scores were independently audited by the Flinders University animal welfare committee.</p>
</sec>
<sec id="sec0025">
<label>2.3</label>
<title>ELISA assays</title>
<p id="par0050">Influenza virus specific antibodies were determined by ELISA, as previously described
<xref rid="bib0325" ref-type="bibr">[22]</xref>
. Briefly, inactivated A/Puerto Rico/8/34 (PR8) antigen (Charles River, CT, USA) was used to coat 96-well ELISA plates. After blocking, 100 μl diluted serum samples were added followed by biotinylated anti-mouse IgG, IgG1, IgG2a/c, IgG2b, IgG3 and IgM (Abcam) with HRP-conjugated Streptavidin (BD Biosciences) was added for 1 hr. After washing, TMB substrate (KPL, Gaithersburg, MD, USA) was added for 10 min before the reaction was stopped with 100 μl 1 M Phosphoric Acid. The optical density was measured at 450 nm (OD
<sub>450 nm</sub>
) using a VersaMax plate reader and analyzed using SoftMax Pro Software. Average OD
<sub>450 nm</sub>
values obtained from negative control wells were subtracted.</p>
</sec>
<sec id="sec0030">
<label>2.4</label>
<title>Surface plasmon resonance (SPR)</title>
<p id="par0055">SPR experiments were performed with a BIAcore X100 (GE Healthcare) and CM5 sensor chip at 25 °C using running buffer HBS–EP + (10 mM HEPES, 0.15 M NaCl, 3 mM EDTA, 0.005% v/v surfactant P20, pH 7.4). PR8 antigen was covalently immobilized on fc2 using wizard amine coupling method. The CM5 chip was activated with EDC/NHS for 7 min, followed by an injection of 30 μg/ml PR8 in10 mM sodium acetate, pH 4.5. The excess activated carboxyl groups were blocked with ethanolamine for 7 min to reach the final immobilization level of 4951 RU on fc2. Pooled mouse antisera for each vaccine group was 40-fold diluted in HBS-EP+ buffer and injected onto the surface fc2 and reference surface fc1 at 5 μl/min for 10 min. Bound anti-PR8 antibodies were further characterized by a sequential injection of 20 μl anti-mouse subclass specific antibodies (20 μg/ml) with the order of anti-IgG3, anti-IgG2b, anti-IgG2a, anti-IgG1 and anti-IgM for 180 s at 5 μl/min. The chip was regenerated by 10 mM Glycine pH 1.7 for 30 s and 0.05% SDS for 30 s. Sensorgrams were corrected by subtracting the signal from the reference flow channel fc1.</p>
</sec>
<sec id="sec0035">
<label>2.5</label>
<title>Preparation of single-cell suspensions from bone marrow and spleen</title>
<p id="par0060">Mice were killed by cervical dislocation then bones and spleens were aseptically collected. Bone marrow was isolated from femur by flushing 3% FBS/PBS. Spleens were homogenized by grinding with the plunger from a 5 ml syringe on a 70 μm cell strainer (BD Biosciences) and were treated with red blood cell (RBC) lysis buffer. Cells were stained with trypan blue and live cells were counted by a hemocytometer.</p>
</sec>
<sec id="sec0040">
<label>2.6</label>
<title>Cytokine assays</title>
<p id="par0065">Splenocytes (2 × 10
<sup>5</sup>
cells/well) were re-stimulated for 3 days in U–bottom 96-well plates (Greiner Bio-one) with 0.5 μg/ml PR8 antigen, the supernatants harvested and cytokines measured by mouse Th1/Th2/Th17 cytokine CBA kit (BD Biosciences) and analyzed by FCAP Array Software (Soft Flow Hungary Ltd.).</p>
</sec>
<sec id="sec0045">
<label>2.7</label>
<title>
<italic>In vivo</italic>
CD8 T-cell depletion</title>
<p id="par0070">For CD8
<sup>+</sup>
T-cell depletion, 250 μg anti-mouse CD8a (Clone 53-6.72) (Bio X Cell, West Lebanon, U.S.A.) was injected i.p. at days −3, −1, +3 and +7 of virus challenge. Depletion was verified by flow cytometry using peripheral blood cells treated with RBC lysis buffer and rat anti-mouse CD16/CD32 (Clone 2.4G2), APC-anti-mouse CD4 (Clone RM4-5) and PE-anti-mouse CD8a (Clone 53-6.72) (BD Biosciences) and confirmed more than 95% reduction in CD8
<sup>+</sup>
T cells. Rat IgG enriched from naive rat serum by 30% ammonium sulfate precipitation was used as a negative control.</p>
</sec>
<sec id="sec0050">
<label>2.8</label>
<title>ELISPOT</title>
<p id="par0075">Ninety-six-well multiScreen filter plates (Millipore, USA) were pre-wetted with 35% ethanol then washed twice with PBS before coating. Plates were coated at 4 °C overnight with 10 μg/ml PR8 for B-cell ELISPOTs or 5 μg/ml anti-mouse IL-2, IL-4, or IFN-γ (all from BD Biosciences) or IL-17 mAb (BioLegend, San Diego) for T-cell ELISPOTs. The plates were washed with PBS, then blocked with RPMI 1640 + 10% FCS. A total of 4 × 10
<sup>5</sup>
splenocytes and 5 μg/ml PR8 were added in triplicates before the plates were incubated at 37 °C for 24 h (B-cell ELISPOT) or 48 h (T-cell ELISPOT). The plates were washed 3 times with PBS-Tween 20 and 2 μg/ml detection antibodies in PBS + 10% FCS were added and incubate for overnight at 4 °C. After discarding detection antibodies, plates were washed 3 times with PBS/Tween 20 and incubated with 1:200 dilution of HRP-Streptavidin (BD Biosciences) for 1 h at RT. After washing spots were visualized using AEC substrate (BD Biosciences). The plates were washed twice with water, dried, and analyzed by Immunospot ELISPOT system (Cellular Technology, Shaker Heights, OH, USA).</p>
</sec>
<sec id="sec0055">
<label>2.9</label>
<title>
<italic>In vivo</italic>
CTL assay</title>
<p id="par0080">Splenocytes were harvested from naive BL6 mouse spleens and half of the splenocytes were pulsed with 5 μM NP
<sub>366</sub>
peptide (sequence ASNENMETM) for 2 h at 37 °C. The remaining half was incubated without peptide. After washing with PBS, cells were labeled by incubation for 7 min at RT with either 5 μM CFSE (Life Technologies) (peptide-pulsed cells, CFSE
<sup>hi</sup>
) or 0.5 μM CFSE (un-pulsed cells, CFSE
<sup>low</sup>
). CFSE-labeled cells were washed twice with PBS + 10% FCS. A mixture of 2 × 10
<sup>6</sup>
CFSE
<sup>hi</sup>
and 2 × 10
<sup>6</sup>
CFSE
<sup>low</sup>
cells was then injected intravenously through tail vein. After 18 hr, animals were sacrificed, splenocytes collected and analyzed by flow cytometry.</p>
</sec>
<sec id="sec0060">
<label>2.10</label>
<title>Statistical analysis</title>
<p id="par0085">Mann-Whitney or Kruskal–Wallis tests were performed using GraphPad Prism version 5.01 for Windows (GraphPad Software, San Diego). Survival curves were created using the Kaplan-Meier method and statistical analyses of survival curves used a log-rank (Mantel–Cox) test. For all comparisons,
<italic>p</italic>
 < 0.05 was considered to represent a significant difference. All data shown as mean ± SEM. In figures *
<italic>p</italic>
 < 0.05; **
<italic>p</italic>
 < 0.01; and ***
<italic>p</italic>
 < 0.001.</p>
</sec>
</sec>
<sec id="sec0065">
<label>3</label>
<title>Results</title>
<sec id="sec0070">
<label>3.1</label>
<title>A single dose of Advax-adjuvanted influenza vaccine provides protection of neonatal mice</title>
<p id="par0090">We first asked whether a single immunization with iH1N1 with or without adjuvant could protect neonatal mice. Although an intramuscular immunization route is often used in adult immunization studies, it is not possible to use this route to administer vaccine to very small pups and hence the subcutaneous (s.c.) route was used. Seven-day-old BALB/c pups were immunized s.c. in the hind limb with 1, 5 or 15 μg of iH1N1 with or without Advax adjuvant. When they reached 4 weeks of age immunized pups were challenged intranasally with homologous influenza virus. Immunization with iH1N1 alone provided no protection of pups, with rapid weight loss and death by 10 days post-challenge, even at the highest 15 μg iH1N1 dose (
<xref rid="fig0005" ref-type="fig">Fig. 1</xref>
). By contrast, complete protection was seen in pups immunized with 15 μg iH1N1 + Advax adjuvant (100% survival) with the pups continuing to gain weight throughout the challenge period consistent with a lack of clinical disease. Partial protection was also seen in pups immunized with 5 μg iH1N1 + Advax (60% survival), although the survivors lost ∼20% body weight before recovering. Immunization with 1 μg iH1N1 + Advax was not protective (0% survival). This indicated that 7-day-old neonatal mice could be protected with a single high dose of iH1N1 providing it was formulated with Advax adjuvant.
