Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Light as a potential treatment for pandemic coronavirus infections: A perspective

Identifieur interne : 000B40 ( Pmc/Corpus ); précédent : 000B39; suivant : 000B41

Light as a potential treatment for pandemic coronavirus infections: A perspective

Auteurs : Chukuka Samuel Enwemeka ; Violet Vakunseh Bumah ; Daniela Santos Masson-Meyers

Source :

RBID : PMC:7194064

Abstract

The recent outbreak of COVID-19, which continues to ravage communities with high death tolls and untold psychosocial and catastrophic economic consequences, is a vivid reminder of nature's capacity to defy contemporary healthcare. The pandemic calls for rapid mobilization of every potential clinical tool, including phototherapy—one of the most effective treatments used to reduce the impact of the 1918 “Spanish influenza” pandemic. This paper cites several studies showing that phototherapy has immense potential to reduce the impact of coronavirus diseases, and offers suggested ways that the healthcare industry can integrate modern light technologies in the fight against COVID-19 and other infections. The evidence shows that violet/blue (400–470 nm) light is antimicrobial against numerous bacteria, and that it accounts for Niels Ryberg Finsen's Nobel-winning treatment of tuberculosis. Further evidence shows that blue light inactivates several viruses, including the common flu coronavirus, and that in experimental animals, red and near infrared light reduce respiratory disorders, similar to those complications associated with coronavirus infection. Moreover, in patients, red light has been shown to alleviate chronic obstructive lung disease and bronchial asthma. These findings call for urgent efforts to further explore the clinical value of light, and not wait for another pandemic to serve as a reminder. The ubiquity of inexpensive light emitting lasers and light emitting diodes (LEDs), makes it relatively easy to develop safe low-cost light-based devices with the potential to reduce infections, sanitize equipment, hospital facilities, emergency care vehicles, homes, and the general environment as pilot studies have shown.


Url:
DOI: 10.1016/j.jphotobiol.2020.111891
PubMed: 32388486
PubMed Central: 7194064

Links to Exploration step

PMC:7194064

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Light as a potential treatment for pandemic coronavirus infections: A perspective</title>
<author>
<name sortKey="Enwemeka, Chukuka Samuel" sort="Enwemeka, Chukuka Samuel" uniqKey="Enwemeka C" first="Chukuka Samuel" last="Enwemeka">Chukuka Samuel Enwemeka</name>
<affiliation>
<nlm:aff id="af0005">College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bumah, Violet Vakunseh" sort="Bumah, Violet Vakunseh" uniqKey="Bumah V" first="Violet Vakunseh" last="Bumah">Violet Vakunseh Bumah</name>
<affiliation>
<nlm:aff id="af0005">College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af0010">Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Masson Meyers, Daniela Santos" sort="Masson Meyers, Daniela Santos" uniqKey="Masson Meyers D" first="Daniela Santos" last="Masson-Meyers">Daniela Santos Masson-Meyers</name>
<affiliation>
<nlm:aff id="af0015">Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233. USA</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">32388486</idno>
<idno type="pmc">7194064</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194064</idno>
<idno type="RBID">PMC:7194064</idno>
<idno type="doi">10.1016/j.jphotobiol.2020.111891</idno>
<date when="2020">2020</date>
<idno type="wicri:Area/Pmc/Corpus">000B40</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000B40</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Light as a potential treatment for pandemic coronavirus infections: A perspective</title>
<author>
<name sortKey="Enwemeka, Chukuka Samuel" sort="Enwemeka, Chukuka Samuel" uniqKey="Enwemeka C" first="Chukuka Samuel" last="Enwemeka">Chukuka Samuel Enwemeka</name>
<affiliation>
<nlm:aff id="af0005">College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Bumah, Violet Vakunseh" sort="Bumah, Violet Vakunseh" uniqKey="Bumah V" first="Violet Vakunseh" last="Bumah">Violet Vakunseh Bumah</name>
<affiliation>
<nlm:aff id="af0005">College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="af0010">Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Masson Meyers, Daniela Santos" sort="Masson Meyers, Daniela Santos" uniqKey="Masson Meyers D" first="Daniela Santos" last="Masson-Meyers">Daniela Santos Masson-Meyers</name>
<affiliation>
<nlm:aff id="af0015">Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233. USA</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of Photochemistry and Photobiology. B, Biology</title>
<idno type="ISSN">1011-1344</idno>
<idno type="eISSN">1873-2682</idno>
<imprint>
<date when="2020">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The recent outbreak of COVID-19, which continues to ravage communities with high death tolls and untold psychosocial and catastrophic economic consequences, is a vivid reminder of nature's capacity to defy contemporary healthcare. The pandemic calls for rapid mobilization of every potential clinical tool, including phototherapy—one of the most effective treatments used to reduce the impact of the 1918 “
<italic>Spanish influenza</italic>
” pandemic. This paper cites several studies showing that phototherapy has immense potential to reduce the impact of coronavirus diseases, and offers suggested ways that the healthcare industry can integrate modern light technologies in the fight against COVID-19 and other infections. The evidence shows that violet/blue (400–470 nm) light is antimicrobial against numerous bacteria, and that it accounts for Niels Ryberg Finsen's Nobel-winning treatment of tuberculosis. Further evidence shows that blue light inactivates several viruses, including the common flu coronavirus, and that in experimental animals, red and near infrared light reduce respiratory disorders, similar to those complications associated with coronavirus infection. Moreover, in patients, red light has been shown to alleviate chronic obstructive lung disease and bronchial asthma. These findings call for urgent efforts to further explore the clinical value of light, and not wait for another pandemic to serve as a reminder. The ubiquity of inexpensive light emitting lasers and light emitting diodes (LEDs), makes it relatively easy to develop safe low-cost light-based devices with the potential to reduce infections, sanitize equipment, hospital facilities, emergency care vehicles, homes, and the general environment as pilot studies have shown.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Morens, D M" uniqKey="Morens D">D.M. Morens</name>
</author>
<author>
<name sortKey="Fauci, A S" uniqKey="Fauci A">A.S. Fauci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johnson, N P" uniqKey="Johnson N">N.P. Johnson</name>
</author>
<author>
<name sortKey="Mueller, J" uniqKey="Mueller J">J. Mueller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Patterson, K D" uniqKey="Patterson K">K.D. Patterson</name>
</author>
<author>
<name sortKey="Pyle, G F" uniqKey="Pyle G">G.F. Pyle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jester, B J" uniqKey="Jester B">B.J. Jester</name>
</author>
<author>
<name sortKey="Uyeki, T M" uniqKey="Uyeki T">T.M. Uyeki</name>
</author>
<author>
<name sortKey="Patel, A" uniqKey="Patel A">A. Patel</name>
</author>
<author>
<name sortKey="Koonin, L" uniqKey="Koonin L">L. Koonin</name>
</author>
<author>
<name sortKey="Jernigan, D B" uniqKey="Jernigan D">D.B. Jernigan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Centers For Disease Control" uniqKey="Centers For Disease Control">Centers for Disease Control</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Johns Hopkins University School Of Medicine Coronavirus Resource Center" uniqKey="Johns Hopkins University School Of Medicine Coronavirus Resource Center">Johns Hopkins University School of Medicine Coronavirus Resource Center</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hobday, R" uniqKey="Hobday R">R. Hobday</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hobday, R A" uniqKey="Hobday R">R.A. Hobday</name>
</author>
<author>
<name sortKey="Cason, J W" uniqKey="Cason J">J.W. Cason</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brooks, W A" uniqKey="Brooks W">W.A. Brooks</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roelandts, R" uniqKey="Roelandts R">R. Roelandts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hobday, R A" uniqKey="Hobday R">R.A. Hobday</name>
</author>
<author>
<name sortKey="Dancer, S J" uniqKey="Dancer S">S.J. Dancer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hobday, R A" uniqKey="Hobday R">R.A. Hobday</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beauchemin, K M" uniqKey="Beauchemin K">K.M. Beauchemin</name>
</author>
<author>
<name sortKey="Hays, P" uniqKey="Hays P">P. Hays</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benedetti, F" uniqKey="Benedetti F">F. Benedetti</name>
</author>
<author>
<name sortKey="Colombo, C" uniqKey="Colombo C">C. Colombo</name>
</author>
<author>
<name sortKey="Barbini, B" uniqKey="Barbini B">B. Barbini</name>
</author>
<author>
<name sortKey="Campori, E" uniqKey="Campori E">E. Campori</name>
</author>
<author>
<name sortKey="Smeraldi, E" uniqKey="Smeraldi E">E. Smeraldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alpert, J S" uniqKey="Alpert J">J.S. Alpert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hammond, R" uniqKey="Hammond R">R. Hammond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Semmlman, E" uniqKey="Semmlman E">E. Semmlman</name>
</author>
<author>
<name sortKey="Lauharanta, J" uniqKey="Lauharanta J">J. Lauharanta</name>
</author>
<author>
<name sortKey="Reunanen, A" uniqKey="Reunanen A">A. Reunanen</name>
</author>
<author>
<name sortKey="Jansen, C T" uniqKey="Jansen C">C.T. Jansen</name>
</author>
<author>
<name sortKey="Jyrkinen Pakkasvirta, T" uniqKey="Jyrkinen Pakkasvirta T">T. Jyrkinen-Pakkasvirta</name>
</author>
<author>
<name sortKey="Kallio, M" uniqKey="Kallio M">M. Kallio</name>
</author>
<author>
<name sortKey="Luoma, J" uniqKey="Luoma J">J. Luoma</name>
</author>
<author>
<name sortKey="Aromaa, A" uniqKey="Aromaa A">A. Aromaa</name>
</author>
<author>
<name sortKey="Waal, J" uniqKey="Waal J">J. Waal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giryes, H" uniqKey="Giryes H">H. Giryes</name>
</author>
<author>
<name sortKey="Sukenik, S" uniqKey="Sukenik S">S. Sukenik</name>
</author>
<author>
<name sortKey="Haley, S" uniqKey="Haley S">S. Haley</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alpert, M R" uniqKey="Alpert M">M.R. Alpert</name>
</author>
<author>
<name sortKey="Ostheimer, K G" uniqKey="Ostheimer K">K.G. Ostheimer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="G Tzsche, P C" uniqKey="G Tzsche P">P.C. Gøtzsche</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grzybowski, A" uniqKey="Grzybowski A">A. Grzybowski</name>
</author>
<author>
<name sortKey="Pietrzak, K" uniqKey="Pietrzak K">K. Pietrzak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Editors Encyclopaedia Britannica Sun Worship" uniqKey="Editors Encyclopaedia Britannica Sun Worship">Editors Encyclopaedia Britannica: Sun Worship</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Solar Deities" uniqKey="Solar Deities">Solar Deities</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alpert, J S" uniqKey="Alpert J">J.S. Alpert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcdonagh, A F" uniqKey="Mcdonagh A">A.F. Mcdonagh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fitzpatrick, T B" uniqKey="Fitzpatrick T">T.B. Fitzpatrick</name>
</author>
<author>
<name sortKey="Pathak, M A" uniqKey="Pathak M">M.A. Pathak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Needham, J" uniqKey="Needham J">J. Needham</name>
</author>
<author>
<name sortKey="Gwei Djen, L" uniqKey="Gwei Djen L">L. Gwei-Djen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palm, T A" uniqKey="Palm T">T.A. Palm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enwemeka, C S" uniqKey="Enwemeka C">C.S. Enwemeka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enwemeka, C S" uniqKey="Enwemeka C">C.S. Enwemeka</name>
</author>
<author>
<name sortKey="Williams, D" uniqKey="Williams D">D. Williams</name>
</author>
<author>
<name sortKey="Enwemeka, S K" uniqKey="Enwemeka S">S.K. Enwemeka</name>
</author>
<author>
<name sortKey="Hollosi, S" uniqKey="Hollosi S">S. Hollosi</name>
</author>
<author>
<name sortKey="Yens, D" uniqKey="Yens D">D. Yens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enwemeka, C S" uniqKey="Enwemeka C">C.S. Enwemeka</name>
</author>
<author>
<name sortKey="Williams, D" uniqKey="Williams D">D. Williams</name>
</author>
<author>
<name sortKey="Hollosi, S" uniqKey="Hollosi S">S. Hollosi</name>
</author>
<author>
<name sortKey="Yens, D" uniqKey="Yens D">D. Yens</name>
</author>
<author>
<name sortKey="Enwemeka, S K" uniqKey="Enwemeka S">S.K. Enwemeka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Enwemeka, C S" uniqKey="Enwemeka C">C.S. Enwemeka</name>
</author>
<author>
<name sortKey="Williams, D" uniqKey="Williams D">D. Williams</name>
</author>
<author>
<name sortKey="Hollosi, S" uniqKey="Hollosi S">S. Hollosi</name>
</author>
<author>
<name sortKey="Yens, D" uniqKey="Yens D">D. Yens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masson Meyers, D S" uniqKey="Masson Meyers D">D.S. Masson-Meyers</name>
</author>
<author>
<name sortKey="Bumah, V V" uniqKey="Bumah V">V.V. Bumah</name>
</author>
<author>
<name sortKey="Castel, C" uniqKey="Castel C">C. Castel</name>
</author>
<author>
<name sortKey="Castel, D" uniqKey="Castel D">D. Castel</name>
</author>
<author>
<name sortKey="Enwemeka, C S" uniqKey="Enwemeka C">C.S. Enwemeka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bumah, V V" uniqKey="Bumah V">V.V. Bumah</name>
</author>
<author>
<name sortKey="Masson Meyers, D S" uniqKey="Masson Meyers D">D.S. Masson-Meyers</name>
</author>
<author>
<name sortKey="Enwemeka, C S" uniqKey="Enwemeka C">C.S. Enwemeka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bumah, V V" uniqKey="Bumah V">V.V. Bumah</name>
</author>
<author>
<name sortKey="Masson Meyers, D S" uniqKey="Masson Meyers D">D.S. Masson-Meyers</name>
</author>
<author>
<name sortKey="Tong, W" uniqKey="Tong W">W. Tong</name>
</author>
<author>
<name sortKey="Castel, C" uniqKey="Castel C">C. Castel</name>
</author>
<author>
<name sortKey="Enwemeka, C S" uniqKey="Enwemeka C">C.S. Enwemeka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bumah, V V" uniqKey="Bumah V">V.V. Bumah</name>
</author>
<author>
<name sortKey="Masson Meyers, D S" uniqKey="Masson Meyers D">D.S. Masson-Meyers</name>
</author>
<author>
<name sortKey="Enwemeka, C S" uniqKey="Enwemeka C">C.S. Enwemeka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Sous, N T A" uniqKey="De Sous N">N.T.A. De Sous</name>
</author>
<author>
<name sortKey="Santos, M F" uniqKey="Santos M">M.F. Santos</name>
</author>
<author>
<name sortKey="Gomes, R C" uniqKey="Gomes R">R.C. Gomes</name>
</author>
<author>
<name sortKey="Brandino, H E" uniqKey="Brandino H">H.E. Brandino</name>
</author>
<author>
<name sortKey="Martinez, R" uniqKey="Martinez R">R. Martinez</name>
</author>
<author>