<fig id="fig0005">
<label>Fig. 1</label>
<caption>
<p>
<italic>Single-dose vaccine protection of neonates</italic>
. Seven-day-old pups (
<italic>n</italic>
 = 5/gp) were immunized once s.c. with indicated dose of iH1N1 alone or with Advax adjuvant then challenged 3 weeks later with H1N1 virus. Shown are body weights (A), sickness scores (B) and survival rates (C). All data in figures are shown as mean ± SEM. Experiment was repeated twice with similar results.</p>
</caption>
<graphic xlink:href="gr1"></graphic>
</fig>
</p>
</sec>
<sec id="sec0075">
<label>3.2</label>
<title>Advax adjuvant overcomes neonatal B-cell hyporesponsiveness</title>
<p id="par0095">To better understand the mechanism whereby Advax adjuvant provided enhanced single-dose vaccine protection of neonatal pups, the challenge study was repeated using the 15 μg iH1N1 + Advax dose that provided complete single-dose protection in the first study. Immunized pups were bled at 3 weeks of age for measurement of serum anti-influenza antibodies and then challenged at 4 weeks of age with homologous virus. Pups immunized with iH1N1 + Advax had significantly increased serum influenza-specific IgM, IgG1, IgG2a and IgG2b levels 3 weeks post-immunization, whereas pups immunized with iH1N1 alone had low to undetectable levels of all antibody isotypes (
<xref rid="fig0010" ref-type="fig">Fig. 2</xref>
A). To compare relative amounts of each antibody isotype in immunized pups, surface plasmon resonance (SPR) was performed using pooled pre-challenge sera from each vaccine group. This revealed that pups immunized with iH1N1 + Advax produce predominantly IgM and to a lesser extent IgG1, but not IgG2a, 2b or 3 (
<xref rid="fig0010" ref-type="fig">Fig. 2</xref>
B). This contrasted with the result of previously published studies in adult mice where immunization with iH1N1 + Advax induced IgG2a and 2b as well as IgG1
<xref rid="bib0325" ref-type="bibr">[22]</xref>
,
<xref rid="bib0330" ref-type="bibr">[23]</xref>
. This suggests that the 7-day-old pups had a marked Th2 isotype bias to influenza immunization, consistent with data reported elsewhere
<xref rid="bib0345" ref-type="bibr">[26]</xref>
. A subset of immunized pups from each group were sacrificed 2 weeks post-immunization and the frequency of influenza-specific IgM and IgG antibody secreting cells (ASC) measured by ELISPOT. Consistent with serum antibody, a significantly increased (∼3–4 fold) frequency of influenza-specific IgM and IgG ASC was seen in the spleens of pups immunized with iH1N1 + Advax versus those immunized with iH1N1 alone (
<xref rid="fig0010" ref-type="fig">Fig. 2</xref>
C). When challenged at 3 weeks post-immunization, pups immunized with iH1N1 + Advax gained weight, had minimal clinical disease and had high levels of survival (survival 8/9, 89%,
<italic>p</italic>
 < 0.0001). By contrast, pups immunized with iH1N1 alone, lost weight, had high clinical scores and all succumbed to infection (
<xref rid="fig0010" ref-type="fig">Fig. 2</xref>
D).
<fig id="fig0010">
<label>Fig. 2</label>
<caption>
<p>
<italic>Advax adjuvant overcomes neonatal B-cell hyporesponsiveness</italic>
. Seven-day-old pups (
<italic>n</italic>
 = 9–10/gp) were immunized s.c. with 15 μg of iH1N1 alone or with Advax adjuvant. Serum was collected 3 weeks post-immunization for antibody determination by ELISA (A). Pooled sera from the iH1N1 + Advax immunised group pre- and post-challenge were captured on an iH1N1-immobilized Biacore chip for SPR analysis of the relative quantities of each antibody isotype as determined by sequential injection over the sensor surface and depicted as relative percentage of antibody isotypes (B). Pups from each group were sacrificed pre-challenge to determine the frequency of H1N1-specific ASC in their spleens by ELISPOT (C). Remaining immunized pups were challenged with H1N1 virus 3 weeks post-immunization and body weight, sickness score and survival rate monitored for 2 weeks (D).</p>
</caption>
<graphic xlink:href="gr2"></graphic>
</fig>
</p>
<p id="par0100">Sera taken from iH1N1 + Advax survivors two weeks post-challenge showed a large rise in influenza-specific IgG1 from pre-challenge levels, with loss of the pre-challenge IgM component, (
<xref rid="fig0010" ref-type="fig">Fig. 2</xref>
B), consistent with the vaccine-induced IgM-secreting B cells having undergone an isotype switch from IgM to IgG1 production in response to influenza virus exposure.</p>
</sec>
<sec id="sec0080">
<label>3.3</label>
<title>Advax adjuvant overcomes neonatal T-cell hyporesponsiveness</title>
<p id="par0105">To further characterize the mechanism whereby Advax adjuvant enhances neonatal protection, memory T-cell responses were assessed in immunized pups. Splenocytes were isolated from pups 3 weeks post-immunization, stimulated with iH1N1 antigen and cytokines measured in the culture supernatants. Pups immunized with iH1N1 + Advax had significantly higher (∼2–3 fold) influenza-stimulated recall production of IFN-γ, IL-2, IL-4, and IL-10, but not IL-6 or TNF, when compared to pups immunized with iH1N1 alone (
<xref rid="fig0015" ref-type="fig">Fig. 3</xref>
A). Thus although neonates typically have impaired Th1 vaccine responses
<xref rid="bib0350" ref-type="bibr">[27]</xref>
, immunization with iH1N1 + Advax adjuvant was able to overcome this defect and enhance T-cell IFN-γ production. We next tested by cytokine ELISPOT whether higher cytokine recall responses in Advax-immunized pups reflected an increased frequency of influenza-specific memory T cells. Consistent with the bulk cytokine production data, pups immunized with iH1N1 + Advax had ∼3–10 fold higher frequencies of IFN-γ, IL-2, IL-4, and IL-17 secreting memory T cells when compared to pups immunized with iH1N1 alone (
<xref rid="fig0015" ref-type="fig">Fig. 3</xref>
B). Thus, immunization of pups with iH1N1 + Advax adjuvant successfully overcame neonatal immune immaturity at both the B- and T-cell level, resulting in increased influenza-specific serum antibody levels, and increased frequency of anti-influenza memory B cells and Th1, Th2 and Th17 memory T cells.
<fig id="fig0015">
<label>Fig. 3</label>
<caption>
<p>
<italic>Advax adjuvant overcomes neonatal T-cell hyporesponsiveness</italic>
. Splenocytes were harvested 2 weeks post-immunization of 7-day-old pups, stimulated with iH1N1 and cytokine levels in the culture supernatant determined by CBA (A). The frequency of H1N1-specific T cells in the spleen of the same mice was assessed by ELISPOT (B).</p>
</caption>
<graphic xlink:href="gr3"></graphic>
</fig>
</p>
</sec>
<sec id="sec0085">
<label>3.4</label>
<title>B cells are required for neonatal influenza protection by Advax-adjuvanted vaccine</title>
<p id="par0110">Interestingly, although iH1N1 + Advax induced memory T-cell responses belonging to both Th1 and Th2 subsets as indicated by their patterns of cytokine production, the antibody production in these pups was solely Th2 in nature (IgM and IgG1) even after influenza virus challenge. We asked, therefore, whether influenza protection in iH1N1 + Advax immunized pups was dependent on memory B- or T-cells. μMT mice lack mature B cells and ability to make antibody
<xref rid="bib0355" ref-type="bibr">[28]</xref>
. Hence, to test the role of memory B cells in neonatal protection we immunized C57BL6 wildtype (WT) or μMT pups with iH1N1 + Advax and then challenged them with influenza virus 3 weeks post-immunization. As previously observed, C57BL6 WT pups immunized with iH1N1 alone lost weight and succumbed to infection, whereas those immunized with iH1N1 + Advax survived and gained weight throughout the challenge period (
<xref rid="fig0020" ref-type="fig">Fig. 4</xref>
). By contrast, all neonatal μMT pups including those immunized with iH1N1 + Advax lost weight and died. This indicates that protection of pups with iH1N1 + Advax requires functional B cells and is not conferred by memory T cells alone. Consistent with this result, CD8 T-cell depletion of iH1N1 + Advax immunized WT pups at the time of challenge did not reduce survival, indicating that CD8 T cells were not required for protection of Advax-immunized WT pups (
<xref rid="fig0020" ref-type="fig">Fig. 4</xref>
). We next asked whether the inability of T cells to provide protection in μMT pups reflected an inability of neonates to make cytotoxic T lymphocytes (CTL). To address this question we performed
<italic>in vivo</italic>
CTL assays post-challenge in WT pup survivors previously immunized with iH1N1 + Advax. Neonatal iH1N1 + Advax-immunized survivors all exhibited a high level of target cell killing indicating that they were able to generate anti-influenza CTL's in response to viral exposure (data not shown).
<fig id="fig0020">
<label>Fig. 4</label>
<caption>
<p>
<italic>Vaccine protection of neonates is B-cell dependent</italic>
. Seven-day-old wild type (WT) and μMT mice were immunized s.c. with 15 μg of iH1N1 alone or with Advax adjuvant. One group of WT mice also received anti-mouse CD8 antibody to deplete CD8
<sup>+</sup>
cells during challenge. μMT pups were challenged with 1250 TCID
<sub>50</sub>
of H1N1 virus. Shown are post-challenge body weights (A), sickness scores (B) and survival rates (C).</p>
</caption>
<graphic xlink:href="gr4"></graphic>
</fig>
</p>
</sec>
<sec id="sec0090">
<label>3.5</label>
<title>Absence of adverse effects in neonates receiving Advax-adjuvanted vaccine</title>
<p id="par0115">Potential adverse effects of Advax adjuvant were assessed in immunized pups, including inspection for injection site reactions and monitoring of feeding behavior and growth. Pups receiving iH1N1 + Advax had no evidence of injection site lesions, and showed normal development and weight gain comparable to control pups (
<xref rid="fig0025" ref-type="fig">Fig. 5</xref>
). This is consistent with the absence of adverse effects of Advax adjuvant previously seen in immunization studies of adult mice including pregnant dams
<xref rid="bib0325" ref-type="bibr">[22]</xref>
,
<xref rid="bib0330" ref-type="bibr">[23]</xref>
.
<fig id="fig0025">
<label>Fig. 5</label>
<caption>
<p>
<italic>Advax adjuvant does not affect neonatal growth</italic>
. Seven-day-old pups (
<italic>n</italic>
 = 10–13/gp) were immunized once s.c. with saline or 15 μg iH1N1 with or without Advax adjuvant and the bodyweight of each pup recorded 3 weeks later. ns = no significant difference between groups.</p>
</caption>
<graphic xlink:href="gr5"></graphic>
</fig>
</p>
</sec>
</sec>
<sec id="sec0095">
<label>4</label>
<title>Discussion</title>
<p id="par0120">These results confirm that Advax adjuvant is able to successfully overcome neonatal hypo-responsiveness to inactivated influenza immunization, thereby enabling robust single-dose protection of 7-day-old pups against otherwise lethal influenza infection. Immunization of 7-day-old pups with a single dose of iH1N1 + Advax adjuvant induced high serum IgM and IgG1 levels and increased the frequency of splenic influenza-specific ASC. Advax adjuvant also enhanced cellular immunity, increasing frequencies of influenza-specific memory T cells and increasing recall cytokine production.</p>
<p id="par0125">The effectiveness of Advax adjuvant in protection of neonates stands in contrast to other adjuvants that have been shown to be ineffective in inducing neonatal influenza protection. For example, an alum-adjuvanted influenza vaccine provided no protection in neonatal mice
<xref rid="bib0360" ref-type="bibr">[29]</xref>
, despite use of a very similar influenza model to the one in the current study. This can be explained by the fact that alum adjuvant has reduced ability to induce IgG production, B-cell affinity maturation and germinal center formation in neonates
<xref rid="bib0365" ref-type="bibr">[30]</xref>
. The squalene oil emulsion adjuvant MF59 is currently the only adjuvant in an approved human seasonal influenza vaccine. It was recently reported that immunization of neonatal mice at 7 and 21 days of age with MF59-adjuvanted influenza vaccine failed to provide protection or to enhance antibody titers, consistent with a complete lack of MF59 effectiveness in neonates despite it enhancing protection in older infant and adult mice given the same two dose vaccine regimen
<xref rid="bib0370" ref-type="bibr">[31]</xref>
. This stands in marked contrast to the outcomes seen in the current study where Advax adjuvant induced high serum levels of IgM and IgG1 in 7-day-old mice after just a single vaccine dose and protected them against an otherwise highly lethal influenza challenge. Hence, Advax adjuvant appears unique in its ability to overcome neonatal immune hyporesponsiveness and induce vaccine protection in such young mice.</p>
<p id="par0130">Neonatal mice did require a higher antigen dose than adult mice for complete influenza protection. Neonatal mice are known to have higher susceptibility to lethal influenza than adults
<xref rid="bib0375" ref-type="bibr">[32]</xref>
, which likely reflects immaturity of both innate and adaptive immune systems and similarly increased neonatal susceptibility to influenza is also seen in human epidemiological data
<xref rid="bib0220" ref-type="bibr">[1]</xref>
. This high neonatal susceptibility to influenza makes the search for an effective neonatal vaccine strategy imperative. How the influenza antigen requirement required for complete protection of neonates in the current study might translate to doses needed to protect human neonates cannot be predicted in advance of human studies, but it must be noted that the vaccine regimen used in the current study was protective after just a single dose, whereas typically even older human infants require at least 2 doses for seroprotection. The World Health Organization consequently recommends that infants aged 6–35 mouths receive two 7.5 μg doses of split influenza vaccine a month apart. Hence even though a high dose of antigen was needed in the current study for single dose protection of neonates, there should be considerable scope to reduce the neonatal vaccine dose by using a more typical two-dose regimen of Advax-adjuvanted influenza vaccine. For example, in adult mice we have found protection with a two-dose regimen requires as little as one-hundredth the dose required for single-dose protection. In future studies we will confirm whether a two-dose regimen of Advax-adjuvanted influenza vaccine significantly reduces the antigen dose required for neonatal protection.</p>
<p id="par0135">Neonatal protection with the Advax-adjuvanted influenza vaccine was dependent on functional B cells as protection was not seen in immunized neonatal μMT mice that are deficient in B cells and are unable to make immunoglobulin. Neonatal protection with Advax-adjuvanted influenza vaccine was not dependent on CD8 T-cell immunity as protection was observed even when CD8 T cells were depleted prior to challenge. The fact that T cells were unable to mediate protection in immunized neonates in the absence of antibody was surprising as the T-cell cytokine phenotype generated in immunized pups appeared very similar to the phenotype previously seen in adult mice in which T-cell protection could be demonstrated