<name sortKey="De Jesus Guirro, R R" uniqKey="De Jesus Guirro R">R.R. de Jesus Guirro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hamblin, M R" uniqKey="Hamblin M">M.R. Hamblin</name>
</author>
<author>
<name sortKey="Viveiros, J" uniqKey="Viveiros J">J. Viveiros</name>
</author>
<author>
<name sortKey="Yang, C" uniqKey="Yang C">C. Yang</name>
</author>
<author>
<name sortKey="Ahmadi, A" uniqKey="Ahmadi A">A. Ahmadi</name>
</author>
<author>
<name sortKey="Ganz, R A" uniqKey="Ganz R">R.A. Ganz</name>
</author>
<author>
<name sortKey="Tolkoff, M J" uniqKey="Tolkoff M">M.J. Tolkoff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mckenzie, K" uniqKey="Mckenzie K">K. McKenzie</name>
</author>
<author>
<name sortKey="Maclean, M" uniqKey="Maclean M">M. Maclean</name>
</author>
<author>
<name sortKey="Timoshkin, I V" uniqKey="Timoshkin I">I.V. Timoshkin</name>
</author>
<author>
<name sortKey="Macgregor, S J" uniqKey="Macgregor S">S.J. MacGregor</name>
</author>
<author>
<name sortKey="Anderson, J G" uniqKey="Anderson J">J.G. Anderson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mussi, M A" uniqKey="Mussi M">M.A. Mussi</name>
</author>
<author>
<name sortKey="Gaddy, J A" uniqKey="Gaddy J">J.A. Gaddy</name>
</author>
<author>
<name sortKey="Cabruja, M" uniqKey="Cabruja M">M. Cabruja</name>
</author>
<author>
<name sortKey="Arivett, B A" uniqKey="Arivett B">B.A. Arivett</name>
</author>
<author>
<name sortKey="Viale, A M" uniqKey="Viale A">A.M. Viale</name>
</author>
<author>
<name sortKey="Rasia, R" uniqKey="Rasia R">R. Rasia</name>
</author>
<author>
<name sortKey="Actis, L A" uniqKey="Actis L">L.A. Actis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maclean, M" uniqKey="Maclean M">M. Maclean</name>
</author>
<author>
<name sortKey="Macgregor, S J" uniqKey="Macgregor S">S.J. MacGregor</name>
</author>
<author>
<name sortKey="Anderson, J G" uniqKey="Anderson J">J.G. Anderson</name>
</author>
<author>
<name sortKey="Woolsey, G" uniqKey="Woolsey G">G. Woolsey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maclean, M" uniqKey="Maclean M">M. Maclean</name>
</author>
<author>
<name sortKey="Macgregor, S J" uniqKey="Macgregor S">S.J. MacGregor</name>
</author>
<author>
<name sortKey="Anderson, J G" uniqKey="Anderson J">J.G. Anderson</name>
</author>
<author>
<name sortKey="Woolsey, G" uniqKey="Woolsey G">G. Woolsey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, T" uniqKey="Dai T">T. Dai</name>
</author>
<author>
<name sortKey="Tegos, G P" uniqKey="Tegos G">G.P. Tegos</name>
</author>
<author>
<name sortKey="Zhiyentayev, T" uniqKey="Zhiyentayev T">T. Zhiyentayev</name>
</author>
<author>
<name sortKey="Mylonakis, E" uniqKey="Mylonakis E">E. Mylonakis</name>
</author>
<author>
<name sortKey="Hamblin, M R" uniqKey="Hamblin M">M.R. Hamblin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dai, T" uniqKey="Dai T">T. Dai</name>
</author>
<author>
<name sortKey="Gupta, A" uniqKey="Gupta A">A. Gupta</name>
</author>
<author>
<name sortKey="Huang, Y Y" uniqKey="Huang Y">Y.Y. Huang</name>
</author>
<author>
<name sortKey="Yin, R" uniqKey="Yin R">R. Yin</name>
</author>
<author>
<name sortKey="Murray, C K" uniqKey="Murray C">C.K. Murray</name>
</author>
<author>
<name sortKey="Vrahas, M S" uniqKey="Vrahas M">M.S. Vrahas</name>
</author>
<author>
<name sortKey="Sherwood, M E" uniqKey="Sherwood M">M.E. Sherwood</name>
</author>
<author>
<name sortKey="Tegos, G P" uniqKey="Tegos G">G.P. Tegos</name>
</author>
<author>
<name sortKey="Hamblin, M R" uniqKey="Hamblin M">M.R. Hamblin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cieplik, F" uniqKey="Cieplik F">F. Cieplik</name>
</author>
<author>
<name sortKey="Spath, A" uniqKey="Spath A">A. Spath</name>
</author>
<author>
<name sortKey="Leibl, C" uniqKey="Leibl C">C. Leibl</name>
</author>
<author>
<name sortKey="Gollmer, A" uniqKey="Gollmer A">A. Gollmer</name>
</author>
<author>
<name sortKey="Regensburger, J" uniqKey="Regensburger J">J. Regensburger</name>
</author>
<author>
<name sortKey="Tabenski, L" uniqKey="Tabenski L">L. Tabenski</name>
</author>
<author>
<name sortKey="Hiller, K A" uniqKey="Hiller K">K.A. Hiller</name>
</author>
<author>
<name sortKey="Maisch, T" uniqKey="Maisch T">T. Maisch</name>
</author>
<author>
<name sortKey="Schmalz, G" uniqKey="Schmalz G">G. Schmalz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ashkenazi, H" uniqKey="Ashkenazi H">H. Ashkenazi</name>
</author>
<author>
<name sortKey="Malik, Z" uniqKey="Malik Z">Z. Malik</name>
</author>
<author>
<name sortKey="Harth, Y" uniqKey="Harth Y">Y. Harth</name>
</author>
<author>
<name sortKey="Nitzan, Y" uniqKey="Nitzan Y">Y. Nitzan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Ferrer Espada, R" uniqKey="Ferrer Espada R">R. Ferrer-Espada</name>
</author>
<author>
<name sortKey="Baglo, Y" uniqKey="Baglo Y">Y. Baglo</name>
</author>
<author>
<name sortKey="Gu, Y" uniqKey="Gu Y">Y. Gu</name>
</author>
<author>
<name sortKey="Dai, T" uniqKey="Dai T">T. Dai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Ferrer Espada, R" uniqKey="Ferrer Espada R">R. Ferrer-Espada</name>
</author>
<author>
<name sortKey="Gu, Y" uniqKey="Gu Y">Y. Gu</name>
</author>
<author>
<name sortKey="Dai, T" uniqKey="Dai T">T. Dai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Ferrer Espada, R" uniqKey="Ferrer Espada R">R. Ferrer-Espada</name>
</author>
<author>
<name sortKey="Baglo, Y" uniqKey="Baglo Y">Y. Baglo</name>
</author>
<author>
<name sortKey="Goh, X S" uniqKey="Goh X">X.S. Goh</name>
</author>
<author>
<name sortKey="Held, K D" uniqKey="Held K">K.D. Held</name>
</author>
<author>
<name sortKey="Grad, Y H" uniqKey="Grad Y">Y.H. Grad</name>
</author>
<author>
<name sortKey="Gu, Y" uniqKey="Gu Y">Y. Gu</name>
</author>
<author>
<name sortKey="Gelfand, J A" uniqKey="Gelfand J">J.A. Gelfand</name>
</author>
<author>
<name sortKey="Dai, T" uniqKey="Dai T">T. Dai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Feuerstein, O" uniqKey="Feuerstein O">O. Feuerstein</name>
</author>
<author>
<name sortKey="Persman, N" uniqKey="Persman N">N. Persman</name>
</author>
<author>
<name sortKey="Weiss, E I" uniqKey="Weiss E">E.I. Weiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yoshida, A" uniqKey="Yoshida A">A. Yoshida</name>
</author>
<author>
<name sortKey="Sasaki, H" uniqKey="Sasaki H">H. Sasaki</name>
</author>
<author>
<name sortKey="Toyama, T" uniqKey="Toyama T">T. Toyama</name>
</author>
<author>
<name sortKey="Araki, M" uniqKey="Araki M">M. Araki</name>
</author>
<author>
<name sortKey="Fujioka, J" uniqKey="Fujioka J">J. Fujioka</name>
</author>
<author>
<name sortKey="Tsukiyama, K" uniqKey="Tsukiyama K">K. Tsukiyama</name>
</author>
<author>
<name sortKey="Hamada, N" uniqKey="Hamada N">N. Hamada</name>
</author>
<author>
<name sortKey="Yoshino, F" uniqKey="Yoshino F">F. Yoshino</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Song, H W" uniqKey="Song H">H.W. Song</name>
</author>
<author>
<name sortKey="Lee, J K" uniqKey="Lee J">J.K. Lee</name>
</author>
<author>
<name sortKey="Um, H S" uniqKey="Um H">H.S. Um</name>
</author>
<author>
<name sortKey="Chang, B S" uniqKey="Chang B">B.S. Chang</name>
</author>
<author>
<name sortKey="Lee, S Y" uniqKey="Lee S">S.Y. Lee</name>
</author>
<author>
<name sortKey="Lee, M K" uniqKey="Lee M">M.K. Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maclean, M" uniqKey="Maclean M">M. Maclean</name>
</author>
<author>
<name sortKey="Booth, M G" uniqKey="Booth M">M.G. Booth</name>
</author>
<author>
<name sortKey="Anderson, J G" uniqKey="Anderson J">J.G. Anderson</name>
</author>
<author>
<name sortKey="Macgregor, S J" uniqKey="Macgregor S">S.J. MacGregor</name>
</author>
<author>
<name sortKey="Woolsey, G A" uniqKey="Woolsey G">G.A. Woolsey</name>
</author>
<author>
<name sortKey="Coia, J E" uniqKey="Coia J">J.E. Coia</name>
</author>
<author>
<name sortKey="Hamilton, K" uniqKey="Hamilton K">K. Hamilton</name>
</author>
<author>
<name sortKey="Gettinby, G" uniqKey="Gettinby G">G. Gettinby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maclean, M" uniqKey="Maclean M">M. Maclean</name>
</author>
<author>
<name sortKey="Macgregor, S J" uniqKey="Macgregor S">S.J. Macgregor</name>
</author>
<author>
<name sortKey="Anderson, J G" uniqKey="Anderson J">J.G. Anderson</name>
</author>
<author>
<name sortKey="Woolsey, G A" uniqKey="Woolsey G">G.A. Woolsey</name>
</author>
<author>
<name sortKey="Coia, J E" uniqKey="Coia J">J.E. Coia</name>
</author>
<author>
<name sortKey="Hamilton, K" uniqKey="Hamilton K">K. Hamilton</name>
</author>
<author>
<name sortKey="Taggart, I" uniqKey="Taggart I">I. Taggart</name>
</author>
<author>
<name sortKey="Watson, S B" uniqKey="Watson S">S.B. Watson</name>
</author>
<author>
<name sortKey="Gettinby, G" uniqKey="Gettinby G">G. Gettinby</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maclean, M" uniqKey="Maclean M">M. Maclean</name>
</author>
<author>
<name sortKey="Anderson, J G" uniqKey="Anderson J">J.G. Anderson</name>
</author>
<author>
<name sortKey="Macgregor, S J" uniqKey="Macgregor S">S.J. MacGregor</name>
</author>
<author>
<name sortKey="White, T" uniqKey="White T">T. White</name>
</author>
<author>
<name sortKey="Atreya, C D" uniqKey="Atreya C">C.D. Atreya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halstead, F D" uniqKey="Halstead F">F.D. Halstead</name>
</author>
<author>
<name sortKey="Ahmed, Z" uniqKey="Ahmed Z">Z. Ahmed</name>
</author>
<author>
<name sortKey="Bishop, J R B" uniqKey="Bishop J">J.R.B. Bishop</name>
</author>
<author>
<name sortKey="Oppenheim, B A" uniqKey="Oppenheim B">B.A. Oppenheim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Halstead, F D" uniqKey="Halstead F">F.D. Halstead</name>
</author>
<author>
<name sortKey="Thwaite, J E" uniqKey="Thwaite J">J.E. Thwaite</name>
</author>
<author>
<name sortKey="Burt, R" uniqKey="Burt R">R. Burt</name>
</author>
<author>
<name sortKey="Laws, T R" uniqKey="Laws T">T.R. Laws</name>
</author>
<author>
<name sortKey="Raguse, M" uniqKey="Raguse M">M. Raguse</name>
</author>
<author>
<name sortKey="Moeller, R" uniqKey="Moeller R">R. Moeller</name>
</author>
<author>
<name sortKey="Weber, M A" uniqKey="Weber M">M.A. Weber</name>
</author>
<author>
<name sortKey="Oppenheim, B A" uniqKey="Oppenheim B">B.A. Oppenheim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="M Ller, K I" uniqKey="M Ller K">K.I. Møller</name>
</author>
<author>
<name sortKey="Kongshoj, B" uniqKey="Kongshoj B">B. Kongshoj</name>
</author>
<author>
<name sortKey="Philipsen, P A" uniqKey="Philipsen P">P.A. Philipsen</name>
</author>
<author>
<name sortKey="Thomsen, V O" uniqKey="Thomsen V">V.O. Thomsen</name>
</author>
<author>
<name sortKey="Wulf, H C" uniqKey="Wulf H">H.C. Wulf</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shany Kdoshim, S" uniqKey="Shany Kdoshim S">S. Shany-Kdoshim</name>
</author>
<author>
<name sortKey="Polak, D" uniqKey="Polak D">D. Polak</name>
</author>
<author>
<name sortKey="Houri Haddad, Y" uniqKey="Houri Haddad Y">Y. Houri-Haddad</name>
</author>
<author>
<name sortKey="Feuerstein, O" uniqKey="Feuerstein O">O. Feuerstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
</author>
<author>
<name sortKey="Murray, C K" uniqKey="Murray C">C.K. Murray</name>
</author>
<author>
<name sortKey="Hamblin, H R" uniqKey="Hamblin H">H.R. Hamblin</name>
</author>
<author>
<name sortKey="Hooper, D C" uniqKey="Hooper D">D.C. Hooper</name>
</author>
<author>
<name sortKey="Dai, T" uniqKey="Dai T">T. Dai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aboualizadeh, E" uniqKey="Aboualizadeh E">E. Aboualizadeh</name>
</author>
<author>
<name sortKey="Bumah, V V" uniqKey="Bumah V">V.V. Bumah</name>
</author>
<author>
<name sortKey="Masson Meyers, D S" uniqKey="Masson Meyers D">D.S. Masson-Meyers</name>
</author>
<author>
<name sortKey="Eells, J T" uniqKey="Eells J">J.T. Eells</name>
</author>
<author>
<name sortKey="Hirschmugl, C J" uniqKey="Hirschmugl C">C.J. Hirschmugl</name>
</author>
<author>
<name sortKey="Enwemeka, C S" uniqKey="Enwemeka C">C.S. Enwemeka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmid, J" uniqKey="Schmid J">J. Schmid</name>
</author>
<author>
<name sortKey="Hoenes, K" uniqKey="Hoenes K">K. Hoenes</name>
</author>
<author>
<name sortKey="Vatter, P" uniqKey="Vatter P">P. Vatter</name>
</author>
<author>
<name sortKey="Hessling, M" uniqKey="Hessling M">M. Hessling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Biener, G" uniqKey="Biener G">G. Biener</name>
</author>
<author>
<name sortKey="Masson Meyers, D" uniqKey="Masson Meyers D">D. Masson-Meyers</name>
</author>
<author>
<name sortKey="Bumah, V" uniqKey="Bumah V">V. Bumah</name>
</author>
<author>
<name sortKey="Hussey, G" uniqKey="Hussey G">G. Hussey</name>
</author>
<author>
<name sortKey="Stoneman, M" uniqKey="Stoneman M">M. Stoneman</name>
</author>
<author>
<name sortKey="Enwemeka, C S" uniqKey="Enwemeka C">C.S. Enwemeka</name>
</author>
<author>
<name sortKey="Raicu, V" uniqKey="Raicu V">V. Raicu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szundi, I" uniqKey="Szundi I">I. Szundi</name>
</author>
<author>
<name sortKey="Liao, G L" uniqKey="Liao G">G.L. Liao</name>
</author>
<author>
<name sortKey="Einarsdottir, O" uniqKey="Einarsdottir O">O. Einarsdottir</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Karu, T I" uniqKey="Karu T">T.I. Karu</name>
</author>
<author>
<name sortKey="Kolyakov, S F" uniqKey="Kolyakov S">S.F. Kolyakov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Passarella, S" uniqKey="Passarella S">S. Passarella</name>
</author>
<author>
<name sortKey="Casamassima, E" uniqKey="Casamassima E">E. Casamassima</name>
</author>
<author>
<name sortKey="Molinari, S" uniqKey="Molinari S">S. Molinari</name>
</author>
<author>
<name sortKey="Pastore, D" uniqKey="Pastore D">D. Pastore</name>
</author>
<author>
<name sortKey="Quagliariello, E" uniqKey="Quagliariello E">E. Quagliariello</name>
</author>
<author>
<name sortKey="Catalano, I M" uniqKey="Catalano I">I.M. Catalano</name>
</author>
<author>
<name sortKey="Cingolani, A" uniqKey="Cingolani A">A. Cingolani</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Greco, M" uniqKey="Greco M">M. Greco</name>
</author>
<author>
<name sortKey="Guida, G" uniqKey="Guida G">G. Guida</name>
</author>
<author>
<name sortKey="Perlino, E" uniqKey="Perlino E">E. Perlino</name>
</author>
<author>
<name sortKey="Marra, E" uniqKey="Marra E">E. Marra</name>
</author>
<author>
<name sortKey="Quagliariello, E" uniqKey="Quagliariello E">E. Quagliariello</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pastore, D" uniqKey="Pastore D">D. Pastore</name>
</author>
<author>
<name sortKey="Greco, M" uniqKey="Greco M">M. Greco</name>
</author>
<author>
<name sortKey="Petragallo, V A" uniqKey="Petragallo V">V.A. Petragallo</name>
</author>
<author>
<name sortKey="Passarella, S" uniqKey="Passarella S">S. Passarella</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, W" uniqKey="Yu W">W. Yu</name>
</author>
<author>
<name sortKey="Naim, J O" uniqKey="Naim J">J.O. Naim</name>
</author>
<author>
<name sortKey="Mcgowan, M" uniqKey="Mcgowan M">M. McGowan</name>
</author>
<author>
<name sortKey="Ippolito, K" uniqKey="Ippolito K">K. Ippolito</name>
</author>
<author>
<name sortKey="Lanzafame, R J" uniqKey="Lanzafame R">R.J. Lanzafame</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Callaghan, G A" uniqKey="Callaghan G">G.A. Callaghan</name>
</author>
<author>