<xref rid="bib0325" ref-type="bibr">[22]</xref>
. This suggested that T cells in immunized pups might have a defect in effector function,
<italic>e.g.</italic>
in cytotoxic T lymphocyte (CTL) differentiation. However when
<italic>in vivo</italic>
CTL assays were performed post-challenge in surviving iH1N1 + Advax immunized WT pups, high levels of killing of influenza peptide-labeled target cells was seen (data not shown), suggesting the neonatal T cells were indeed able to differentiate into CTLs. The lack of T-cell protection in neonatal μMT pups could instead reflect slower differentiation of neonatal CD8 T cells into lytic CTL effectors, with delayed CTL differentiation having been shown to be the reason for defective neonatal protection against herpes simplex virus
<xref rid="bib0380" ref-type="bibr">[33]</xref>
. Furthermore, in contrast to adults, neonatal T cells were shown to fail to proliferate and migrate into the lungs in response to influenza infection, consistent with qualitative differences in neonatal and adult T-cell function
<xref rid="bib0375" ref-type="bibr">[32]</xref>
.</p>
<p id="par0140">How did Advax adjuvant enhance protective B cell immunity in the immunized pups? Impaired antibody production and affinity maturation in immunized neonates have been correlated with impaired expansion of T follicular helper (T
<sub>FH</sub>
) lymphocytes, as shown in neonatal mice immunized with tetanus toxoid absorbed to alum adjuvant
<xref rid="bib0385" ref-type="bibr">[34]</xref>
. Poor neonatal germinal center formation post-immunization has been correlated with a delayed maturation of follicular dendritic cells (fDCs)
<xref rid="bib0390" ref-type="bibr">[35]</xref>
. Notably, MF59-adjuvanted influenza vaccine failed to induce germinal centers and antibody responses in 7-day-old mice associated with a failure of induction of functional T
<sub>FH</sub>
cells
<xref rid="bib0370" ref-type="bibr">[31]</xref>
. Thus most adjuvants with the exception of Advax are incapable of correcting neonatal immune defects in B-cell function. The central importance of T
<sub>FH</sub>
and fDC in optimal neonatal vaccine responses suggests that Advax through a yet to be determined mechanism improve activation and expansion of neonatal T
<sub>FH</sub>
cells and/or fDCs.</p>
<p id="par0145">Interestingly, although iH1N1 + Advax immunization induced almost exclusively IgM and IgG1 isotypes in pups consistent with a Th2-dominated response, it induced memory T cells belonging to Th1 and Th17 as well as the Th2 subset. This is interesting as Th2 recall responses typically dominate in neonates
<xref rid="bib0395" ref-type="bibr">[36]</xref>
. Both murine
<xref rid="bib0400" ref-type="bibr">[37]</xref>
and human
<xref rid="bib0405" ref-type="bibr">[38]</xref>
newborns have been reported to have impaired IL-17 and IFN-γ responses, with the latter caused by low dendritic cell IL-12 production
<xref rid="bib0350" ref-type="bibr">[27]</xref>
. It was therefore surprising that Advax-adjuvanted vaccine induced such a robust IFN-γ (Th1) recall response in neonates. The mechanism by which Advax overcame the normal neonatal Th2 bias is not known but may potentially be very advantageous. Excess Th2 bias can cause eosinophilic lung immunopathology as has been seen after either SARS coronavirus (SARS)
<xref rid="bib0410" ref-type="bibr">[39]</xref>
, or respiratory syncytial virus (RSV)
<xref rid="bib0415" ref-type="bibr">[40]</xref>
immunization. A recent study showed formulation of inactivated or recombinant SARS vaccine with Advax adjuvant not only enhanced protection against SARS but also prevented eosinophilic lung immunopathology
<xref rid="bib0410" ref-type="bibr">[39]</xref>
. Hence, the ability of Advax adjuvant to enhance neonatal Th1 responses and reduce their otherwise overwhelming Th2 bias could be of major benefit for neonatal vaccines particularly where there might be risk of Th2 bias otherwise inducing eosinophilic lung immunopathology.</p>
<p id="par0150">A key consideration when developing vaccine adjuvants for potential use in neonates is safety and tolerability. Children are highly prone to febrile convulsions and at least one seasonal inactivated influenza vaccine has had to be withdrawn due to excess reactogenicity and pyrogenicity in young children
<xref rid="bib0265" ref-type="bibr">[10]</xref>
. Although in this study 7-day-old pups received exactly the same Advax dose (1 mg) previously used in adult mouse studies, no adjuvant-related adverse effects were observed. Future dose-response studies will test whether lower doses of Advax can be used for pups. However it was a testament to Advax's safety that pups which weighted just a few grams were able to tolerate the full adult dose. When administered to adult mice, even human sized doses of 10–20 mg of Advax did not induce pyrexia (unpublished data). While we had no means to measure temperature in the 7-day-old pups, there was no indication of pyrexia post-immunization, which in neonates would typically be associated with a loss of body weight. Similarly, no adverse effects on pregnant dams or their pups were observed when Advax was administered during pregnancy
<xref rid="bib0330" ref-type="bibr">[23]</xref>
. Advax has also already been shown to be safe and well tolerated in adult human trials, with no evidence of any potential to induce pyrexia
<xref rid="bib0340" ref-type="bibr">[25]</xref>
,
<xref rid="bib0420" ref-type="bibr">[41]</xref>
.</p>
<p id="par0155">The ability of Advax adjuvant to enhance neonatal vaccine protection raises many questions, including the nature of the mechanisms whereby Advax adjuvant is able to correct for neonatal B- and T-cell immaturity. Notably, injection of Advax adjuvant alone without antigen did not provide any non-specific protection against influenza
<xref rid="bib0325" ref-type="bibr">[22]</xref>
,
<xref rid="bib0335" ref-type="bibr">[24]</xref>
. This contrasts with the non-specific virus protection due to nonspecific innate immune activation seen with CpG oligonucleotides and other TLR agonists
<xref rid="bib0425" ref-type="bibr">[42]</xref>
,
<xref rid="bib0430" ref-type="bibr">[43]</xref>
. This together with the fact that it doesn’t induce pyrexia even when administered at high doses suggests that Advax is not working through traditional TLR-mediated signaling pathways. However, the exact mechanism of action remains an area of active investigation.</p>
<p id="par0160">In conclusion, this pilot study in 7-day-old mice showed Advax adjuvant was able to overcome neonatal immune immaturity with enhancement of influenza-specific antibody and T-cell responses and single-dose vaccine protection against otherwise lethal influenza infection. The use of Advax adjuvant was not associated with any adverse effects, supporting the strong safety data seen in other animal models and in adult human clinical trials. There is an ongoing need for an influenza vaccine effective in children under 6 months. The challenge now will be to see whether this promising murine data with Advax adjuvant translates into similar benefits in larger animal models and ultimately in human infants. These findings also raise the possibility that Advax adjuvant might similarly beneficially enhance the immunogenicity of other vaccines directed at neonates, for example RSV, TB or malaria vaccines.</p>
</sec>
<sec id="sec0100">
<title>Funding</title>
<p id="par0165">This project has been funded with Federal funds from the
<funding-source id="gs1">National Institute of Allergy and Infectious Diseases</funding-source>
,
<funding-source id="gs2">National Institutes of Health</funding-source>
, under Contract no. HHSN272200800039C and Collaborative Research Contact no. U01AI061142. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.</p>
</sec>
<sec id="sec0105">
<title>Conflicts of interest statement</title>
<p id="par0170">YHO, CHO and NP are associated with Vaxine Pty Ltd., (Adelaide Australia), which holds proprietary interests in Advax™ adjuvant. Animal challenge study results are overseen and audited by the Flinders University Animal Welfare Committee.</p>
</sec>
</body>
<back>
<ref-list id="bibl0005">
<title>References</title>
<ref id="bib0220">
<label>1</label>
<element-citation publication-type="journal" id="sbref0220">
<person-group person-group-type="author">
<name>
<surname>Wong</surname>