<name sortKey="Riordan, C" uniqKey="Riordan C">C. Riordan</name>
</author>
<author>
<name sortKey="Gilmore, W S" uniqKey="Gilmore W">W.S. Gilmore</name>
</author>
<author>
<name sortKey="Mcintyre, I A" uniqKey="Mcintyre I">I.A. McIntyre</name>
</author>
<author>
<name sortKey="Allen, J M" uniqKey="Allen J">J.M. Allen</name>
</author>
<author>
<name sortKey="Hannigan, B M" uniqKey="Hannigan B">B.M. Hannigan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grossman, N" uniqKey="Grossman N">N. Grossman</name>
</author>
<author>
<name sortKey="Schneid, N" uniqKey="Schneid N">N. Schneid</name>
</author>
<author>
<name sortKey="Reuveni, H" uniqKey="Reuveni H">H. Reuveni</name>
</author>
<author>
<name sortKey="Halevy, S" uniqKey="Halevy S">S. Halevy</name>
</author>
<author>
<name sortKey="Lubart, R" uniqKey="Lubart R">R. Lubart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lavi, R" uniqKey="Lavi R">R. Lavi</name>
</author>
<author>
<name sortKey="Shainberg, A" uniqKey="Shainberg A">A. Shainberg</name>
</author>
<author>
<name sortKey="Friedmann, H" uniqKey="Friedmann H">H. Friedmann</name>
</author>
<author>
<name sortKey="Shneyvays, V" uniqKey="Shneyvays V">V. Shneyvays</name>
</author>
<author>
<name sortKey="Rickover, O" uniqKey="Rickover O">O. Rickover</name>
</author>
<author>
<name sortKey="Eichler, M" uniqKey="Eichler M">M. Eichler</name>
</author>
<author>
<name sortKey="Kaplan, D" uniqKey="Kaplan D">D. Kaplan</name>
</author>
<author>
<name sortKey="Lubart, R" uniqKey="Lubart R">R. Lubart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lubart, R" uniqKey="Lubart R">R. Lubart</name>
</author>
<author>
<name sortKey="Eichler, M" uniqKey="Eichler M">M. Eichler</name>
</author>
<author>
<name sortKey="Lavi, R" uniqKey="Lavi R">R. Lavi</name>
</author>
<author>
<name sortKey="Friedman, H" uniqKey="Friedman H">H. Friedman</name>
</author>
<author>
<name sortKey="Shainberg, A" uniqKey="Shainberg A">A. Shainberg</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eichler, M" uniqKey="Eichler M">M. Eichler</name>
</author>
<author>
<name sortKey="Lavi, R" uniqKey="Lavi R">R. Lavi</name>
</author>
<author>
<name sortKey="Shainberg, A" uniqKey="Shainberg A">A. Shainberg</name>
</author>
<author>
<name sortKey="Lubart, R" uniqKey="Lubart R">R. Lubart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lubart, R" uniqKey="Lubart R">R. Lubart</name>
</author>
<author>
<name sortKey="Lavi, R" uniqKey="Lavi R">R. Lavi</name>
</author>
<author>
<name sortKey="Friedmann, H" uniqKey="Friedmann H">H. Friedmann</name>
</author>
<author>
<name sortKey="Rochkind, S" uniqKey="Rochkind S">S. Rochkind</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Eichler, M" uniqKey="Eichler M">M. Eichler</name>
</author>
<author>
<name sortKey="Lavi, R" uniqKey="Lavi R">R. Lavi</name>
</author>
<author>
<name sortKey="Friedmann, H" uniqKey="Friedmann H">H. Friedmann</name>
</author>
<author>
<name sortKey="Shainberg, A" uniqKey="Shainberg A">A. Shainberg</name>
</author>
<author>
<name sortKey="Lubart, R" uniqKey="Lubart R">R. Lubart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zhang, J" uniqKey="Zhang J">J. Zhang</name>
</author>
<author>
<name sortKey="Xing, D" uniqKey="Xing D">D. Xing</name>
</author>
<author>
<name sortKey="Gao, X" uniqKey="Gao X">X. Gao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wu, S" uniqKey="Wu S">S. Wu</name>
</author>
<author>
<name sortKey="Xing, D" uniqKey="Xing D">D. Xing</name>
</author>
<author>
<name sortKey="Gao, X" uniqKey="Gao X">X. Gao</name>
</author>
<author>
<name sortKey="Chen, W R" uniqKey="Chen W">W.R. Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hockberger, P E" uniqKey="Hockberger P">P.E. Hockberger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lai, C C" uniqKey="Lai C">C.C. Lai</name>
</author>
<author>
<name sortKey="Shih, T P" uniqKey="Shih T">T.P. Shih</name>
</author>
<author>
<name sortKey="Ko, W C" uniqKey="Ko W">W.C. Ko</name>
</author>
<author>
<name sortKey="Tang, H J" uniqKey="Tang H">H.J. Tang</name>
</author>
<author>
<name sortKey="Hsueh, P R" uniqKey="Hsueh P">P.R. Hsueh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bumah, V V" uniqKey="Bumah V">V.V. Bumah</name>
</author>
<author>
<name sortKey="Aboualizadeh, E" uniqKey="Aboualizadeh E">E. Aboualizadeh</name>
</author>
<author>
<name sortKey="Masson Meyers, D" uniqKey="Masson Meyers D">D. Masson-Meyers</name>
</author>
<author>
<name sortKey="Eells, J" uniqKey="Eells J">J. Eells</name>
</author>
<author>
<name sortKey="Enwemeka, C S" uniqKey="Enwemeka C">C.S. Enwemeka</name>
</author>
<author>
<name sortKey="Hirschmugl, C" uniqKey="Hirschmugl C">C. Hirschmugl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pang, P" uniqKey="Pang P">P. Pang</name>
</author>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N. Wang</name>
</author>
<author>
<name sortKey="Wang, C" uniqKey="Wang C">C. Wang</name>
</author>
<author>
<name sortKey="Yao, Y" uniqKey="Yao Y">Y. Yao</name>
</author>
<author>
<name sortKey="Fu, X" uniqKey="Fu X">X. Fu</name>
</author>
<author>
<name sortKey="Yu, W" uniqKey="Yu W">W. Yu</name>
</author>
<author>
<name sortKey="Cai, R" uniqKey="Cai R">R. Cai</name>
</author>
<author>
<name sortKey="Yao, M" uniqKey="Yao M">M. Yao</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guo, Y R" uniqKey="Guo Y">Y.R. Guo</name>
</author>
<author>
<name sortKey="Cao, Q D" uniqKey="Cao Q">Q.D. Cao</name>
</author>
<author>
<name sortKey="Hong, Z S" uniqKey="Hong Z">Z.S. Hong</name>
</author>
<author>
<name sortKey="Tan, Y Y" uniqKey="Tan Y">Y.Y. Tan</name>
</author>
<author>
<name sortKey="Chen, S D" uniqKey="Chen S">S.D. Chen</name>
</author>
<author>
<name sortKey="Jin, H J" uniqKey="Jin H">H.J. Jin</name>
</author>
<author>
<name sortKey="Tan, K S" uniqKey="Tan K">K.S. Tan</name>
</author>
<author>
<name sortKey="Wang, D Y" uniqKey="Wang D">D.Y. Wang</name>
</author>
<author>
<name sortKey="Yan, Y" uniqKey="Yan Y">Y. Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Lima, F M" uniqKey="De Lima F">F.M. de Lima</name>
</author>
<author>
<name sortKey="Villaverde, A B" uniqKey="Villaverde A">A.B. Villaverde</name>
</author>
<author>
<name sortKey="Salgado, M A" uniqKey="Salgado M">M.A. Salgado</name>
</author>
<author>
<name sortKey="Castro Faria Neto, H C" uniqKey="Castro Faria Neto H">H.C. Castro-Faria-Neto</name>
</author>
<author>
<name sortKey="Munin, E" uniqKey="Munin E">E. Munin</name>
</author>
<author>
<name sortKey="Albertini, R" uniqKey="Albertini R">R. Albertini</name>
</author>
<author>
<name sortKey="Aimbire, F" uniqKey="Aimbire F">F. Aimbire</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brochetti, R A" uniqKey="Brochetti R">R.A. Brochetti</name>
</author>
<author>
<name sortKey="Leal, M P" uniqKey="Leal M">M.P. Leal</name>
</author>
<author>
<name sortKey="Rodrgues, R" uniqKey="Rodrgues R">R. Rodrgues</name>
</author>
<author>
<name sortKey="Da Palma, P K" uniqKey="Da Palma P">P.K. da Palma</name>
</author>
<author>
<name sortKey="De Oliveira, L V F" uniqKey="De Oliveira L">L.V.F. de Oliveira</name>
</author>
<author>
<name sortKey="Horliana, A C R T" uniqKey="Horliana A">A.C.R.T. Horliana</name>
</author>
<author>
<name sortKey="Damazo, A S" uniqKey="Damazo A">A.S. Damazo</name>
</author>
<author>
<name sortKey="De Oliveira, A P L" uniqKey="De Oliveira A">A.P.L. de Oliveira</name>
</author>
<author>
<name sortKey="Paula Vieira, R" uniqKey="Paula Vieira R">R. Paula Vieira</name>
</author>
<author>
<name sortKey="Lino Dos Santos Franco, A" uniqKey="Lino Dos Santos Franco A">A. Lino-Dos-Santos-Franco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Brito, A A" uniqKey="De Brito A">A.A. de Brito</name>
</author>
<author>
<name sortKey="Da Silveira, E C" uniqKey="Da Silveira E">E.C. da Silveira</name>
</author>
<author>
<name sortKey="Rigonato Liveira, N C" uniqKey="Rigonato Liveira N">N.C. Rigonato-Liveira</name>
</author>
<author>
<name sortKey="Soares, S S" uniqKey="Soares S">S.S. Soares</name>
</author>
<author>
<name sortKey="Brandao Rangel, M A R" uniqKey="Brandao Rangel M">M.A.R. Brandao-Rangel</name>
</author>
<author>
<name sortKey="Soares, C R" uniqKey="Soares C">C.R. Soares</name>
</author>
<author>
<name sortKey="Santos, T G" uniqKey="Santos T">T.G. Santos</name>
</author>
<author>
<name sortKey="Alves, C E" uniqKey="Alves C">C.E. Alves</name>
</author>
<author>
<name sortKey="Herculano, K Z" uniqKey="Herculano K">K.Z. Herculano</name>
</author>
<author>
<name sortKey="Vieira, R P" uniqKey="Vieira R">R.P. Vieira</name>
</author>
<author>
<name sortKey="Lino Dos Santos Franco, A" uniqKey="Lino Dos Santos Franco A">A. Lino-dos-Santos-Franco</name>
</author>
<author>
<name sortKey="Albertini, R" uniqKey="Albertini R">R. Albertini</name>
</author>
<author>
<name sortKey="Aimbire, F" uniqKey="Aimbire F">F. Aimbire</name>
</author>
<author>
<name sortKey="De Oliveira, A P" uniqKey="De Oliveira A">A.P. de Oliveira</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aguiar, A C C" uniqKey="Aguiar A">A.C.C. Aguiar</name>
</author>
<author>
<name sortKey="Murce, E" uniqKey="Murce E">E. Murce</name>
</author>
<author>
<name sortKey="Cortopassi, W A" uniqKey="Cortopassi W">W.A. Cortopassi</name>
</author>
<author>
<name sortKey="Pimentel, A S" uniqKey="Pimentel A">A.S. Pimentel</name>
</author>
<author>
<name sortKey="Almeida, M" uniqKey="Almeida M">M. Almeida</name>
</author>
<author>
<name sortKey="Barros, D C S" uniqKey="Barros D">D.C.S. Barros</name>
</author>
<author>
<name sortKey="Guedes, J S" uniqKey="Guedes J">J.S. Guedes</name>
</author>
<author>
<name sortKey="Meneghetti, M R" uniqKey="Meneghetti M">M.R. Meneghetti</name>
</author>
<author>
<name sortKey="Krettli, A U" uniqKey="Krettli A">A.U. Krettli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Savarino, A" uniqKey="Savarino A">A. Savarino</name>
</author>
<author>
<name sortKey="Boelaert, J R" uniqKey="Boelaert J">J.R. Boelaert</name>
</author>
<author>
<name sortKey="Cassone, A" uniqKey="Cassone A">A. Cassone</name>
</author>
<author>
<name sortKey="Majori, G" uniqKey="Majori G">G. Majori</name>
</author>
<author>
<name sortKey="Cauda, R" uniqKey="Cauda R">R. Cauda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vincent, M J" uniqKey="Vincent M">M.J. Vincent</name>
</author>
<author>
<name sortKey="Bergeron, E" uniqKey="Bergeron E">E. Bergeron</name>
</author>
<author>
<name sortKey="Benjannet, S" uniqKey="Benjannet S">S. Benjannet</name>
</author>
<author>
<name sortKey="Erickson, B R" uniqKey="Erickson B">B.R. Erickson</name>
</author>
<author>
<name sortKey="Rollin, P E" uniqKey="Rollin P">P.E. Rollin</name>
</author>
<author>
<name sortKey="Ksiazek, T G" uniqKey="Ksiazek T">T.G. Ksiazek</name>
</author>
<author>
<name sortKey="Seidah, N G" uniqKey="Seidah N">N.G. Seidah</name>
</author>
<author>
<name sortKey="Nichol, S T" uniqKey="Nichol S">S.T. Nichol</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Askenova, I Z" uniqKey="Askenova I">I.Z. Askenova</name>
</author>
<author>
<name sortKey="Burduli, N M" uniqKey="Burduli N">N.M. Burduli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yusupalieva, M M" uniqKey="Yusupalieva M">M.M. Yusupalieva</name>
</author>
<author>
<name sortKey="Savtchenko, V M" uniqKey="Savtchenko V">V.M. Savtchenko</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jarvis, D L" uniqKey="Jarvis D">D.L. Jarvis</name>
</author>
<author>
<name sortKey="Garcia, A" uniqKey="Garcia A">A. Garcia</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Richardson, T B" uniqKey="Richardson T">T.B. Richardson</name>
</author>
<author>
<name sortKey="Porter, C D" uniqKey="Porter C">C.D. Porter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Muller Breitkreutz, K" uniqKey="Muller Breitkreutz K">K. Muller-Breitkreutz</name>
</author>
<author>
<name sortKey="Mohr, H" uniqKey="Mohr H">H. Mohr</name>
</author>
<author>
<name sortKey="Briviba, K" uniqKey="Briviba K">K. Briviba</name>
</author>
<author>
<name sortKey="Sies, H" uniqKey="Sies H">H. Sies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bachmann, B" uniqKey="Bachmann B">B. Bachmann</name>
</author>
<author>
<name sortKey="Knuver Hopf, J" uniqKey="Knuver Hopf J">J. Knuver-Hopf</name>
</author>
<author>
<name sortKey="Lambrecht, B" uniqKey="Lambrecht B">B. Lambrecht</name>
</author>
<author>
<name sortKey="Mohr, H" uniqKey="Mohr H">H. Mohr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wagner, S J" uniqKey="Wagner S">S.J. Wagner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schuit, M" uniqKey="Schuit M">M. Schuit</name>
</author>
<author>
<name sortKey="Gardner, S" uniqKey="Gardner S">S. Gardner</name>
</author>
<author>
<name sortKey="Wood, S" uniqKey="Wood S">S. Wood</name>
</author>
<author>
<name sortKey="Bower, K" uniqKey="Bower K">K. Bower</name>
</author>
<author>
<name sortKey="Williams, G" uniqKey="Williams G">G. Williams</name>
</author>
<author>
<name sortKey="Freeburger, D" uniqKey="Freeburger D">D. Freeburger</name>
</author>
<author>
<name sortKey="Dabisch, P" uniqKey="Dabisch P">P. Dabisch</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Winter, J" uniqKey="Winter J">J. Winter</name>
</author>
<author>
<name sortKey="Weinberger, S" uniqKey="Weinberger S">S. Weinberger</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">J Photochem Photobiol B</journal-id>
<journal-id journal-id-type="iso-abbrev">J. Photochem. Photobiol. B, Biol</journal-id>
<journal-title-group>
<journal-title>Journal of Photochemistry and Photobiology. B, Biology</journal-title>
</journal-title-group>
<issn pub-type="ppub">1011-1344</issn>
<issn pub-type="epub">1873-2682</issn>
<publisher>
<publisher-name>Elsevier B.V.</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">32388486</article-id>
<article-id pub-id-type="pmc">7194064</article-id>
<article-id pub-id-type="publisher-id">S1011-1344(20)30341-9</article-id>
<article-id pub-id-type="doi">10.1016/j.jphotobiol.2020.111891</article-id>
<article-id pub-id-type="publisher-id">111891</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Light as a potential treatment for pandemic coronavirus infections: A perspective</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" id="au0005">
<name>
<surname>Enwemeka</surname>
<given-names>Chukuka Samuel</given-names>
</name>
<email>enwemeka@sdsu.edu</email>
<xref rid="af0005" ref-type="aff">a</xref>
<xref rid="cr0005" ref-type="corresp"></xref>
</contrib>
<contrib contrib-type="author" id="au0010">
<name>
<surname>Bumah</surname>
<given-names>Violet Vakunseh</given-names>
</name>
<email>vbumah@sdsu.edu</email>
<xref rid="af0005" ref-type="aff">a</xref>
<xref rid="af0010" ref-type="aff">b</xref>
</contrib>
<contrib contrib-type="author" id="au0015">
<name>
<surname>Masson-Meyers</surname>
<given-names>Daniela Santos</given-names>
</name>
<xref rid="af0015" ref-type="aff">c</xref>
</contrib>
<aff id="af0005">
<label>a</label>
College of Health and Human Services, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA</aff>
<aff id="af0010">
<label>b</label>
Department of Chemistry and Biochemistry, College of Sciences, 5500 Campanile Dr, San Diego, CA 92182, USA</aff>
<aff id="af0015">
<label>c</label>
Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233. USA</aff>
</contrib-group>
<author-notes>
<corresp id="cr0005">
<label></label>
Corresponding author at: Photomedicine Research Laboratory, College of Health and Human Services, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4124, USA.
<email>enwemeka@sdsu.edu</email>
</corresp>
</author-notes>
<pub-date pub-type="pmc-release">
<day>1</day>
<month>5</month>
<year>2020</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on .</pmc-comment>
<pub-date pub-type="epub">
<day>1</day>
<month>5</month>
<year>2020</year>
</pub-date>
<elocation-id>111891</elocation-id>
<history>
<date date-type="received">
<day>27</day>
<month>4</month>
<year>2020</year>
</date>
<date date-type="accepted">
<day>29</day>
<month>4</month>
<year>2020</year>
</date>
</history>
<permissions>
<copyright-statement>© 2020 Elsevier B.V. All rights reserved.</copyright-statement>
<copyright-year>2020</copyright-year>
<copyright-holder>Elsevier B.V.</copyright-holder>
<license>
<license-p>Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.</license-p>
</license>
</permissions>
<abstract id="ab0005">
<p>The recent outbreak of COVID-19, which continues to ravage communities with high death tolls and untold psychosocial and catastrophic economic consequences, is a vivid reminder of nature's capacity to defy contemporary healthcare. The pandemic calls for rapid mobilization of every potential clinical tool, including phototherapy—one of the most effective treatments used to reduce the impact of the 1918 “
<italic>Spanish influenza</italic>
” pandemic. This paper cites several studies showing that phototherapy has immense potential to reduce the impact of coronavirus diseases, and offers suggested ways that the healthcare industry can integrate modern light technologies in the fight against COVID-19 and other infections. The evidence shows that violet/blue (400–470 nm) light is antimicrobial against numerous bacteria, and that it accounts for Niels Ryberg Finsen's Nobel-winning treatment of tuberculosis. Further evidence shows that blue light inactivates several viruses, including the common flu coronavirus, and that in experimental animals, red and near infrared light reduce respiratory disorders, similar to those complications associated with coronavirus infection. Moreover, in patients, red light has been shown to alleviate chronic obstructive lung disease and bronchial asthma. These findings call for urgent efforts to further explore the clinical value of light, and not wait for another pandemic to serve as a reminder. The ubiquity of inexpensive light emitting lasers and light emitting diodes (LEDs), makes it relatively easy to develop safe low-cost light-based devices with the potential to reduce infections, sanitize equipment, hospital facilities, emergency care vehicles, homes, and the general environment as pilot studies have shown.</p>
</abstract>
<kwd-group id="ks0005">
<title>Keywords</title>
<kwd>COVID-19</kwd>
<kwd>Coronaviruses</kwd>
<kwd>Photobiomodulation</kwd>
<kwd>Antiviral</kwd>
<kwd>Pulsed blue light</kwd>
<kwd>Red or near infrared light</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<sec id="s0005">
<label>1</label>
<title>Introduction</title>
<p id="p0005">In 1918, the world was gripped with panic and apprehension as one of the most devastating pandemics ever recorded in human history, the H1N1 influenza virus, killed millions of people across the globe [
<xref rid="bb0005" ref-type="bibr">1</xref>
,
<xref rid="bb0010" ref-type="bibr">2</xref>
]. Dubbed “
<italic>Spanish influenza</italic>
”, the disease spread quickly, ravaging the world at a time that there were no antibiotics and medicine—as a field—was essentially infantile in its development. Without the benefit of modern technology, data keeping was poor, making it difficult to have accurate mortality and morbidity figures; but even then, estimates suggest that the flu killed 1% to 3% of its victims, with the mortality rate reaching 10% in some communities [
<xref rid="bb0005" ref-type="bibr">[1]</xref>
,
<xref rid="bb0010" ref-type="bibr">[2]</xref>
,
<xref rid="bb0015" ref-type="bibr">[3]</xref>
]. While a 1991 report [
<xref rid="bb0015" ref-type="bibr">3</xref>
] put the death toll in the range of 24.7–39.3 million, and related morbidity estimates between 25% and 90%, recent publications suggest that 50–100 million died as a result of the pandemic [
<xref rid="bb0005" ref-type="bibr">1</xref>
,
<xref rid="bb0020" ref-type="bibr">4</xref>
].</p>
<p id="p0010">Since 1918, the world has experienced more outbreaks of pandemic diseases. The 1957 H2N2 “
<italic>Asian influenza</italic>
” pandemic claimed more than two million lives; the 1968 H3N2 “
<italic>Hong Kong influenza</italic>
” virus killed one million worldwide. More recently, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) pandemic of 2002 claimed 774 lives, and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) of 2012 resulted in about 300,000 deaths [
<xref rid="bb0005" ref-type="bibr">[1]</xref>
,
<xref rid="bb0010" ref-type="bibr">[2]</xref>
,
<xref rid="bb0015" ref-type="bibr">[3]</xref>
,
<xref rid="bb0025" ref-type="bibr">5</xref>
,
<xref rid="bb0030" ref-type="bibr">6</xref>
]. While the declining morbidity and mortality rate of each successive pandemic may be attributed to modern medicine, early diagnosis, ready availability of effective antibiotics to address secondary bacterial infections, the availability of artificial respirators to support life, and acute awareness of preventive measures gained from past pandemics, the threat of a severe devastating disease of global concern remains high.</p>
<p id="p0015">The ongoing pandemic of novel coronavirus (SARS-CoV-2) COVID-19, serves as a vivid reminder that nature is unpredictable; no one knows what disease epidemic might emerge and defy available clinical armamentaria. With over 2.97 million confirmed cases and more than 260,000 deaths worldwide within a mere four months (as of Sunday, April 26, 2020), the world has—once again—become gripped with untold fear and panic as the number of those sick or dying continues to climb by the minute [
<xref rid="bb0030" ref-type="bibr">6</xref>
]. Further raising the level of fear are the portentous economic consequences, which has risen to hitherto unimaginable heights and continues to worsen. That some of the world's largest economies—the US, China, Germany, France, Britain, Italy, Spain South Korea and Switzerland—rank among the worst hit countries, cast a dark shadow on the future of the world as we know it. These developments call for immediate mobilization of every available tool to fight the disease. A frantic search for effective treatments is underway to stem the pandemic and give hope to billions quarantined—willingly or unwillingly—worldwide. However, the world continues to race against time given the rate of spread and the long period usually required to develop effective vaccines.</p>
<p id="p0020">Whereas some of the important lessons learned from past pandemics, such as social distancing, the use of facemasks and the search for new vaccines, have been marshalled to mitigate the pandemic, records indicate that, phototherapy, one of the most effective tools used to minimize the impact of the 1918 pandemic and other disease epidemics [
<xref rid="bb0035" ref-type="bibr">[7]</xref>
,
<xref rid="bb0040" ref-type="bibr">[8]</xref>
,
<xref rid="bb0045" ref-type="bibr">[9]</xref>
] has been overlooked. This paper suggests that phototherapy, a seemingly forgotten treatment for bacterial and viral infections, has immense potential to reduce the impact of COVID-19 pandemic and similar coronavirus infections, particularly in view of recent developments in the field. Further, it reviews contemporary evidence for this assertion, and offers suggested ways that modern healthcare may integrate readily available inexpensive light technologies in its stash of clinical tools for patients with COVID-19 and other infections.</p>
</sec>
<sec id="s0010">
<label>2</label>
<title>Disease Epidemics, Pandemics and Phototherapy</title>
<p id="p0025">In 1918, governments and the medical establishment frantically sought every means to fight the H1N1 flu pandemic, but the results were mixed. Available reports clearly show that sunlight was effective in reducing flu-related mortality and morbidity, and person-to-person infection [
<xref rid="bb0035" ref-type="bibr">[7]</xref>
,
<xref rid="bb0040" ref-type="bibr">[8]</xref>
,
<xref rid="bb0045" ref-type="bibr">[9]</xref>
]. Patients with severe infections exposed to sunlight therapy outdoors recovered better than those treated indoors, and the treatment prevented death among patients and infections among the healthcare workers [
<xref rid="bb0040" ref-type="bibr">[8]</xref>
,
<xref rid="bb0045" ref-type="bibr">[9]</xref>
,
<xref rid="bb0050" ref-type="bibr">[10]</xref>
].</p>
<p id="p0030">Like the 1918 pandemic, most of those succumbing to COVID-19 pandemic today die from disease-related complications, such as pulmonary inflammation/edema, pneumonia and acute respiratory disorder syndrome (ARDS). In the case of the 1918 flu, overcrowding in poorly lit and poorly ventilated enclosures raised associated risks of infection, a major reason that the City of Boston was badly hit by the flu until exposure to sunlight was introduced [
<xref rid="bb0035" ref-type="bibr">[7]</xref>
,
<xref rid="bb0040" ref-type="bibr">[8]</xref>
,
<xref rid="bb0045" ref-type="bibr">[9]</xref>
,
<xref rid="bb0050" ref-type="bibr">[10]</xref>
]. By one anonymous editorial account [
<xref rid="bb0045" ref-type="bibr">9</xref>
], the Massachusetts State Health Department found sunlight therapy to be “the most valuable factor in reducing mortality,” decreasing fatality of hospitalized patients from 40% to 13%, boosting flu immunity among physicians and nurses, and overall, besting the outcome of vaccines, which, then, were in their early stages of development [
<xref rid="bb0030" ref-type="bibr">[6]</xref>
,
<xref rid="bb0035" ref-type="bibr">[7]</xref>
,
<xref rid="bb0040" ref-type="bibr">[8]</xref>
,
<xref rid="bb0045" ref-type="bibr">[9]</xref>
]. The benefit of exposure to the healing rays of the sun was so obvious that it became a common form of treatment against tuberculosis—another respiratory disorder, as well as wound infections, psoriasis, acne vulgaris, rickettsia, depression, jaundice, and a host of other diseases [
<xref rid="bb0050" ref-type="bibr">[10]</xref>
,
<xref rid="bb0055" ref-type="bibr">[11]</xref>
,
<xref rid="bb0060" ref-type="bibr">[12]</xref>
,
<xref rid="bb0065" ref-type="bibr">[13]</xref>
,
<xref rid="bb0070" ref-type="bibr">[14]</xref>
,
<xref rid="bb0075" ref-type="bibr">[15]</xref>
,
<xref rid="bb0080" ref-type="bibr">[16]</xref>
,
<xref rid="bb0085" ref-type="bibr">[17]</xref>
,
<xref rid="bb0090" ref-type="bibr">[18]</xref>
,
<xref rid="bb0095" ref-type="bibr">[19]</xref>
]. Indeed, records indicate that across North America, many healthcare facilities built sunrooms to which patients were wheeled for sun therapy, then known as heliotherapy [
<xref rid="bb0055" ref-type="bibr">11</xref>
]. Written accounts of the successes of heliotherapy abound, and as the treatment became popular, it was adapted to include treatment with various lamps [
<xref rid="bb0075" ref-type="bibr">[15]</xref>
,
<xref rid="bb0080" ref-type="bibr">[16]</xref>
,
<xref rid="bb0085" ref-type="bibr">[17]</xref>
,
<xref rid="bb0090" ref-type="bibr">[18]</xref>
,
<xref rid="bb0095" ref-type="bibr">[19]</xref>
].</p>
<p id="p0035">None of the foregoing should come as a surprise, because less than 25 years before the 1918 pandemic, a Danish physician, Niels Ryberg Finsen, had developed a light source that was successful in curing patients with skin tuberculosis (lupus vulgaris) and other ailments [
<xref rid="bb0100" ref-type="bibr">20</xref>
,
<xref rid="bb0105" ref-type="bibr">21</xref>
]. Between 1896 and 1901, he treated as many as 804 patients with skin tuberculosis and similar microbial infections at his Medical Light Institute, achieving 83% cure rate [
<xref rid="bb0100" ref-type="bibr">20</xref>
,
<xref rid="bb0105" ref-type="bibr">21</xref>
]. The Finsen lamp became widely popular and was adopted in most of Europe and North America, earning Finsen the Nobel Prize in 1903. Finsen himself acknowledged the healing power of sunlight but erroneously assumed that his lamp took advantage of the UV spectrum of radiation. It is quite conceivable that his pioneering work spurred many in the healthcare industry to use sunlight to treat victims of the 1918 influenza pandemic and beyond. To date, studies continue to extol the susceptibility of viruses to rays emanating from the sun [
<xref rid="bb0055" ref-type="bibr">11</xref>
,
<xref rid="bb0080" ref-type="bibr">16</xref>
].</p>
</sec>
<sec id="s0015">
<label>3</label>
<title>From Heliotherapy to Photobiomodulation</title>
<p id="p0040">While it is obvious that Finsen pioneered the scientific documentation of the bactericidal effect of light, the use of light to treat a variety of diseases predates him. Perhaps the earliest record of sunlight as medical treatment dates back to the time of Egyptian Pharaohs—more than 5000 BCE—as evidenced by images, archeological findings and artifacts [
<xref rid="bb0115" ref-type="bibr">[23]</xref>
,
<xref rid="bb0120" ref-type="bibr">[24]</xref>
,
<xref rid="bb0125" ref-type="bibr">[25]</xref>
,
<xref rid="bb0130" ref-type="bibr">[26]</xref>
]. A popular ancient Egyptian image clearly shows a family exposing themselves to the healing rays of the sun (
<xref rid="f0005" ref-type="fig">Fig. 1</xref>
). Veneration of the sun and acknowledgement of its healing power remains a cultural practice in most of Africa, and early records indicate that the Egyptians treated chronic ulcers successfully by exposing them to sunlight [
<xref rid="bb0115" ref-type="bibr">23</xref>
,
<xref rid="bb0120" ref-type="bibr">24</xref>
]. Furthermore, sunbathing was a common practice, not just in ancient Egypt, Babylonia and Mesopotamia, but ancient Greece and Rome [
<xref rid="bb0115" ref-type="bibr">[23]</xref>
,
<xref rid="bb0120" ref-type="bibr">[24]</xref>
,
<xref rid="bb0125" ref-type="bibr">[25]</xref>
,
<xref rid="bb0130" ref-type="bibr">[26]</xref>
].