<given-names>K.K.</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Blanton</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Dhara</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Brammer</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Fry</surname>
<given-names>A.M.</given-names>
</name>
</person-group>
<article-title>Influenza-associated pediatric deaths in the United States, 2004–2012</article-title>
<source>Pediatrics</source>
<volume>132</volume>
<issue>Nov (5)</issue>
<year>2013</year>
<fpage>796</fpage>
<lpage>804</lpage>
<pub-id pub-id-type="pmid">24167165</pub-id>
</element-citation>
</ref>
<ref id="bib0225">
<label>2</label>
<element-citation publication-type="journal" id="sbref0225">
<person-group person-group-type="author">
<name>
<surname>Brotherton</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>McIntyre</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Puech</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Gidding</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Hull</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Vaccine preventable diseases and vaccination coverage in Australia 2001 to 2002</article-title>
<source>Commun Dis Intell</source>
<volume>28</volume>
<issue>Dec (Suppl 2)</issue>
<year>2004</year>
<fpage>vii-S116</fpage>
</element-citation>
</ref>
<ref id="bib0230">
<label>3</label>
<element-citation publication-type="journal" id="sbref0230">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>J.T.</given-names>
</name>
<name>
<surname>Ma</surname>
<given-names>E.S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>C.K.</given-names>
</name>
<name>
<surname>Chu</surname>
<given-names>D.K.</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>P.L.</given-names>
</name>
<name>
<surname>Shen</surname>
<given-names>A.L.</given-names>
</name>
</person-group>
<article-title>The infection attack rate and severity of 2009 pandemic H1N1 influenza in Hong Kong</article-title>
<source>Clin Infect Dis</source>
<volume>51</volume>
<issue>Nov (10)</issue>
<year>2010</year>
<fpage>1184</fpage>
<lpage>1191</lpage>
<pub-id pub-id-type="pmid">20964521</pub-id>
</element-citation>
</ref>
<ref id="bib0235">
<label>4</label>
<element-citation publication-type="journal" id="sbref0235">
<person-group person-group-type="author">
<name>
<surname>Bekker</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Chou</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bernstein</surname>
<given-names>H.H.</given-names>
</name>
</person-group>
<article-title>Update on universal annual influenza immunization recommendations for children</article-title>
<source>Curr Opin Pediatr</source>
<volume>21</volume>
<issue>Feb (1)</issue>
<year>2009</year>
<fpage>122</fpage>
<lpage>126</lpage>
<pub-id pub-id-type="pmid">19242248</pub-id>
</element-citation>
</ref>
<ref id="bib0240">
<label>5</label>
<element-citation publication-type="journal" id="sbref0240">
<person-group person-group-type="author">
<name>
<surname>Jefferson</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Rivetti</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Harnden</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Di Pietrantonj</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Demicheli</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Vaccines for preventing influenza in healthy children</article-title>
<source>Cochrane Database Syst Rev</source>
<volume>2</volume>
<year>2008</year>
<fpage>CD004879</fpage>
</element-citation>
</ref>
<ref id="bib0245">
<label>6</label>
<element-citation publication-type="journal" id="sbref0245">
<person-group person-group-type="author">
<name>
<surname>Vesikari</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Emerging data on the safety and efficacy of influenza vaccines in children</article-title>
<source>Pediatr Infect Dis J</source>
<volume>27</volume>
<issue>11 Suppl</issue>
<year>2008</year>
<fpage>S159</fpage>
<lpage>S161</lpage>
<pub-id pub-id-type="pmid">18955892</pub-id>
</element-citation>
</ref>
<ref id="bib0250">
<label>7</label>
<element-citation publication-type="journal" id="sbref0250">
<person-group person-group-type="author">
<name>
<surname>Kaczmarek</surname>
<given-names>M.C.</given-names>
</name>
<name>
<surname>Duong</surname>
<given-names>U.T.</given-names>
</name>
<name>
<surname>Ware</surname>
<given-names>R.S.</given-names>
</name>
<name>
<surname>Lambert</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>H.A.</given-names>
</name>
</person-group>
<article-title>The risk of fever following one dose of trivalent inactivated influenza vaccine in children aged ≥6 months to <36 months: a comparison of published and unpublished studies</article-title>
<source>Vaccine</source>
<volume>31</volume>
<issue>Nov (46)</issue>
<year>2013</year>
<fpage>5359</fpage>
<lpage>5365</lpage>
<pub-id pub-id-type="pmid">24055353</pub-id>
</element-citation>
</ref>
<ref id="bib0255">
<label>8</label>
<element-citation publication-type="journal" id="sbref0255">
<person-group person-group-type="author">
<name>
<surname>Dowdle</surname>
<given-names>W.R.</given-names>
</name>
<name>
<surname>Millar</surname>
<given-names>J.D.</given-names>
</name>
<name>
<surname>Schonberger</surname>
<given-names>L.B.</given-names>
</name>
<name>
<surname>Ennis</surname>
<given-names>F.A.</given-names>
</name>
<name>
<surname>LaMontagne</surname>
<given-names>J.R.</given-names>
</name>
</person-group>
<article-title>Influenza immunization policies and practices in Japan</article-title>
<source>J Infect Dis</source>
<volume>141</volume>
<issue>2</issue>
<year>1980</year>
<fpage>258</fpage>
<lpage>264</lpage>
<pub-id pub-id-type="pmid">7365278</pub-id>
</element-citation>
</ref>
<ref id="bib0260">
<label>9</label>
<element-citation publication-type="journal" id="sbref0260">
<person-group person-group-type="author">
<name>
<surname>ACIP</surname>
</name>
</person-group>
<article-title>Update: recommendations of the Advisory Committee on Immunization Practices (ACIP) regarding use of CSL seasonal influenza vaccine (Afluria) in the United States during 2010–11</article-title>
<source>MMWR Morb Mortal Wkly Rep</source>
<volume>59</volume>
<issue>Aug (31)</issue>
<year>2010</year>
<fpage>989</fpage>
<lpage>992</lpage>
<pub-id pub-id-type="pmid">20703207</pub-id>
</element-citation>
</ref>
<ref id="bib0265">
<label>10</label>
<element-citation publication-type="journal" id="sbref0265">
<person-group person-group-type="author">
<name>
<surname>Kelly</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Carcione</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Dowse</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Effler</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Quantifying benefits and risks of vaccinating Australian children aged six months to four years with trivalent inactivated seasonal influenza vaccine in 2010</article-title>
<source>Euro Surveill</source>
<volume>15</volume>
<issue>Sep (37)</issue>
<year>2010</year>
<fpage>1</fpage>
<lpage>9</lpage>
</element-citation>
</ref>
<ref id="bib0270">
<label>11</label>
<element-citation publication-type="journal" id="sbref0270">
<person-group person-group-type="author">
<name>
<surname>Partinen</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Saarenpaa-Heikkila</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Ilveskloski</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland</article-title>
<source>PLoS ONE</source>
<volume>7</volume>
<issue>3</issue>
<year>2012</year>
<fpage>e33723</fpage>
<pub-id pub-id-type="pmid">22470463</pub-id>
</element-citation>
</ref>
<ref id="bib0275">
<label>12</label>
<element-citation publication-type="journal" id="sbref0275">
<person-group person-group-type="author">
<name>
<surname>Nolan</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Bravo</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Ceballos</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Mitha</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Gray</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Quiambao</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Enhanced and persistent antibody response against homologous and heterologous strains elicited by a MF59-adjuvanted influenza vaccine in infants and young children</article-title>
<source>Vaccine</source>
<volume>32</volume>
<issue>Oct (46)</issue>
<year>2014</year>
<fpage>6146</fpage>
<lpage>6156</lpage>
<pub-id pub-id-type="pmid">25223266</pub-id>
</element-citation>
</ref>
<ref id="bib0280">
<label>13</label>
<element-citation publication-type="journal" id="sbref0280">
<person-group person-group-type="author">
<name>
<surname>Cooper</surname>
<given-names>P.D.</given-names>
</name>
<name>