<fig id="f0005">
<label>Fig. 1</label>
<caption>
<p>An image showing Akhenaten, Nefertiti and three children exposing themselves and a house plant to the healing rays of sunlight.</p>
</caption>
<alt-text id="al0005">Fig. 1</alt-text>
<graphic xlink:href="gr1_lrg"></graphic>
<attrib>Adapted from:
<ext-link ext-link-type="uri" xlink:href="https://www.sciencephoto.com/media/1005027/view/egyptian-pharaoh-akhenaten-and-nefertiti" id="ir0005">https://www.sciencephoto.com/media/1005027/view/egyptian-pharaoh-akhenaten-and-nefertiti</ext-link>
.</attrib>
</fig>
</p>
<p id="p0045">The Greeks and the Romans clearly recognized the healing power of the sun. They built solariums and sunbaths, and the Greeks even used them to enhance the strength of athletes preparing for the Olympic Games by exposing them to several months of sunlight treatment. The word, heliotherapy, actually derives from the Greek name for their sun god, “Helios;” heliotherapy meaning sunlight therapy [
<xref rid="bb0115" ref-type="bibr">[23]</xref>
,
<xref rid="bb0120" ref-type="bibr">[24]</xref>
,
<xref rid="bb0125" ref-type="bibr">[25]</xref>
,
<xref rid="bb0130" ref-type="bibr">[26]</xref>
]. Furthermore,
<italic>Ayurvedic</italic>
medical records show that as far back and 1400 BCE; Hindus used the combination of sunlight and photosensitive herbs, such as furocoumarins, to treat vitiligo and other conditions—a combined treatment, which many refer to today as photodynamic therapy [
<xref rid="bb0135" ref-type="bibr">27</xref>
]. Moreover, records indicate that heliotherapy was a cardinal method used in early Daoism, which Lingyan Tzu-Ming introduced in China during the first century CE [
<xref rid="bb0140" ref-type="bibr">28</xref>
]. In summary, evidence from many parts of the world clearly show that communities worldwide used heliotherapy to treat a variety of diseases. In those days, the inimical effects of UV were unknown before UV was discovered in 1801 [
<xref rid="bb0055" ref-type="bibr">11</xref>
].</p>
<p id="p0050">The discovery of UV transformed the practice of heliotherapy into clinical phototherapy as the antimicrobial effects of UV became evident during the second half of the 19th century. As early as 1877, studies showed that UV killed anthrax bacilli [
<xref rid="bb0055" ref-type="bibr">11</xref>
], and by 1890, it was determined that it played a role in rachitis, rickettsia and peritoneal tuberculosis [
<xref rid="bb0055" ref-type="bibr">11</xref>
,
<xref rid="bb0080" ref-type="bibr">16</xref>
,
<xref rid="bb0145" ref-type="bibr">29</xref>
]. By this time, lamps generating light from quartz, mercury vapor and other sources were built and used to treat acne, psoriasis, syphilis, leprosy, and pellagra, among others [
<xref rid="bb0055" ref-type="bibr">11</xref>
,
<xref rid="bb0085" ref-type="bibr">17</xref>
,
<xref rid="bb0125" ref-type="bibr">25</xref>
]. Three years later, Finsen began to use filtered sunlight to treat lupus vulgaris and through careful documentation published his Nobel-winning work, in 1901. The use of lamps and other artificial light sources to treat skin diseases continued well into the second half of the 20th century, but was quickly overtaken by easy availability of potent antibiotics, which became popular for their quick results and ease of use [
<xref rid="bb0055" ref-type="bibr">11</xref>
,
<xref rid="bb0125" ref-type="bibr">25</xref>
].</p>
<p id="p0055">The development of lasers in the late 50s and the early 60s, and the subsequent evolution of light emitting diodes transformed phototherapy; it gave rise to laser therapy or light therapy, which in turn evolved into photobiomodulation as a variety of light emitting technologies were devised. Today, photobiomodulation, which takes advantage of the photochemical effects of low power lasers, LEDs and other monochromatic sources of light to treat various diseases and ailments, has evolved scientifically, allowing evidence-based practice. This development now enables clinicians and others to exploit the specific effect of each wavelength or spectrum of light for treatment purposes. Detailed below are several studies, which show that we do not need UV to kill bacteria, viruses and other pathogens, and that safer wavelengths adjacent to UV, such as violet or blue light, are antimicrobial against microorganisms. Furthermore, evidence shows that red and near infrared light have immense therapeutic value as well, and can be effective in treating a range of ailments, including the respiratory complications of coronavirus disease.</p>
</sec>
<sec id="s0020">
<label>4</label>
<title>Photobiomodulation</title>
<p id="p0060">Advances in light technology and steady development of photobiomodulation through research and continual adaptation evolving technologies have enabled science to uncovered the beneficial effects of several spectra of light—in particular, violet/blue light, red light and near infrared light. We now know that light in the blue 400–470 nm range is antimicrobial against numerous bacteria [
<xref rid="bb0115" ref-type="bibr">[23]</xref>
,
<xref rid="bb0120" ref-type="bibr">[24]</xref>
,
<xref rid="bb0125" ref-type="bibr">[25]</xref>
,
<xref rid="bb0130" ref-type="bibr">[26]</xref>
,
<xref rid="bb0135" ref-type="bibr">[27]</xref>
,
<xref rid="bb0140" ref-type="bibr">[28]</xref>
,
<xref rid="bb0145" ref-type="bibr">[29]</xref>
,
<xref rid="bb0150" ref-type="bibr">[30]</xref>
,
<xref rid="bb0155" ref-type="bibr">[31]</xref>
,
<xref rid="bb0160" ref-type="bibr">[32]</xref>
,
<xref rid="bb0165" ref-type="bibr">[33]</xref>
,
<xref rid="bb0170" ref-type="bibr">[34]</xref>
,
<xref rid="bb0175" ref-type="bibr">[35]</xref>
,
<xref rid="bb0180" ref-type="bibr">[36]</xref>
,
<xref rid="bb0185" ref-type="bibr">[37]</xref>
,
<xref rid="bb0190" ref-type="bibr">[38]</xref>
,
<xref rid="bb0195" ref-type="bibr">[39]</xref>
,
<xref rid="bb0200" ref-type="bibr">[40]</xref>
,
<xref rid="bb0205" ref-type="bibr">[41]</xref>
,
<xref rid="bb0210" ref-type="bibr">[42]</xref>
,
<xref rid="bb0215" ref-type="bibr">[43]</xref>
,
<xref rid="bb0220" ref-type="bibr">[44]</xref>
,
<xref rid="bb0225" ref-type="bibr">[45]</xref>
] and has the potential to mitigate opportunistic bacterial infections associated with COVID-19 and other coronavirus infections. Furthermore, as detailed below, laboratory experiments show that red and near infrared light, with wavelengths approximately in the range of 600–700 nm and 700–1000 nm respectively, have the potential to reduce lung inflammation and fibrosis, and hence acute respiratory disorder syndrome, a major cause of death in every coronavirus pandemic, including the prevailing COVID-19 pandemic. Therefore, as a part of the ongoing effort to mobilize every clinical tool with the potential to alleviate the disease and minimize its spread, these recent studies offer compelling reasons to explore the potential effects of various spectra of light in reducing secondary bacterial infections associated with the disease, and the possibility of suppressing COVID-19 and other viral infections.</p>
</sec>
<sec id="s0025">
<label>5</label>
<title>Antimicrobial Blue Light</title>
<p id="p0065">Recent studies demonstrate that various wavelengths in the blue spectrum are antimicrobial against the deadly methicillin-resistant
<italic>Staphylococcus aureus</italic>
(MRSA) [
<xref rid="bb0155" ref-type="bibr">31</xref>
,
<xref rid="bb0160" ref-type="bibr">32</xref>
,
<xref rid="bb0175" ref-type="bibr">35</xref>
,
<xref rid="bb0225" ref-type="bibr">45</xref>
],
<italic>Escherichia. coli</italic>
[
<xref rid="bb0190" ref-type="bibr">38</xref>
,
<xref rid="bb0200" ref-type="bibr">40</xref>
],
<italic>Helicobacter pylori</italic>
[
<xref rid="bb0195" ref-type="bibr">39</xref>
],
<italic>Listeria monocytogenes</italic>
[
<xref rid="bb0200" ref-type="bibr">40</xref>
],
<italic>Pseudomonas aeruginosa</italic>
[
<xref rid="bb0190" ref-type="bibr">38</xref>
],
<italic>Salmonella</italic>
[
<xref rid="bb0185" ref-type="bibr">37</xref>
],
<italic>Acinetobacter baumannii</italic>
[
<xref rid="bb0205" ref-type="bibr">41</xref>
],
<italic>Aggregatibacter actinomycetemcomitans</italic>
[
<xref rid="bb0230" ref-type="bibr">46</xref>
],
<italic>Propionibacterium acnes</italic>
[
<xref rid="bb0170" ref-type="bibr">[34]</xref>
,
<xref rid="bb0175" ref-type="bibr">[35]</xref>
,
<xref rid="bb0180" ref-type="bibr">[36]</xref>
,
<xref rid="bb0235" ref-type="bibr">47</xref>
],
<italic>Neisseria gonorrhoeae</italic>
[
<xref rid="bb0240" ref-type="bibr">[48]</xref>
,
<xref rid="bb0245" ref-type="bibr">[49]</xref>
,
<xref rid="bb0250" ref-type="bibr">[50]</xref>
],
<italic>Porphyromonas gingivalis</italic>
[
<xref rid="bb0255" ref-type="bibr">[51]</xref>
,
<xref rid="bb0260" ref-type="bibr">[52]</xref>
,
<xref rid="bb0265" ref-type="bibr">[53]</xref>
],
<italic>Fusobacterium nucleatum</italic>
[
<xref rid="bb0255" ref-type="bibr">51</xref>
], and others [
<xref rid="bb0210" ref-type="bibr">42</xref>
,
<xref rid="bb0250" ref-type="bibr">50</xref>
]. An analysis of the Nobel-winning work of Finsen, supports these blue light studies, because it shows that the Finsen Lamp, used to heal many with tuberculosis infection, did not produce UV as Finsen believed; rather, it produces light in the violet/blue range [
<xref rid="bb0295" ref-type="bibr">59</xref>
] (
<xref rid="f0010" ref-type="fig">Fig. 2</xref>
).
<fig id="f0010">
<label>Fig. 2</label>
<caption>
<p>A simple illustration of the light spectrum.</p>
</caption>
<alt-text id="al0010">Fig. 2</alt-text>
<graphic xlink:href="gr2_lrg"></graphic>
</fig>
</p>
<p id="p0070">Indeed, the Finsen Lamp could not have emitted UV because the type of glass used to construct its lenses do not transmit UV. Thus, when Møller et al. measured the radiation transmitted through the Finsen lens systems, and the absorption of the stain solution filters in the lamps relative to the lamp's effect on
<italic>Mycobacterium tuberculosis</italic>
, they found that the lens and filters absorbed UV wavelengths below 340 nm [
<xref rid="bb0295" ref-type="bibr">59</xref>
]. Moreover, the methylene blue solution used to absorb the heat generated by the system also blocked the transmission of wavelengths below 340 nm, as well as light in the 550–700 nm range; thus, allowing predominant transmission of light in the UV-A and violet/blue range [
<xref rid="bb0285" ref-type="bibr">57</xref>
]. Furthermore, the fluorescence of
<italic>M. tuberculosis</italic>
shows the presence of endogenous porphyrins, known to absorb blue light and engender the production of reactive oxygen species and bacterial suppression, not UV absorption [
<xref rid="bb0195" ref-type="bibr">39</xref>
,
<xref rid="bb0230" ref-type="bibr">[46]</xref>
,
<xref rid="bb0235" ref-type="bibr">[47]</xref>
,
<xref rid="bb0240" ref-type="bibr">[48]</xref>
,
<xref rid="bb0300" ref-type="bibr">[60]</xref>
,
<xref rid="bb0305" ref-type="bibr">[61]</xref>
,
<xref rid="bb0310" ref-type="bibr">[62]</xref>
,
<xref rid="bb0315" ref-type="bibr">[63]</xref>
,
<xref rid="bb0320" ref-type="bibr">[64]</xref>
,
<xref rid="bb0325" ref-type="bibr">[65]</xref>
,
<xref rid="bb0330" ref-type="bibr">[66]</xref>
,
<xref rid="bb0335" ref-type="bibr">[67]</xref>
,
<xref rid="bb0340" ref-type="bibr">[68]</xref>
,
<xref rid="bb0345" ref-type="bibr">[69]</xref>
,
<xref rid="bb0350" ref-type="bibr">[70]</xref>
,
<xref rid="bb0355" ref-type="bibr">[71]</xref>
,
<xref rid="bb0360" ref-type="bibr">[72]</xref>
,
<xref rid="bb0365" ref-type="bibr">[73]</xref>
,
<xref rid="bb0370" ref-type="bibr">[74]</xref>
,
<xref rid="bb0375" ref-type="bibr">[75]</xref>
,
<xref rid="bb0380" ref-type="bibr">[76]</xref>
,
<xref rid="bb0385" ref-type="bibr">[77]</xref>
,
<xref rid="bb0390" ref-type="bibr">[78]</xref>
,
<xref rid="bb0395" ref-type="bibr">[79]</xref>
].</p>
<p id="p0075">This clearly explains Finsen's success in treating tuberculosis, implying that unbeknownst to the world, the 1903 Nobel Prize was awarded to Finsen for demonstrating the antimicrobial effect of blue light. Therefore, the only logical explanation of Finsen's success is that endogenous porphyrins in tuberculosis bacteria absorbed the violet/blue light predominantly transmitted through his lamp system; the absorption triggered downstream production of reactive oxygen species, thus killing the bacteria and curing his patients of tuberculosis, not UV light absorption as the Nobel laureate assumed.</p>
<p id="p0080">Just as an analysis of Finsen's lamp makes it clear that its effect was due to violet/blue light and not UV, so a thought analysis of the radiation from the sun renders vivid the fact that the bactericidal effect of sunlight, often ascribed to UV, is due to the immense amount of blue light reaching the earth from the sun. Atmospheric ozone substantially absorbs solar UV rays, allowing transmission of violet/blue light to the surface of the earth. Indeed, the peak transmission at the surface of the earth is in the blue region, and together with violet light, is 10 times more than the amount of UV reaching the surface of the earth [
<xref rid="bb0400" ref-type="bibr">80</xref>
]. Given the absorption of violet blue light by most microbes and the resulting bactericidal effect, it seems reasonable to attribute a good proportion of the sun's environmental sanitization power to the violet blue spectrum of radiation, and not UV as many assert.</p>
<p id="p0085">Modern technology now makes flexible printed micro-LEDs readily available, making it relatively easy to develop therapeutic tools with the potential to reduce bacterial and potentially viral infections. In relation to COVID-19, some relatively easy targets are the nasal and oral cavities, and the upper respiratory tract, particularly as the nasal passage is an acclaimed point of entry of the virus into the human body [
<xref rid="bb0405" ref-type="bibr">81</xref>
]. Antimicrobial blue light may serve another useful purpose in reducing the COVID-19 pandemic; it could be used effectively to sanitize equipment, tools, hospital facilities, emergency care vehicles, homes, and the general environment as pilot studies have shown [
<xref rid="bb0270" ref-type="bibr">[54]</xref>
,
<xref rid="bb0275" ref-type="bibr">[55]</xref>
,
<xref rid="bb0280" ref-type="bibr">[56]</xref>
].</p>
<p id="p0090">Recent works now show that there may be as many as four mechanisms underlying the antimicrobial effect of blue light. The first and most well-grounded of which is that blue light triggers endogenous bacterial chromophores such as porphyrins, flavins, NADH and other photosensitive receptors to produce reactive oxygen species, which in adequate amount results in cell death [
<xref rid="bb0195" ref-type="bibr">39</xref>
,
<xref rid="bb0230" ref-type="bibr">[46]</xref>
,
<xref rid="bb0235" ref-type="bibr">[47]</xref>
,
<xref rid="bb0240" ref-type="bibr">[48]</xref>
,
<xref rid="bb0245" ref-type="bibr">[49]</xref>
,
<xref rid="bb0250" ref-type="bibr">[50]</xref>
,
<xref rid="bb0320" ref-type="bibr">[64]</xref>
,
<xref rid="bb0325" ref-type="bibr">[65]</xref>
,
<xref rid="bb0330" ref-type="bibr">[66]</xref>
,
<xref rid="bb0335" ref-type="bibr">[67]</xref>
,
<xref rid="bb0340" ref-type="bibr">[68]</xref>
,
<xref rid="bb0345" ref-type="bibr">[69]</xref>
,
<xref rid="bb0350" ref-type="bibr">[70]</xref>
,
<xref rid="bb0355" ref-type="bibr">[71]</xref>
,
<xref rid="bb0360" ref-type="bibr">[72]</xref>
,
<xref rid="bb0365" ref-type="bibr">[73]</xref>
,
<xref rid="bb0370" ref-type="bibr">[74]</xref>
,
<xref rid="bb0375" ref-type="bibr">[75]</xref>
,
<xref rid="bb0380" ref-type="bibr">[76]</xref>
,
<xref rid="bb0385" ref-type="bibr">[77]</xref>
,
<xref rid="bb0390" ref-type="bibr">[78]</xref>
,
<xref rid="bb0395" ref-type="bibr">[79]</xref>
]. Indeed, porphyrins with absorption peaks in the 405 to 470 nm range have been identified in microbial cells [
<xref rid="bb0195" ref-type="bibr">39</xref>
,
<xref rid="bb0230" ref-type="bibr">[46]</xref>
,
<xref rid="bb0235" ref-type="bibr">[47]</xref>
,
<xref rid="bb0240" ref-type="bibr">[48]</xref>
,
<xref rid="bb0245" ref-type="bibr">[49]</xref>
,
<xref rid="bb0250" ref-type="bibr">[50]</xref>
,
<xref rid="bb0320" ref-type="bibr">[64]</xref>
,
<xref rid="bb0325" ref-type="bibr">[65]</xref>
,
<xref rid="bb0330" ref-type="bibr">[66]</xref>
,
<xref rid="bb0335" ref-type="bibr">[67]</xref>
,
<xref rid="bb0340" ref-type="bibr">[68]</xref>
,
<xref rid="bb0345" ref-type="bibr">[69]</xref>
,
<xref rid="bb0350" ref-type="bibr">[70]</xref>
,
<xref rid="bb0355" ref-type="bibr">[71]</xref>
,
<xref rid="bb0360" ref-type="bibr">[72]</xref>
,
<xref rid="bb0365" ref-type="bibr">[73]</xref>
,
<xref rid="bb0370" ref-type="bibr">[74]</xref>
,
<xref rid="bb0375" ref-type="bibr">[75]</xref>
,
<xref rid="bb0380" ref-type="bibr">[76]</xref>
,
<xref rid="bb0385" ref-type="bibr">[77]</xref>
,
<xref rid="bb0390" ref-type="bibr">[78]</xref>
,
<xref rid="bb0395" ref-type="bibr">[79]</xref>
]. In three recent papers [
<xref rid="bb0170" ref-type="bibr">[34]</xref>
,
<xref rid="bb0175" ref-type="bibr">[35]</xref>
,
<xref rid="bb0180" ref-type="bibr">[36]</xref>
], we took advantage of this theory by timing in vitro irradiation of
<italic>P. acnes</italic>
and MRSA to coincide with periods of abundant endogenous porphyrins and hence elicit maximal bacterial suppression. The outcome was impressive. The dominant chromophores in
<italic>P. acnes</italic>
and MRSA emit red light with peak emission between 612 and 660 nm when excited with blue/violet light [
<xref rid="bb0180" ref-type="bibr">36</xref>
,
<xref rid="bb0230" ref-type="bibr">46</xref>
,