<surname>Petrovsky</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Delta inulin: a novel, immunologically active, stable packing structure comprising beta-
<sc>d</sc>
-[2 ≥ 1] poly(fructo-furanosyl) alpha-
<sc>d</sc>
-glucose polymers</article-title>
<source>Glycobiology</source>
<volume>21</volume>
<issue>5</issue>
<year>2011</year>
<fpage>595</fpage>
<lpage>606</lpage>
<pub-id pub-id-type="pmid">21147758</pub-id>
</element-citation>
</ref>
<ref id="bib0285">
<label>14</label>
<element-citation publication-type="journal" id="sbref0285">
<person-group person-group-type="author">
<name>
<surname>Cristillo</surname>
<given-names>A.D.</given-names>
</name>
<name>
<surname>Ferrari</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Hudacik</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Lewis</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Galmin</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Bowen</surname>
<given-names>B.</given-names>
</name>
</person-group>
<article-title>Induction of mucosal and systemic antibody and T-cell responses following prime-boost immunization with novel adjuvanted human immunodeficiency virus-1-vaccine formulations</article-title>
<source>J Gen Virol</source>
<volume>92</volume>
<issue>Jan (Pt 1)</issue>
<year>2011</year>
<fpage>128</fpage>
<lpage>140</lpage>
<pub-id pub-id-type="pmid">21169215</pub-id>
</element-citation>
</ref>
<ref id="bib0290">
<label>15</label>
<element-citation publication-type="journal" id="sbref0290">
<person-group person-group-type="author">
<name>
<surname>Eckersley</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Petrovsky</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Kinne</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Wernery</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Wernery</surname>
<given-names>U.</given-names>
</name>
</person-group>
<article-title>Improving the dromedary antibody response: the hunt for the ideal camel adjuvant</article-title>
<source>J Camel Pract Res</source>
<volume>18</volume>
<issue>1</issue>
<year>2011</year>
<fpage>35</fpage>
<lpage>46</lpage>
</element-citation>
</ref>
<ref id="bib0295">
<label>16</label>
<element-citation publication-type="journal" id="sbref0295">
<person-group person-group-type="author">
<name>
<surname>Feinen</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Petrovsky</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Verma</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Merkel</surname>
<given-names>T.J.</given-names>
</name>
</person-group>
<article-title>Advax-adjuvanted recombinant protective antigen provides protection against inhalational anthrax that is further enhanced by addition of murabutide adjuvant</article-title>
<source>Clin Vaccine Immunol</source>
<volume>21</volume>
<issue>4</issue>
<year>2014</year>
<fpage>580</fpage>
<lpage>586</lpage>
<pub-id pub-id-type="pmid">24554695</pub-id>
</element-citation>
</ref>
<ref id="bib0300">
<label>17</label>
<element-citation publication-type="journal" id="sbref0300">
<person-group person-group-type="author">
<name>
<surname>Larena</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Prow</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Petrovsky</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Lobigs</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>JE-ADVAX vaccine protection against Japanese encephalitis virus mediated by memory B cells in the absence of CD8
<sup>+</sup>
T cells and pre-exposure neutralizing antibody</article-title>
<source>J Virol</source>
<volume>87</volume>
<issue>Apr (8)</issue>
<year>2013</year>
<fpage>4395</fpage>
<lpage>4402</lpage>
<pub-id pub-id-type="pmid">23388724</pub-id>
</element-citation>
</ref>
<ref id="bib0305">
<label>18</label>
<element-citation publication-type="journal" id="sbref0305">
<person-group person-group-type="author">
<name>
<surname>Lobigs</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Pavy</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Lobigs</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Komiya</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>An inactivated Vero cell-grown Japanese encephalitis vaccine formulated with Advax, a novel inulin-based adjuvant, induces protective neutralizing antibody against homologous and heterologous flaviviruses</article-title>
<source>J Gen Virol</source>
<volume>91</volume>
<issue>Jun (Pt 6)</issue>
<year>2010</year>
<fpage>1407</fpage>
<lpage>1417</lpage>
<pub-id pub-id-type="pmid">20130134</pub-id>
</element-citation>
</ref>
<ref id="bib0310">
<label>19</label>
<element-citation publication-type="journal" id="sbref0310">
<person-group person-group-type="author">
<name>
<surname>Petrovsky</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Larena</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Siddharthan</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Prow</surname>
<given-names>N.A.</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Lobigs</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>An inactivated cell culture Japanese encephalitis vaccine (JE-ADVAX) formulated with delta inulin adjuvant provides robust heterologous protection against West Nile encephalitis via cross-protective memory B cells and neutralizing antibody</article-title>
<source>J Virol</source>
<volume>87</volume>
<issue>Sep (18)</issue>
<year>2013</year>
<fpage>10324</fpage>
<lpage>10333</lpage>
<pub-id pub-id-type="pmid">23864620</pub-id>
</element-citation>
</ref>
<ref id="bib0315">
<label>20</label>
<element-citation publication-type="journal" id="sbref0315">
<person-group person-group-type="author">
<name>
<surname>Rodriguez-Del Rio</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Marradi</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Calderon-Gonzalez</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Frande-Cabanes</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Penades</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Petrovsky</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>A gold glyco-nanoparticle carrying a listeriolysin O peptide and formulated with Advax delta inulin adjuvant induces robust T-cell protection against listeria infection</article-title>
<source>Vaccine</source>
<volume>33</volume>
<issue>Mar (12)</issue>
<year>2015</year>
<fpage>1465</fpage>
<lpage>1473</lpage>
<pub-id pub-id-type="pmid">25659269</pub-id>
</element-citation>
</ref>
<ref id="bib0320">
<label>21</label>
<element-citation publication-type="journal" id="sbref0320">
<person-group person-group-type="author">
<name>
<surname>Saade</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Honda-Okubo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Trec</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Petrovsky</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>A novel hepatitis B vaccine containing Advax, a polysaccharide adjuvant derived from delta inulin, induces robust humoral and cellular immunity with minimal reactogenicity in preclinical testing</article-title>
<source>Vaccine</source>
<volume>31</volume>
<issue>Apr (15)</issue>
<year>2013</year>
<fpage>1999</fpage>
<lpage>2007</lpage>
<pub-id pub-id-type="pmid">23306367</pub-id>
</element-citation>
</ref>
<ref id="bib0325">
<label>22</label>
<element-citation publication-type="journal" id="sbref0325">
<person-group person-group-type="author">
<name>
<surname>Honda-Okubo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Saade</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Petrovsky</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Advax a polysaccharide adjuvant derived from delta inulin, provides improved influenza vaccine protection through broad-based enhancement of adaptive immune responses</article-title>
<source>Vaccine</source>
<volume>30</volume>
<issue>Aug (36)</issue>
<year>2012</year>
<fpage>5373</fpage>
<lpage>5381</lpage>
<pub-id pub-id-type="pmid">22728225</pub-id>
</element-citation>
</ref>
<ref id="bib0330">
<label>23</label>
<element-citation publication-type="journal" id="sbref0330">
<person-group person-group-type="author">
<name>
<surname>Honda-Okubo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Kolpe</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Li</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Petrovsky</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>A single immunization with inactivated H1N1 influenza vaccine formulated with delta inulin adjuvant (Advax) overcomes pregnancy-associated immune suppression and enhances passive neonatal protection</article-title>
<source>Vaccine</source>
<volume>32</volume>
<issue>Aug (36)</issue>
<year>2014</year>
<fpage>4651</fpage>
<lpage>4659</lpage>
<pub-id pub-id-type="pmid">24958701</pub-id>
</element-citation>
</ref>