<xref rid="bb0235" ref-type="bibr">47</xref>
,
<xref rid="bb0320" ref-type="bibr">64</xref>
]. Thus, by monitoring the fluorescence—red glow—emitted by both bacteria, we were able to correlate bacterial kill rate with quantitated amounts of remnant bacterial colonies. Not only did it show bacterial suppression, it revealed that their red fluorescence diminished as bacterial colonies were depleted and vice versa [
<xref rid="bb0180" ref-type="bibr">36</xref>
], further affirming the theory that porphyrins play a major role in antimicrobial blue light treatment.</p>
<p id="p0095">The second mechanism, which is continuing to gain traction, is that irradiation with blue light alters bacterial cell membrane integrity with a consequent decrease in membrane polarization and rapid alteration of cellular functions [
<xref rid="bb0320" ref-type="bibr">64</xref>
]. Our recent electron microscopic study affirms this finding. It shows that even at a sub-lethal dose level, treatment with pulsed blue 450 nm light disrupts the structural architecture of MRSA cell membrane and its internal organelles. The third and fourth mechanisms of action, deserving further investigation and affirmation are that blue light alters A-DNA [
<xref rid="bb0410" ref-type="bibr">82</xref>
], and upregulates prophage genes to promote bacteria kill [
<xref rid="bb0415" ref-type="bibr">83</xref>
].</p>
<p id="p0100">These findings clearly explain Finsen's remarkable achievement in healing many patients with tuberculosis, and suggests that similar successes could be attained in reducing secondary bacterial infections associated with coronavirus infections—the common flu, SARS, MERS, COVID-19, etc. It would be highly beneficial to patients with coronavirus disease if their loads of opportunistic bacterial infection could be reduced with blue light; such treatment—when fully developed—will give their immune systems a better chance of overcoming the deadly disease.</p>
</sec>
<sec id="s0030">
<label>6</label>
<title>Photobiomodulation and Acute Pulmonary Disorder</title>
<p id="p0105">Emerging data show that light in the red and near infrared light spectra can reduce lung inflammation, lung fibrosis, pneumonia, acute respiratory disorders, and other severe complications of coronavirus infections. This is an encouraging development since the experience of those at the frontline of the COVID-19 outbreak in Wuhan, China clearly show that acute respiratory disorder was the major cause of death [
<xref rid="bb0420" ref-type="bibr">84</xref>
]. Moreover, lack of effective antiviral drugs against COVID-19 remains a serious concern, making it unlikely that such life-threatening complications may be resolved with medication in the short run. Early reports on the Wuhan COVID-19 outbreak show that commonly used antiviral drugs, such as neuraminidase inhibitors (oseltamivir, peramivir, zanamivir and others), acyclovir, the corticosteroid—methylprednisolone, and ribavirin were ineffectual in treating the disease [
<xref rid="bb0405" ref-type="bibr">81</xref>
,
<xref rid="bb0420" ref-type="bibr">84</xref>
].</p>
<p id="p0110">There are indications that Acute Respiratory Distress Syndrome (ARDS) a critical complication of COVID-19 infection [
<xref rid="bb0405" ref-type="bibr">81</xref>
,
<xref rid="bb0420" ref-type="bibr">84</xref>
], often characterized by airway edema, pulmonary inflammation, and lung fibrosis, could be ameliorated with photobiomodulation, as evidenced by early results in laboratory animals [
<xref rid="bb0425" ref-type="bibr">[85]</xref>
,
<xref rid="bb0430" ref-type="bibr">[86]</xref>
,
<xref rid="bb0435" ref-type="bibr">[87]</xref>
]. For example, following induction of pulmonary inflammation in rats, de Lima et al. [
<xref rid="bb0425" ref-type="bibr">85</xref>
] showed that irradiation of the skin over the inflamed bronchus with a single dose of 1.3 J cm
<sup>−2</sup>
of continuous wave (CW) red 650 nm laser administered 1 h after induction of inflammation, inhibited pulmonary edema and downregulated several measures of inflammation. The treatment reduced activation and influx of neutrophils, damage to endothelial cytoskeleton, and the amount of TNF-α, and IL-1β in the lung and bronchoalveolar lavage fluid.</p>
<p id="p0115">In a similar study, Brochetti et al. [
<xref rid="bb0430" ref-type="bibr">86</xref>
] induced pulmonary fibrosis in mice, and then treated the animals with red 660 ± 20 nm light (5 J cm
<sup>−2</sup>
radiant exposure and 33 mW cm
<sup>−2</sup>
irradiance) daily for eight days, beginning from day 14. They found that the treatment reduced collagen production and the number of inflammatory cells in the alveoli, decreased interstitial thickening, and static as well as dynamic pulmonary elasticity. Further, cultures of pneumocytes and fibroblasts obtained from the animals showed downregulation of pro-inflammatory cells and collagen deposits in the lungs [
<xref rid="bb0430" ref-type="bibr">86</xref>
]. Another study of the same murine model showed that infrared 780 nm light reduced inflammation and collagen deposits in the lungs of mice, downregulated pro-inflammatory cytokines, and upregulated the secretion of IL-10 from fibroblasts and pneumocytes. Moreover, it significantly reduced total lung TGFβ [
<xref rid="bb0435" ref-type="bibr">87</xref>
]. Taken together, these early results suggest that red and near infrared light have the potential to reduce some of the critical complications of coronavirus infections, i.e., pulmonary inflammation and lung fibrosis. The preliminary nature of these results and the need for improved experimental methods and data reporting should not diminish their significance; rather it should draw attention to another spectrum of light that may be beneficial in the ongoing fight against coronavirus diseases that seems to challenge healthcare systems worldwide.</p>
<p id="p0120">In the race against the anticipated devastation of COVID-19, clinicians have deployed chloroquine and hydroxychloroquine—two analogue medications commonly used to treat malaria but rarely used for coronavirus disease—to mitigate the disease, even though their mechanisms of action against viral infections remains poorly understood [
<xref rid="bb0420" ref-type="bibr">84</xref>
,
<xref rid="bb0440" ref-type="bibr">[88]</xref>
,
<xref rid="bb0445" ref-type="bibr">[89]</xref>
,
<xref rid="bb0450" ref-type="bibr">[90]</xref>
]. The rapid spread of COVID-19 and its clear capacity to kill on a massive scale obviously justify deployment of treatments that seem to work, even though their underlying mechanisms are not clear. Thus, given the potential capacity of red and near infrared light to reduce the life-threatening respiratory complications of COVID-19, it goes without saying that every effort should be made to advance the work so that an effective therapy can be fashioned from the body of research work achieved to date. It will be a wise investment to urgently investigate these initial results clinically, and not wait for another deadly coronavirus pandemic to remind us of the inherent potential of light as a therapeutic tool. The urgency of this call is heightened by recent clinical results, which indicate that patients with chronic obstructive lung disease and others with bronchial asthma and allergy improved significantly following treatment with light [
<xref rid="bb0455" ref-type="bibr">91</xref>
,
<xref rid="bb0460" ref-type="bibr">92</xref>
].</p>
<p id="p0125">Even more striking are reports showing that certain wavelengths of light inactivate viruses. Light has been shown to inactivate baculoviruses [
<xref rid="bb0465" ref-type="bibr">93</xref>
] and prolonged exposure to blue light in the 420–430 nm range inactivates leukemia virus [
<xref rid="bb0470" ref-type="bibr">94</xref>
]. One may argue that baculoviruses are confined to invertebrates and are not known to replicate in humans; but the fact that COVID-19 traversed species barrier to humans [
<xref rid="bb0420" ref-type="bibr">84</xref>
] is a cause to worry. One or more of the 76 species of baculoviruses could mutate to survive and replicate in human hosts, more so because shrimps consumed by humans and mosquitoes that suck human blood are among their 600 or more invertebrate hosts. These prospects make urgent the need to intensify efforts to test the effect of blue light on common viruses, including COVID-19. Further, that light in the visible spectrum constitutes the basis for photodynamic treatment of plasma to inactivate several viruses, including herpes simplex and human immunodeficiency virus (HIV) [
<xref rid="bb0475" ref-type="bibr">[95]</xref>
,
<xref rid="bb0480" ref-type="bibr">[96]</xref>
,
<xref rid="bb0485" ref-type="bibr">[97]</xref>
], offers strong reason to suggest that blue light—particularly pulsed blue light, which recent reports have shown to be 40 to 100 times more potent than continuous wave blue light [
<xref rid="bb0165" ref-type="bibr">[33]</xref>
,
<xref rid="bb0170" ref-type="bibr">[34]</xref>
,
<xref rid="bb0175" ref-type="bibr">[35]</xref>
]—has great potential to inactivate coronaviruses.</p>
<p id="p0130">Already, fresh off the press is an early report that the common cold virus—a coronavirus—is inactivated by light [
<xref rid="bb0490" ref-type="bibr">98</xref>
]. In this recent study, broad spectrum light—mimicking sunlight—was tested on aerosolized influenza virus at 20% and 70% relative humidity, while the decay constant and half-life of the virus were measured as indices of survival. The results showed that relative humidity had no effect. The simulated sunlight alone significantly inactivated the virus, resulting in 0.29 ± 0.09 min
<sup>−1</sup>
decay constant and a half-live of approximately 2.4 min compared to non-irradiated controls, which had 0.02 ± 0.06 min
<sup>−1</sup>
decay constant and 31.1 min half-life. The resulting 93% increase in decay constant and the concomitant 92.3% decline in half-life due to light is impressive. This is supported by news report of a recent US Department of Homeland Security study, which showed that exposure to the sun kills COVID-19—a more virulent form of the common influenza virus [
<xref rid="bb0495" ref-type="bibr">99</xref>
]. These recent developments buttress the suggestion that blue light, in particular, pulsed blue light, which recent reports have shown to be 40 to 100 times more potent the commonly available continuous wave blue light [
<xref rid="bb0170" ref-type="bibr">[34]</xref>
,
<xref rid="bb0175" ref-type="bibr">[35]</xref>
,
<xref rid="bb0180" ref-type="bibr">[36]</xref>
], has great potential to inactivate COVID-19 and other coronaviruses, in addition to suppressing related opportunistic bacterial infections. This recent finding further elevates the urgency to explore the potential of blue light as an antiviral agent. When convincing clinical results prove that blue light is antiviral, in addition to being antibiotic against coronavirus opportunistic bacteria, it would be a revolutionary paradigm shift, considering the ubiquity of low cost blue light emitting devices and the low risk involved in terms of safety. Moreover, the potential to disinfect equipment, the environment and spaces difficult to sanitize with common disinfectants, is huge.</p>
</sec>
<sec id="s0035">
<title>Uncited references</title>
<p id="p0135">
<xref rid="bb0110" ref-type="bibr">[22]</xref>
,
<xref rid="bb0290" ref-type="bibr">[58]</xref>
</p>
</sec>
<sec sec-type="COI-statement">
<title>Declaration of Competing Interest</title>
<p id="p0140">The authors certify that this manuscripts are original work and that besides presentation at conferences and related abstract publication, they have not been submitted or published, in whole or in part, in any other medium and are not under consideration for publication in any other journal. Furthermore, we the authors are liable for its content and for having contributed to the conception, design and implementation of the work, data analysis and data interpretation, and for having participated in writing and reviewing the text, as well as approving the final version submitted. Likewise, we accept the introduction of changes to the content, if necessary subsequent to review, and of changes to the style of the manuscript by the journal's editorial staff. We also declare that conflict of interest does not exist.</p>
</sec>
</body>
<back>
<ref-list id="bi0005">
<title>References</title>
<ref id="bb0005">
<label>1</label>
<element-citation publication-type="journal" id="rf0005">
<person-group person-group-type="author">
<name>
<surname>Morens</surname>
<given-names>D.M.</given-names>
</name>
<name>
<surname>Fauci</surname>
<given-names>A.S.</given-names>
</name>
</person-group>
<article-title>The 1918 influenza pandemic: insights for the 21st century</article-title>
<source>J. Infect. Dis.</source>
<volume>195</volume>
<year>2007</year>
<fpage>1018</fpage>
<lpage>1028</lpage>
<pub-id pub-id-type="pmid">17330793</pub-id>
</element-citation>
</ref>
<ref id="bb0010">
<label>2</label>
<element-citation publication-type="journal" id="rf0010">
<person-group person-group-type="author">
<name>
<surname>Johnson</surname>
<given-names>N.P.</given-names>
</name>
<name>
<surname>Mueller</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic</article-title>
<source>Bull. Hist. Med.</source>
<volume>76</volume>
<year>2002</year>
<fpage>105</fpage>
<lpage>115</lpage>
<pub-id pub-id-type="pmid">11875246</pub-id>
</element-citation>
</ref>
<ref id="bb0015">
<label>3</label>
<element-citation publication-type="journal" id="rf0015">
<person-group person-group-type="author">
<name>
<surname>Patterson</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Pyle</surname>
<given-names>G.F.</given-names>
</name>
</person-group>
<article-title>The geography of mortality of the 1918 influenza pandemic</article-title>
<source>Bull. Hist. Med.</source>
<volume>65</volume>
<year>1991</year>
<fpage>4</fpage>
<lpage>21</lpage>
<pub-id pub-id-type="pmid">2021692</pub-id>
</element-citation>
</ref>
<ref id="bb0020">
<label>4</label>
<element-citation publication-type="journal" id="rf0020">
<person-group person-group-type="author">
<name>
<surname>Jester</surname>
<given-names>B.J.</given-names>
</name>
<name>
<surname>Uyeki</surname>
<given-names>T.M.</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Koonin</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Jernigan</surname>
<given-names>D.B.</given-names>
</name>
</person-group>
<article-title>100 years of medical countermeasures and pandemic influenza preparedness</article-title>
<source>Am. J. Public Health</source>
<volume>108</volume>
<year>2018</year>
<fpage>1469</fpage>
<lpage>1472</lpage>
<pub-id pub-id-type="pmid">30252525</pub-id>
</element-citation>
</ref>
<ref id="bb0025">
<label>5</label>
<element-citation publication-type="book" id="rf0025">
<person-group person-group-type="author">
<name>
<surname>Centers for Disease Control</surname>
</name>
</person-group>
<chapter-title>Basic information about SARS</chapter-title>
<year>January 13, 2004</year>
<fpage>1</fpage>
<lpage>2</lpage>
</element-citation>
</ref>
<ref id="bb0030">
<label>6</label>
<element-citation publication-type="other" id="rf0030">
<person-group person-group-type="author">
<name>
<surname>Johns Hopkins University School of Medicine Coronavirus Resource Center</surname>
</name>
</person-group>
<ext-link ext-link-type="uri" xlink:href="https://coronavirus.jhu.edu/map.html" id="ir0010">https://coronavirus.jhu.edu/map.html</ext-link>
<comment>accessed on April 26, 2020</comment>
</element-citation>
</ref>
<ref id="bb0035">
<label>7</label>
<element-citation publication-type="other" id="rf0035">
<person-group person-group-type="author">
<name>
<surname>Hobday</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Coronavirus and the Sun: a lesson from the 1918 influenza pandemic</article-title>
<ext-link ext-link-type="uri" xlink:href="https://medium.com/@ra.hobday/coronavirus-and-the-sun-a-lesson-from-the-1918-influenza-pandemic-509151dc8065" id="ir0015">https://medium.com/@ra.hobday/coronavirus-and-the-sun-a-lesson-from-the-1918-influenza-pandemic-509151dc8065</ext-link>
</element-citation>
</ref>
<ref id="bb0040">
<label>8</label>
<element-citation publication-type="journal" id="rf0040">
<person-group person-group-type="author">
<name>
<surname>Hobday</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Cason</surname>
<given-names>J.W.</given-names>
</name>
</person-group>
<article-title>The open-air treatment of pandemic influenza</article-title>
<source>Am. J. Public Health</source>
<volume>99</volume>
<year>2009</year>
<fpage>S236</fpage>
<lpage>S242</lpage>
<pub-id pub-id-type="doi">10.2105/AJPH.2008.134627</pub-id>
<pub-id pub-id-type="pmid">19461112</pub-id>
</element-citation>
</ref>
<ref id="bb0045">
<label>9</label>
<element-citation publication-type="journal" id="rf0045">
<article-title>Editorial: weapons against influenza</article-title>
<source>Am. J. Public Health</source>
<volume>10</volume>
<year>1918</year>
<fpage>787</fpage>
<lpage>788</lpage>
<pub-id pub-id-type="doi">10.2105/ajph.8.10.787</pub-id>
</element-citation>
</ref>
<ref id="bb0050">
<label>10</label>
<element-citation publication-type="journal" id="rf0050">
<person-group person-group-type="author">
<name>
<surname>Brooks</surname>
<given-names>W.A.</given-names>
</name>
</person-group>
<article-title>The open air treatment of influenza</article-title>
<source>Am. J. Public Health (N Y)</source>
<volume>8</volume>
<year>1918</year>
<fpage>746</fpage>
<lpage>750</lpage>