<ref id="bib0335">
<label>24</label>
<element-citation publication-type="journal" id="sbref0335">
<person-group person-group-type="author">
<name>
<surname>Layton</surname>
<given-names>R.C.</given-names>
</name>
<name>
<surname>Petrovsky</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Gigliotti</surname>
<given-names>A.P.</given-names>
</name>
<name>
<surname>Pollock</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Knight</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Donart</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Delta inulin polysaccharide adjuvant enhances the ability of split-virion H5N1 vaccine to protect against lethal challenge in ferrets</article-title>
<source>Vaccine</source>
<volume>29</volume>
<issue>Aug (37)</issue>
<year>2011</year>
<fpage>6242</fpage>
<lpage>6251</lpage>
<pub-id pub-id-type="pmid">21736913</pub-id>
</element-citation>
</ref>
<ref id="bib0340">
<label>25</label>
<element-citation publication-type="journal" id="sbref0340">
<person-group person-group-type="author">
<name>
<surname>Gordon</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Sajkov</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Woodman</surname>
<given-names>R.J.</given-names>
</name>
<name>
<surname>Honda-Okubo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Cox</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Heinzel</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Randomized clinical trial of immunogenicity and safety of a recombinant H1N1/2009 pandemic influenza vaccine containing Advax polysaccharide adjuvant</article-title>
<source>Vaccine</source>
<volume>30</volume>
<issue>Aug (36)</issue>
<year>2012</year>
<fpage>5407</fpage>
<lpage>5416</lpage>
<pub-id pub-id-type="pmid">22717330</pub-id>
</element-citation>
</ref>
<ref id="bib0345">
<label>26</label>
<element-citation publication-type="journal" id="sbref0345">
<person-group person-group-type="author">
<name>
<surname>Barrios</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Brandt</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Berney</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lambert</surname>
<given-names>P.H.</given-names>
</name>
<name>
<surname>Siegrist</surname>
<given-names>C.A.</given-names>
</name>
</person-group>
<article-title>Partial correction of the TH2/TH1 imbalance in neonatal murine responses to vaccine antigens through selective adjuvant effects</article-title>
<source>Eur J Immunol</source>
<volume>26</volume>
<issue>11</issue>
<year>1996</year>
<fpage>2666</fpage>
<lpage>2670</lpage>
<pub-id pub-id-type="pmid">8921953</pub-id>
</element-citation>
</ref>
<ref id="bib0350">
<label>27</label>
<element-citation publication-type="journal" id="sbref0350">
<person-group person-group-type="author">
<name>
<surname>Debock</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Jaworski</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Chadlaoui</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Delbauve</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Passon</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Twyffels</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Neonatal follicular Th cell responses are impaired and modulated by IL-4</article-title>
<source>J Immunol</source>
<volume>191</volume>
<issue>Aug (3)</issue>
<year>2013</year>
<fpage>1231</fpage>
<lpage>1239</lpage>
<pub-id pub-id-type="pmid">23804713</pub-id>
</element-citation>
</ref>
<ref id="bib0355">
<label>28</label>
<element-citation publication-type="journal" id="sbref0355">
<person-group person-group-type="author">
<name>
<surname>Bot</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Immunoglobulin deficient mice generated by gene targeting as models for studying the immune response</article-title>
<source>Int Rev Immunol</source>
<volume>13</volume>
<issue>4</issue>
<year>1996</year>
<fpage>327</fpage>
<lpage>340</lpage>
<pub-id pub-id-type="pmid">8884429</pub-id>
</element-citation>
</ref>
<ref id="bib0360">
<label>29</label>
<element-citation publication-type="journal" id="sbref0360">
<person-group person-group-type="author">
<name>
<surname>Khalil</surname>
<given-names>S.M.</given-names>
</name>
<name>
<surname>Tonkin</surname>
<given-names>D.R.</given-names>
</name>
<name>
<surname>Snead</surname>
<given-names>A.T.</given-names>
</name>
<name>
<surname>Parks</surname>
<given-names>G.D.</given-names>
</name>
<name>
<surname>Johnston</surname>
<given-names>R.E.</given-names>
</name>
<name>
<surname>White</surname>
<given-names>L.J.</given-names>
</name>
</person-group>
<article-title>An alphavirus-based adjuvant enhances serum and mucosal antibodies, T cells, and protective immunity to influenza virus in neonatal mice</article-title>
<source>J Virol</source>
<volume>88</volume>
<issue>Aug (16)</issue>
<year>2014</year>
<fpage>9182</fpage>
<lpage>9196</lpage>
<pub-id pub-id-type="pmid">24899195</pub-id>
</element-citation>
</ref>
<ref id="bib0365">
<label>30</label>
<element-citation publication-type="journal" id="sbref0365">
<person-group person-group-type="author">
<name>
<surname>Pihlgren</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Tougne</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Bozzotti</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Fulurija</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Duchosal</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Lambert</surname>
<given-names>P.H.</given-names>
</name>
</person-group>
<article-title>Unresponsiveness to lymphoid-mediated signals at the neonatal follicular dendritic cell precursor level contributes to delayed germinal center induction and limitations of neonatal antibody responses to T-dependent antigens</article-title>
<source>J Immunol</source>
<volume>170</volume>
<issue>Mar (6)</issue>
<year>2003</year>
<fpage>2824</fpage>
<lpage>2832</lpage>
<pub-id pub-id-type="pmid">12626532</pub-id>
</element-citation>
</ref>
<ref id="bib0370">
<label>31</label>
<element-citation publication-type="journal" id="sbref0370">
<person-group person-group-type="author">
<name>
<surname>Mastelic Gavillet</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Eberhardt</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Auderset</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Castellino</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Seubert</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Tregoning</surname>
<given-names>J.S.</given-names>
</name>
</person-group>
<article-title>MF59 mediates its B Cell adjuvanticity by promoting T follicular helper Cells and thus germinal center responses in adult and early life</article-title>
<source>J Immunol</source>
<volume>194</volume>
<issue>May (10)</issue>
<year>2015</year>
<fpage>4836</fpage>
<lpage>4845</lpage>
<pub-id pub-id-type="pmid">25870238</pub-id>
</element-citation>
</ref>
<ref id="bib0375">
<label>32</label>
<element-citation publication-type="journal" id="sbref0375">
<person-group person-group-type="author">
<name>
<surname>Lines</surname>
<given-names>J.L.</given-names>
</name>
<name>
<surname>Hoskins</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Hollifield</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Cauley</surname>
<given-names>L.S.</given-names>
</name>
<name>
<surname>Garvy</surname>
<given-names>B.A.</given-names>
</name>
</person-group>
<article-title>The migration of T cells in response to influenza virus is altered in neonatal mice</article-title>
<source>J Immunol</source>
<volume>185</volume>
<issue>Sep (5)</issue>
<year>2010</year>
<fpage>2980</fpage>
<lpage>2988</lpage>
<pub-id pub-id-type="pmid">20656925</pub-id>
</element-citation>
</ref>
<ref id="bib0380">
<label>33</label>
<element-citation publication-type="journal" id="sbref0380">
<person-group person-group-type="author">
<name>
<surname>Fernandez</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Evans</surname>
<given-names>I.A.</given-names>
</name>
<name>
<surname>Hassan</surname>
<given-names>E.H.</given-names>
</name>
<name>
<surname>Carbone</surname>
<given-names>F.R.</given-names>
</name>
<name>
<surname>Jones</surname>
<given-names>C.A.</given-names>
</name>
</person-group>
<article-title>Neonatal CD8
<sup>+</sup>
T cells are slow to develop into lytic effectors after HSV infection in vivo</article-title>
<source>Eur J Immunol</source>
<volume>38</volume>
<issue>1</issue>
<year>2008</year>
<fpage>102</fpage>
<lpage>113</lpage>
<pub-id pub-id-type="pmid">18081035</pub-id>
</element-citation>
</ref>
<ref id="bib0385">
<label>34</label>
<element-citation publication-type="journal" id="sbref0385">
<person-group person-group-type="author">
<name>
<surname>Mastelic</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Kamath</surname>
<given-names>A.T.</given-names>
</name>
<name>
<surname>Fontannaz</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Tougne</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Rochat</surname>
<given-names>A.F.</given-names>
</name>
<name>
<surname>Belnoue</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Environmental and T cell-intrinsic factors limit the expansion of neonatal follicular T helper cells but may be circumvented by specific adjuvants</article-title>
<source>J Immunol</source>
<volume>189</volume>
<issue>12</issue>
<year>2012</year>
<fpage>5764</fpage>
<lpage>5772</lpage>
<pub-id pub-id-type="pmid">23162125</pub-id>
</element-citation>
</ref>
<ref id="bib0390">
<label>35</label>
<element-citation publication-type="journal" id="sbref0390">
<person-group person-group-type="author">
<name>
<surname>Bjarnarson</surname>
<given-names>S.P.</given-names>
</name>
<name>
<surname>Adarna</surname>
<given-names>B.C.</given-names>
</name>
<name>
<surname>Benonisson</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Del Giudice</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Jonsdottir</surname>
<given-names>I.</given-names>
</name>
</person-group>
<article-title>The adjuvant LT-K63 can restore delayed maturation of follicular dendritic cells and poor persistence of both protein- and polysaccharide-specific antibody-secreting cells in neonatal mice</article-title>
<source>J Immunol</source>
<volume>189</volume>
<issue>Aug (3)</issue>
<year>2012</year>
<fpage>1265</fpage>
<lpage>1273</lpage>
<pub-id pub-id-type="pmid">22753937</pub-id>
</element-citation>
</ref>
<ref id="bib0395">
<label>36</label>
<element-citation publication-type="journal" id="sbref0395">
<person-group person-group-type="author">
<name>
<surname>Adkins</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Du</surname>
<given-names>R.Q.</given-names>
</name>
</person-group>
<article-title>Newborn mice develop balanced Th1/Th2 primary effector responses in vivo but are biased to Th2 secondary responses</article-title>
<source>J Immunol</source>
<volume>160</volume>
<issue>May (9)</issue>
<year>1998</year>
<fpage>4217</fpage>
<lpage>4224</lpage>
<pub-id pub-id-type="pmid">9574522</pub-id>
</element-citation>
</ref>
<ref id="bib0400">
<label>37</label>
<element-citation publication-type="journal" id="sbref0400">
<person-group person-group-type="author">
<name>
<surname>Lee</surname>
<given-names>H.H.</given-names>
</name>
<name>
<surname>Hoeman</surname>
<given-names>C.M.</given-names>
</name>
<name>
<surname>Hardaway</surname>
<given-names>J.C.</given-names>
</name>
<name>
<surname>Guloglu</surname>
<given-names>F.B.</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Jain</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Delayed maturation of an IL-12-producing dendritic cell subset explains the early Th2 bias in neonatal immunity</article-title>
<source>J Exp Med</source>
<volume>205</volume>
<issue>Sep (10)</issue>
<year>2008</year>
<fpage>2269</fpage>
<lpage>2280</lpage>
<pub-id pub-id-type="pmid">18762566</pub-id>
</element-citation>
</ref>
<ref id="bib0405">
<label>38</label>
<element-citation publication-type="journal" id="sbref0405">
<person-group person-group-type="author">
<name>
<surname>Goriely</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Vincart</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Stordeur</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Vekemans</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Willems</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Goldman</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Deficient IL-12(p35) gene expression by dendritic cells derived from neonatal monocytes</article-title>
<source>J Immunol</source>
<volume>166</volume>
<issue>Feb (3)</issue>
<year>2001</year>
<fpage>2141</fpage>
<lpage>2146</lpage>
<pub-id pub-id-type="pmid">11160266</pub-id>
</element-citation>
</ref>
<ref id="bib0410">
<label>39</label>
<element-citation publication-type="journal" id="sbref0410">
<person-group person-group-type="author">
<name>
<surname>Honda-Okubo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Barnard</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Ong</surname>
<given-names>C.H.</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>B.H.</given-names>
</name>
<name>
<surname>Tseng</surname>
<given-names>C.T.</given-names>
</name>
<name>
<surname>Petrovsky</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology</article-title>
<source>J Virol</source>
<volume>89</volume>
<issue>Mar (6)</issue>
<year>2015</year>
<fpage>2995</fpage>
<lpage>3007</lpage>
<pub-id pub-id-type="pmid">25520500</pub-id>
</element-citation>
</ref>
<ref id="bib0415">
<label>40</label>
<element-citation publication-type="journal" id="sbref0415">
<person-group person-group-type="author">
<name>
<surname>You</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Marr</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Saravia</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Shrestha</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>G.I.</given-names>
</name>
<name>
<surname>Turvey</surname>
<given-names>S.E.</given-names>
</name>
</person-group>
<article-title>IL-4Ralpha on CD4
<sup>+</sup>
T cells plays a pathogenic role in respiratory syncytial virus reinfection in mice infected initially as neonates</article-title>
<source>J Leukoc Biol</source>
<volume>93</volume>
<issue>Jun (6)</issue>
<year>2013</year>
<fpage>933</fpage>
<lpage>942</lpage>
<pub-id pub-id-type="pmid">23543769</pub-id>
</element-citation>
</ref>
<ref id="bib0420">
<label>41</label>
<element-citation publication-type="journal" id="sbref0420">
<person-group person-group-type="author">
<name>
<surname>Gordon</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Kelley</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Heinzel</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Cooper</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Petrovsky</surname>
<given-names>N.</given-names>
</name>
</person-group>
<article-title>Immunogenicity and safety of Advax, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen: a randomized controlled phase 1 study</article-title>
<source>Vaccine</source>
<issue>Sep (27)</issue>
<year>2014</year>
<comment>(pii: S0264-410X(14)01293-6)</comment>
</element-citation>
</ref>
<ref id="bib0425">
<label>42</label>
<element-citation publication-type="journal" id="sbref0425">
<person-group person-group-type="author">
<name>
<surname>Han</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Bo</surname>
<given-names>Z.J.</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>M.Y.</given-names>
</name>
<name>
<surname>Sun</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>D.H.</given-names>
</name>
</person-group>
<article-title>The protective role of TLR3 and TLR9 ligands in human pharyngeal epithelial cells infected with influenza A virus</article-title>
<source>Korean J Physiol Pharmacol</source>
<volume>18</volume>
<issue>Jun (3)</issue>
<year>2014</year>
<fpage>225</fpage>
<lpage>231</lpage>
<pub-id pub-id-type="pmid">24976762</pub-id>
</element-citation>
</ref>
<ref id="bib0430">
<label>43</label>
<element-citation publication-type="journal" id="sbref0430">
<person-group person-group-type="author">
<name>
<surname>Parvizi</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Abdul-Careem</surname>
<given-names>M.F.</given-names>
</name>
<name>
<surname>Mallick</surname>
<given-names>A.I.</given-names>
</name>
<name>
<surname>Haq</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Haghighi</surname>
<given-names>H.R.</given-names>
</name>
<name>
<surname>Orouji</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>The effects of administration of ligands for Toll-like receptor 4 and 21 against Marek's disease in chickens</article-title>
<source>Vaccine</source>
<volume>32</volume>
<issue>Apr (17)</issue>
<year>2014</year>
<fpage>1932</fpage>
<lpage>1938</lpage>
<pub-id pub-id-type="pmid">24530927</pub-id>
</element-citation>
</ref>
</ref-list>
<ack id="ack0005">
<title>Acknowledgements</title>
<p>We thank Connie Li for technical assistance with the BIAcore studies and Samay Trec, Anna Lalusis-Derks, Marco Meier, Robb Muirhead and Annasaheb Kolpe for assistance with animal husbandry.</p>
</ack>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E28 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000E28 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4562881
   |texte=   Advax delta inulin adjuvant overcomes immune immaturity in neonatal mice thereby allowing single–dose influenza vaccine protection
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26232344" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021