<pub-id pub-id-type="pmid">18009962</pub-id>
</element-citation>
</ref>
<ref id="bb0055">
<label>11</label>
<element-citation publication-type="journal" id="rf0055">
<person-group person-group-type="author">
<name>
<surname>Roelandts</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>The history of phototherapy: Something new under the sun?</article-title>
<source>J. Am. Acad. Dermatol.</source>
<volume>46</volume>
<year>2002</year>
<fpage>926</fpage>
<lpage>930</lpage>
<pub-id pub-id-type="pmid">12063493</pub-id>
</element-citation>
</ref>
<ref id="bb0060">
<label>12</label>
<element-citation publication-type="journal" id="rf0060">
<person-group person-group-type="author">
<name>
<surname>Hobday</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Dancer</surname>
<given-names>S.J.</given-names>
</name>
</person-group>
<article-title>Roles of sunlight and natural ventilation for controlling infection: historical and current perspectives</article-title>
<source>J. Hosp. Infect.</source>
<volume>84</volume>
<year>2013</year>
<fpage>271</fpage>
<lpage>282</lpage>
<pub-id pub-id-type="pmid">23790506</pub-id>
</element-citation>
</ref>
<ref id="bb0065">
<label>13</label>
<element-citation publication-type="journal" id="rf0065">
<person-group person-group-type="author">
<name>
<surname>Hobday</surname>
<given-names>R.A.</given-names>
</name>
</person-group>
<article-title>Sunlight therapy and solar architecture</article-title>
<source>Med. Hist.</source>
<volume>41</volume>
<year>1997</year>
<fpage>455</fpage>
<lpage>472</lpage>
<pub-id pub-id-type="pmid">9536618</pub-id>
</element-citation>
</ref>
<ref id="bb0070">
<label>14</label>
<element-citation publication-type="journal" id="rf0070">
<person-group person-group-type="author">
<name>
<surname>Beauchemin</surname>
<given-names>K.M.</given-names>
</name>
<name>
<surname>Hays</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>Sunny rooms expedite recovery from severe and refractory depressions</article-title>
<source>J. Affect. Disord.</source>
<volume>40</volume>
<year>1996</year>
<fpage>49</fpage>
<lpage>51</lpage>
<pub-id pub-id-type="pmid">8882914</pub-id>
</element-citation>
</ref>
<ref id="bb0075">
<label>15</label>
<element-citation publication-type="journal" id="rf0075">
<person-group person-group-type="author">
<name>
<surname>Benedetti</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Colombo</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Barbini</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Campori</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Smeraldi</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Morning sunlight reduces length of hospitalization in bipolar depression</article-title>
<source>J. Affect. Disord.</source>
<volume>62</volume>
<year>2001</year>
<fpage>221</fpage>
<lpage>223</lpage>
<pub-id pub-id-type="pmid">11223110</pub-id>
</element-citation>
</ref>
<ref id="bb0080">
<label>16</label>
<element-citation publication-type="journal" id="rf0080">
<person-group person-group-type="author">
<name>
<surname>Alpert</surname>
<given-names>J.S.</given-names>
</name>
</person-group>
<article-title>Sunshine: Clinical friend or foe</article-title>
<source>Am. J. Med.</source>
<volume>123</volume>
<year>2010</year>
<fpage>291</fpage>
<lpage>292</lpage>
<pub-id pub-id-type="pmid">20362744</pub-id>
</element-citation>
</ref>
<ref id="bb0085">
<label>17</label>
<element-citation publication-type="journal" id="rf0085">
<person-group person-group-type="author">
<name>
<surname>Hammond</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Heliotherapy (of Rollier) as an adjunct in the treatment of bone disease</article-title>
<source>J. Bone Joint Surg. Am.</source>
<volume>S2–11</volume>
<year>1913</year>
<fpage>269</fpage>
<lpage>275</lpage>
</element-citation>
</ref>
<ref id="bb0090">
<label>18</label>
<element-citation publication-type="journal" id="rf0090">
<person-group person-group-type="author">
<name>
<surname>Semmlman</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Lauharanta</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Reunanen</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Jansen</surname>
<given-names>C.T.</given-names>
</name>
<name>
<surname>Jyrkinen-Pakkasvirta</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Kallio</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Luoma</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Aromaa</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Waal</surname>
<given-names>J.</given-names>
</name>
</person-group>
<article-title>Effect of heliotherapy on skin and joint symptoms in psoriasis: a 6-month follow-up study</article-title>
<source>Br. J. Dermatol.</source>
<volume>128</volume>
<year>1993</year>
<fpage>172</fpage>
<lpage>177</lpage>
<pub-id pub-id-type="pmid">8457451</pub-id>
</element-citation>
</ref>
<ref id="bb0095">
<label>19</label>
<element-citation publication-type="journal" id="rf0095">
<person-group person-group-type="author">
<name>
<surname>Giryes</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Sukenik</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Haley</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Clearing of psoriatic erythroderma following heliotherapy in the Dead Sea area</article-title>
<source>J. Eur. Acad. Dermatol. Veneriol.</source>
<volume>5</volume>
<year>1995</year>
<fpage>44</fpage>
<lpage>46</lpage>
</element-citation>
</ref>
<ref id="bb0100">
<label>20</label>
<element-citation publication-type="journal" id="rf0100">
<person-group person-group-type="author">
<name>
<surname>Alpert</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Ostheimer</surname>
<given-names>K.G.</given-names>
</name>
</person-group>
<article-title>The evolution of current medical and popular attitudes toward ultraviolet light exposure: part 2</article-title>
<source>J. Am. Acad. Dermatol.</source>
<volume>48</volume>
<year>2003</year>
<fpage>909</fpage>
<lpage>918</lpage>
<pub-id pub-id-type="pmid">12789184</pub-id>
</element-citation>
</ref>
<ref id="bb0105">
<label>21</label>
<element-citation publication-type="journal" id="rf0105">
<person-group person-group-type="author">
<name>
<surname>Gøtzsche</surname>
<given-names>P.C.</given-names>
</name>
</person-group>
<article-title>Niels Finsen's treatment for lupus vulgaris</article-title>
<source>J. R. Soc. Med.</source>
<volume>104</volume>
<year>2011</year>
<fpage>41</fpage>
<lpage>42</lpage>
<pub-id pub-id-type="pmid">21205777</pub-id>
</element-citation>
</ref>
<ref id="bb0110">
<label>22</label>
<element-citation publication-type="journal" id="rf0110">
<person-group person-group-type="author">
<name>
<surname>Grzybowski</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Pietrzak</surname>
<given-names>K.</given-names>
</name>
</person-group>
<article-title>From patient to discoverer—Niels Ryberg Finsen (1860–1904)—the founder of phototherapy in dermatology</article-title>
<source>Clin. Dermatol.</source>
<volume>30</volume>
<year>2012</year>
<fpage>451</fpage>
<lpage>455</lpage>
<pub-id pub-id-type="pmid">22855977</pub-id>
</element-citation>
</ref>
<ref id="bb0115">
<label>23</label>
<element-citation publication-type="other" id="rf0115">
<person-group person-group-type="author">
<name>
<surname>Editors Encyclopaedia Britannica: Sun Worship</surname>
</name>
</person-group>
<ext-link ext-link-type="uri" xlink:href="https://www.britannica.com/topic/sun-worship" id="ir0020">https://www.britannica.com/topic/sun-worship</ext-link>
<comment>Updated March 19, 2020</comment>
</element-citation>
</ref>
<ref id="bb0120">
<label>24</label>
<element-citation publication-type="other" id="rf0120">
<person-group person-group-type="author">
<name>
<surname>Solar Deities</surname>
</name>
</person-group>
<comment>Available at</comment>
<ext-link ext-link-type="uri" xlink:href="https://en.wikipedia.org/wiki/Solar_deity" id="ir0025">https://en.wikipedia.org/wiki/Solar_deity</ext-link>
<comment>accessed March 31, 2020</comment>
</element-citation>
</ref>
<ref id="bb0125">
<label>25</label>
<element-citation publication-type="journal" id="rf0125">
<person-group person-group-type="author">
<name>
<surname>Alpert</surname>
<given-names>J.S.</given-names>
</name>
</person-group>
<article-title>Jeremiah Metzger and the era of heliotherapy</article-title>
<source>Trans. Am. Clin. Climatol. Assoc.</source>
<volume>126</volume>
<year>2015</year>
<fpage>123</fpage>
<lpage>191</lpage>
</element-citation>
</ref>
<ref id="bb0130">
<label>26</label>
<element-citation publication-type="journal" id="rf0130">
<person-group person-group-type="author">
<name>
<surname>Mcdonagh</surname>
<given-names>A.F.</given-names>
</name>
</person-group>
<article-title>Phototherapy: from ancient Egypt to the new millennium</article-title>
<source>J. Perinatol.</source>
<volume>21</volume>
<year>2001</year>
<fpage>S7</fpage>
<lpage>S12</lpage>
<pub-id pub-id-type="pmid">11803408</pub-id>
</element-citation>
</ref>
<ref id="bb0135">
<label>27</label>
<element-citation publication-type="journal" id="rf0135">
<person-group person-group-type="author">
<name>
<surname>Fitzpatrick</surname>
<given-names>T.B.</given-names>
</name>
<name>
<surname>Pathak</surname>
<given-names>M.A.</given-names>
</name>
</person-group>
<article-title>Historical aspects of methoxsalen and other furocoumarins</article-title>
<source>J. Invest. Dermatol.</source>
<volume>31</volume>
<year>1959</year>
<fpage>229</fpage>
<lpage>331</lpage>
</element-citation>
</ref>
<ref id="bb0140">
<label>28</label>
<element-citation publication-type="journal" id="rf0140">
<person-group person-group-type="author">
<name>
<surname>Needham</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Gwei-Djen</surname>
<given-names>L.</given-names>
</name>
</person-group>
<article-title>Science and civilization in China, Vol 5, Part 5</article-title>
<source>Cambridge: Cambridge University Press</source>
<year>1983</year>
<fpage>12181</fpage>
<lpage>12184</lpage>
</element-citation>
</ref>
<ref id="bb0145">
<label>29</label>
<element-citation publication-type="book" id="rf0145">
<person-group person-group-type="author">
<name>
<surname>Palm</surname>
<given-names>T.A.</given-names>
</name>
</person-group>
<chapter-title>The Geographical Distribution and Aetiology of Rickets</chapter-title>
<year>October–November, 1890</year>
<publisher-name>The Practitioner</publisher-name>
</element-citation>
</ref>
<ref id="bb0150">
<label>30</label>
<element-citation publication-type="journal" id="rf0150">
<person-group person-group-type="author">
<name>
<surname>Enwemeka</surname>
<given-names>C.S.</given-names>
</name>
</person-group>
<article-title>Antimicrobial blue light: an emerging alternative to antibiotics</article-title>
<source>Photomed. Laser Surg.</source>
<volume>31</volume>
<year>2013</year>
<fpage>509</fpage>
<lpage>511</lpage>
<pub-id pub-id-type="pmid">24138170</pub-id>
</element-citation>
</ref>
<ref id="bb0155">
<label>31</label>
<element-citation publication-type="journal" id="rf0155">
<person-group person-group-type="author">
<name>
<surname>Enwemeka</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Enwemeka</surname>
<given-names>S.K.</given-names>
</name>
<name>
<surname>Hollosi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yens</surname>
<given-names>D.</given-names>
</name>
</person-group>
<article-title>470 nm blue Light kills methicillin-resistant
<italic>Staphylococcus aureus</italic>
(MRSA)
<italic>in vitro</italic>
</article-title>
<source>Photomed. Laser Surg.</source>
<volume>27</volume>
<year>2009</year>
<fpage>221</fpage>
<lpage>226</lpage>
<pub-id pub-id-type="pmid">19196103</pub-id>
</element-citation>
</ref>
<ref id="bb0160">
<label>32</label>
<element-citation publication-type="journal" id="rf0160">
<person-group person-group-type="author">
<name>
<surname>Enwemeka</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hollosi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yens</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Enwemeka</surname>
<given-names>S.K.</given-names>
</name>
</person-group>
<article-title>Visible 405 nm SLD photo-destroys methicillin-resistant
<italic>Staphylococcus aureus</italic>
(MRSA)
<italic>in vitro</italic>
</article-title>
<source>Lasers Surg. Med.</source>
<volume>40</volume>
<year>2008</year>
<fpage>734</fpage>
<lpage>737</lpage>
<pub-id pub-id-type="pmid">19065556</pub-id>
</element-citation>
</ref>
<ref id="bb0165">
<label>33</label>
<element-citation publication-type="book" id="rf0165">
<person-group person-group-type="author">
<name>
<surname>Enwemeka</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Hollosi</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Yens</surname>
<given-names>D.</given-names>
</name>
</person-group>
<chapter-title>Blue light photo-destroys methicillin- resistant
<italic>Staphylococcus aureus</italic>
(MRSA)
<italic>in vitro</italic>
</chapter-title>
<person-group person-group-type="editor">
<name>
<surname>Waynant</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Tata</surname>
<given-names>D.</given-names>
</name>
</person-group>
<source>Lecture Notes in Electrical Engineering</source>
<volume>12</volume>
<year>2008</year>
<publisher-name>Springer Publishers</publisher-name>
<publisher-loc>New York</publisher-loc>
<fpage>33</fpage>
<lpage>37</lpage>
</element-citation>
</ref>
<ref id="bb0170">
<label>34</label>
<element-citation publication-type="journal" id="rf0170">
<person-group person-group-type="author">
<name>
<surname>Masson-Meyers</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Bumah</surname>
<given-names>V.V.</given-names>
</name>
<name>
<surname>Castel</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Castel</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Enwemeka</surname>
<given-names>C.S.</given-names>
</name>
</person-group>
<article-title>Pulsed 450 nm blue light significantly inactivates
<italic>Propionibacterium acnes</italic>
more than continuous wave blue light</article-title>
<source>J. Photochem. Photobiol. B</source>
<volume>202</volume>
<year>2020</year>
<fpage>111719</fpage>
<pub-id pub-id-type="doi">10.1016/j.jphotobiol.2019.111719</pub-id>
<pub-id pub-id-type="pmid">31770705</pub-id>
</element-citation>
</ref>
<ref id="bb0175">
<label>35</label>
<element-citation publication-type="journal" id="rf0175">
<person-group person-group-type="author">
<name>
<surname>Bumah</surname>
<given-names>V.V.</given-names>
</name>
<name>
<surname>Masson-Meyers</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Enwemeka</surname>
<given-names>C.S.</given-names>
</name>
</person-group>
<article-title>Pulsed 450 nm blue light suppresses MRSA and
<italic>Propionibacterium acnes</italic>
in planktonic cultures and bacterial biofilms</article-title>
<source>J. Photochem. Photobiol. B</source>
<volume>202</volume>
<year>2020</year>
<fpage>111702</fpage>
<pub-id pub-id-type="doi">10.1016/j.jphotobiol.2019.111702</pub-id>
<pub-id pub-id-type="pmid">31760372</pub-id>
</element-citation>
</ref>
<ref id="bb0180">
<label>36</label>
<element-citation publication-type="journal" id="rf0180">
<person-group person-group-type="author">
<name>
<surname>Bumah</surname>
<given-names>V.V.</given-names>
</name>
<name>
<surname>Masson-Meyers</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Tong</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Castel</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Enwemeka</surname>
<given-names>C.S.</given-names>
</name>
</person-group>
<article-title>Optimizing the bactericidal effect of pulsed blue light on
<italic>Propionibacterium acnes</italic>
- a correlative fluorescence spectroscopy study</article-title>
<source>Photochem. Photobiol. B</source>
<volume>2020</volume>
<year>2020</year>
<fpage>111701</fpage>
<pub-id pub-id-type="doi">10.1016/j.jphotobiol.2019.111701</pub-id>
</element-citation>
</ref>
<ref id="bb0185">
<label>37</label>
<element-citation publication-type="journal" id="rf0185">
<person-group person-group-type="author">
<name>
<surname>Bumah</surname>
<given-names>V.V.</given-names>
</name>
<name>
<surname>Masson-Meyers</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Enwemeka</surname>
<given-names>C.S.</given-names>
</name>
</person-group>
<article-title>Blue 470 nm light suppresses the growth of
<italic>Salmonella enterica</italic>
and Methicillin-resistant
<italic>Staphylococcus aureus</italic>
(MRSA) in vitro</article-title>
<source>Lasers Surg. Med.</source>
<volume>47</volume>
<year>2015</year>
<fpage>595</fpage>
<lpage>601</lpage>
<pub-id pub-id-type="pmid">26174877</pub-id>
</element-citation>
</ref>
<ref id="bb0190">
<label>38</label>
<element-citation publication-type="journal" id="rf0190">
<person-group person-group-type="author">
<name>
<surname>De Sous</surname>
<given-names>N.T.A.</given-names>
</name>
<name>
<surname>Santos</surname>
<given-names>M.F.</given-names>
</name>
<name>
<surname>Gomes</surname>
<given-names>R.C.</given-names>
</name>
<name>
<surname>Brandino</surname>
<given-names>H.E.</given-names>
</name>
<name>
<surname>Martinez</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>de Jesus Guirro</surname>
<given-names>R.R.</given-names>
</name>
</person-group>
<article-title>Blue laser inhibits bacterial growth of
<italic>Staphylococcus aureus</italic>
,
<italic>Escherichia coli</italic>
,
<italic>Pseudomonas aeruginosa</italic>
</article-title>
<source>Photomed. Laser Surg.</source>
<volume>33</volume>
<year>2015</year>
<fpage>278</fpage>
<lpage>282</lpage>
<pub-id pub-id-type="pmid">25954830</pub-id>
</element-citation>
</ref>
<ref id="bb0195">
<label>39</label>
<element-citation publication-type="journal" id="rf0195">
<person-group person-group-type="author">
<name>
<surname>Hamblin</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Viveiros</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Ahmadi</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Ganz</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Tolkoff</surname>
<given-names>M.J.</given-names>
</name>
</person-group>
<article-title>
<italic>Helicobacter pylori</italic>
accumulates photoactive porphyrins and is killed by visible light</article-title>
<source>Antimicrob. Agents Chemother.</source>
<volume>49</volume>
<year>2005</year>
<fpage>2822</fpage>
<lpage>2827</lpage>
<pub-id pub-id-type="pmid">15980355</pub-id>
</element-citation>
</ref>
<ref id="bb0200">
<label>40</label>
<element-citation publication-type="journal" id="rf0200">
<person-group person-group-type="author">
<name>
<surname>McKenzie</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Maclean</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Timoshkin</surname>
<given-names>I.V.</given-names>
</name>
<name>
<surname>MacGregor</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>J.G.</given-names>
</name>
</person-group>
<article-title>Enhanced inactivation of
<italic>Escherichia coli</italic>
and
<italic>Listeria monocytogenes</italic>
by exposure to 405 nm light under sub-lethal temperature, salt and acid stress conditions</article-title>
<source>Int. J. Food Microbiol.</source>
<volume>170</volume>
<year>2013</year>
<fpage>91</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="pmid">24291187</pub-id>
</element-citation>
</ref>
<ref id="bb0205">
<label>41</label>
<element-citation publication-type="journal" id="rf0205">
<person-group person-group-type="author">
<name>
<surname>Mussi</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Gaddy</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Cabruja</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Arivett</surname>
<given-names>B.A.</given-names>
</name>
<name>
<surname>Viale</surname>
<given-names>A.M.</given-names>
</name>
<name>
<surname>Rasia</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Actis</surname>
<given-names>L.A.</given-names>
</name>
</person-group>
<article-title>The opportunistic human pathogen
<italic>Acinetobacter baumannii</italic>
senses and responds to light</article-title>
<source>J. Bacteriol.</source>
<volume>192</volume>
<issue>24</issue>
<year>2010</year>
<fpage>6336</fpage>
<lpage>6345</lpage>
<pub-id pub-id-type="pmid">20889755</pub-id>
</element-citation>
</ref>
<ref id="bb0210">
<label>42</label>
<element-citation publication-type="journal" id="rf0210">
<person-group person-group-type="author">
<name>
<surname>Maclean</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>MacGregor</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Woolsey</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>High-intensity narrow-spectrum light inactivation and wavelength sensitivity of
<italic>Staphylococcus aureus</italic>
</article-title>
<source>FEMS Microbiol. Lett.</source>
<volume>285</volume>
<year>2008</year>
<fpage>227</fpage>
<lpage>232</lpage>
<pub-id pub-id-type="pmid">18557942</pub-id>
</element-citation>
</ref>
<ref id="bb0215">
<label>43</label>
<element-citation publication-type="journal" id="rf0215">
<person-group person-group-type="author">
<name>
<surname>Maclean</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>MacGregor</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Woolsey</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Inactivation of bacterial pathogens following exposure to light from a 405 nanometer light-emitting diode array</article-title>
<source>Appl. Environ. Microbiol.</source>
<volume>75</volume>
<year>2009</year>
<fpage>1932</fpage>
<lpage>1937</lpage>
<pub-id pub-id-type="pmid">19201962</pub-id>
</element-citation>
</ref>
<ref id="bb0220">
<label>44</label>
<element-citation publication-type="journal" id="rf0220">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Tegos</surname>
<given-names>G.P.</given-names>
</name>
<name>
<surname>Zhiyentayev</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Mylonakis</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Hamblin</surname>
<given-names>M.R.</given-names>
</name>
</person-group>
<article-title>Photodynamic therapy for methicillin-resistant
<italic>Staphylococcus aureus</italic>
infection in a mouse skin abrasion model</article-title>
<source>Lasers Surg. Med.</source>
<volume>42</volume>
<year>2010</year>
<fpage>1</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="pmid">20077493</pub-id>
</element-citation>
</ref>
<ref id="bb0225">
<label>45</label>
<element-citation publication-type="journal" id="rf0225">
<person-group person-group-type="author">
<name>
<surname>Dai</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>Y.Y.</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>C.K.</given-names>
</name>
<name>
<surname>Vrahas</surname>
<given-names>M.S.</given-names>
</name>
<name>
<surname>Sherwood</surname>
<given-names>M.E.</given-names>
</name>
<name>
<surname>Tegos</surname>
<given-names>G.P.</given-names>
</name>
<name>
<surname>Hamblin</surname>
<given-names>M.R.</given-names>
</name>
</person-group>
<article-title>Blue light rescues mice from potentially fatal pseudomonas aeruginosa burn infection: efficacy, safety, and mechanism of action</article-title>
<source>Antimicrob. Agents Chemother.</source>
<volume>57</volume>
<year>2013</year>
<fpage>1238</fpage>
<lpage>1245</lpage>
<pub-id pub-id-type="pmid">23262998</pub-id>
</element-citation>
</ref>
<ref id="bb0230">
<label>46</label>
<element-citation publication-type="journal" id="rf0230">
<person-group person-group-type="author">
<name>
<surname>Cieplik</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>Spath</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Leibl</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gollmer</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Regensburger</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tabenski</surname>
<given-names>L.</given-names>
</name>
<name>
<surname>Hiller</surname>
<given-names>K.A.</given-names>
</name>
<name>
<surname>Maisch</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Schmalz</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Blue light kills
<italic>Aggregatibacter actinomycetemcomitans</italic>
due to its endogenous photosensitizers</article-title>
<source>Clin. Oral Investig.</source>
<volume>18</volume>
<year>2014</year>
<fpage>1763</fpage>
<lpage>1769</lpage>
</element-citation>
</ref>
<ref id="bb0235">
<label>47</label>
<element-citation publication-type="journal" id="rf0235">
<person-group person-group-type="author">
<name>
<surname>Ashkenazi</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Malik</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Harth</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Nitzan</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>Eradication of
<italic>Propionibacterium acnes</italic>
by its endogenic porphyrins after illumination with high intensity blue light</article-title>
<source>FEMS Immunol. Med. Microbiol.</source>
<volume>35</volume>
<year>2003</year>
<fpage>17</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="pmid">12589953</pub-id>
</element-citation>
</ref>
<ref id="bb0240">
<label>48</label>
<element-citation publication-type="journal" id="rf0240">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ferrer-Espada</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Baglo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Antimicrobial blue light inactivation of
<italic>Neisseria gonorrhoeae</italic>
: roles of wavelength, endogenous photosensitizer, oxygen, and reactive oxygen species</article-title>
<source>Lasers Surg. Med.</source>
<volume>51</volume>
<year>2019</year>
<fpage>815</fpage>
<lpage>823</lpage>
<pub-id pub-id-type="pmid">31157931</pub-id>
</element-citation>
</ref>
<ref id="bb0245">
<label>49</label>
<element-citation publication-type="journal" id="rf0245">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ferrer-Espada</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Antimicrobial blue light: An alternative therapeutic for multidrug-resistant gonococcal infections?</article-title>
<source>MOJ Sol. Photoenergy Syst.</source>
<volume>1</volume>
<issue>2</issue>
<year>2017</year>
<fpage>00009</fpage>
<pub-id pub-id-type="pmid">31435621</pub-id>
</element-citation>
</ref>
<ref id="bb0250">
<label>50</label>
<element-citation publication-type="journal" id="rf0250">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Ferrer-Espada</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Baglo</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Goh</surname>
<given-names>X.S.</given-names>
</name>
<name>
<surname>Held</surname>
<given-names>K.D.</given-names>
</name>
<name>
<surname>Grad</surname>
<given-names>Y.H.</given-names>
</name>
<name>
<surname>Gu</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Gelfand</surname>
<given-names>J.A.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Photoinactivation of
<italic>Neisseria gonorrhoeae</italic>
: A paradigm-changing approach for combating antibiotic-resistant gonococcal infection</article-title>
<source>J. Infect. Dis.</source>
<volume>220</volume>
<year>2019</year>
<fpage>873</fpage>
<lpage>881</lpage>
<pub-id pub-id-type="pmid">30629196</pub-id>
</element-citation>
</ref>
<ref id="bb0255">
<label>51</label>
<element-citation publication-type="journal" id="rf0255">
<person-group person-group-type="author">
<name>
<surname>Feuerstein</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Persman</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>E.I.</given-names>
</name>
</person-group>
<article-title>Phototoxic effect of visible light on
<italic>Porphyromonas gingivalis</italic>
and
<italic>Fusobacterium nucleatum</italic>
, an
<italic>in vitro</italic>
study</article-title>
<source>Photochem. Photobiol.</source>
<volume>80</volume>
<year>2004</year>
<fpage>412</fpage>
<lpage>415</lpage>
<pub-id pub-id-type="pmid">15623322</pub-id>
</element-citation>
</ref>
<ref id="bb0260">
<label>52</label>
<element-citation publication-type="journal" id="rf0260">
<person-group person-group-type="author">
<name>
<surname>Yoshida</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Sasaki</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Toyama</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Araki</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Fujioka</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Tsukiyama</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Hamada</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Yoshino</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Antimicrobial effect of blue light using
<italic>Porphyromonas gingivalis pigment</italic>
</article-title>
<source>Sci. Rep.</source>
<volume>7</volume>
<year>2017</year>
<fpage>5225</fpage>
<pub-id pub-id-type="pmid">28701797</pub-id>
</element-citation>
</ref>
<ref id="bb0265">
<label>53</label>
<element-citation publication-type="journal" id="rf0265">
<person-group person-group-type="author">
<name>
<surname>Song</surname>
<given-names>H.W.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J.K.</given-names>
</name>
<name>
<surname>Um</surname>
<given-names>H.S.</given-names>
</name>
<name>
<surname>Chang</surname>
<given-names>B.S.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S.Y.</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>M.K.</given-names>
</name>
</person-group>
<article-title>Phototoxic effect of blue light on the planktonic and biofilm state of anaerobic periodontal pathogens</article-title>
<source>J. Periodontal. Implant Sci.</source>
<volume>43</volume>
<year>2013</year>
<fpage>72</fpage>
<lpage>78</lpage>
<pub-id pub-id-type="pmid">23678390</pub-id>
</element-citation>
</ref>
<ref id="bb0270">
<label>54</label>
<element-citation publication-type="journal" id="rf0270">
<person-group person-group-type="author">
<name>
<surname>Maclean</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Booth</surname>
<given-names>M.G.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>MacGregor</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Woolsey</surname>
<given-names>G.A.</given-names>
</name>
<name>
<surname>Coia</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Hamilton</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Gettinby</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Continuous decontamination of an intensive care isolation room during patient occupancy using 405 nm light technology</article-title>
<source>J. Infect. Prev.</source>
<volume>14</volume>
<year>2013</year>
<fpage>176</fpage>
<lpage>181</lpage>
</element-citation>
</ref>
<ref id="bb0275">
<label>55</label>
<element-citation publication-type="journal" id="rf0275">
<person-group person-group-type="author">
<name>
<surname>Maclean</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Macgregor</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>Woolsey</surname>
<given-names>G.A.</given-names>
</name>
<name>
<surname>Coia</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Hamilton</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Taggart</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Watson</surname>
<given-names>S.B.</given-names>
</name>
<name>
<surname>Gettinby</surname>
<given-names>G.</given-names>
</name>
</person-group>
<article-title>Environmental decontamination of a hospital isolation room using high-intensity narrow-spectrum light</article-title>
<source>J. Hosp. Infect.</source>
<volume>76</volume>
<year>2010</year>
<fpage>247</fpage>
<lpage>251</lpage>
<pub-id pub-id-type="pmid">20864210</pub-id>
</element-citation>
</ref>
<ref id="bb0280">
<label>56</label>
<element-citation publication-type="journal" id="rf0280">
<person-group person-group-type="author">
<name>
<surname>Maclean</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>J.G.</given-names>
</name>
<name>
<surname>MacGregor</surname>
<given-names>S.J.</given-names>
</name>
<name>
<surname>White</surname>
<given-names>T.</given-names>
</name>
<name>
<surname>Atreya</surname>
<given-names>C.D.</given-names>
</name>
</person-group>
<article-title>A new proof of concept in bacterial reduction: antimicrobial action of violet-blue light (405 nm) in
<italic>ex vivo</italic>
stored plasma</article-title>
<source>J. Blood Transf.</source>
<year>2016</year>
<fpage>1</fpage>
<lpage>11</lpage>
<pub-id pub-id-type="doi">10.1155/2016/2920514</pub-id>
</element-citation>
</ref>
<ref id="bb0285">
<label>57</label>
<element-citation publication-type="journal" id="rf0285">
<person-group person-group-type="author">
<name>
<surname>Halstead</surname>
<given-names>F.D.</given-names>
</name>
<name>
<surname>Ahmed</surname>
<given-names>Z.</given-names>
</name>
<name>
<surname>Bishop</surname>
<given-names>J.R.B.</given-names>
</name>
<name>
<surname>Oppenheim</surname>
<given-names>B.A.</given-names>
</name>
</person-group>
<article-title>The potential of visible blue light (405 nm) as a novel decontamination strategy for carbapenemase-producing enterobacteriaceae (CPE)</article-title>
<source>Antimicrob. Resist. Infect. Control</source>
<volume>8</volume>
<year>2019</year>
<fpage>14</fpage>
<pub-id pub-id-type="doi">10.1186/s13756-019-0470-1</pub-id>
<pub-id pub-id-type="pmid">30675341</pub-id>
</element-citation>
</ref>
<ref id="bb0290">
<label>58</label>
<element-citation publication-type="journal" id="rf0290">
<person-group person-group-type="author">
<name>
<surname>Halstead</surname>
<given-names>F.D.</given-names>
</name>
<name>
<surname>Thwaite</surname>
<given-names>J.E.</given-names>
</name>
<name>
<surname>Burt</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Laws</surname>
<given-names>T.R.</given-names>
</name>
<name>
<surname>Raguse</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Moeller</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Weber</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Oppenheim</surname>
<given-names>B.A.</given-names>
</name>
</person-group>
<article-title>Antibacterial activity of blue light against nosocomial wound pathogens growing Planktonically and as mature biofilms</article-title>
<source>Appl. Environ. Microbiol.</source>
<volume>82</volume>
<year>2016</year>
<fpage>4006</fpage>
<lpage>4016</lpage>
<pub-id pub-id-type="doi">10.1128/AEM.00756-16</pub-id>
<pub-id pub-id-type="pmid">27129967</pub-id>
</element-citation>
</ref>
<ref id="bb0295">
<label>59</label>
<element-citation publication-type="journal" id="rf0295">
<person-group person-group-type="author">
<name>
<surname>Møller</surname>
<given-names>K.I.</given-names>
</name>
<name>
<surname>Kongshoj</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Philipsen</surname>
<given-names>P.A.</given-names>
</name>
<name>
<surname>Thomsen</surname>
<given-names>V.O.</given-names>
</name>
<name>
<surname>Wulf</surname>
<given-names>H.C.</given-names>
</name>
</person-group>
<article-title>How Finsen's light cured lupus vulgaris</article-title>
<source>Photodermatol. Photoimmunol. Photomed.</source>
<volume>21</volume>
<year>2005</year>
<fpage>118</fpage>
<lpage>124</lpage>
<pub-id pub-id-type="pmid">15888127</pub-id>
</element-citation>
</ref>
<ref id="bb0300">
<label>60</label>
<element-citation publication-type="journal" id="rf0300">
<person-group person-group-type="author">
<name>
<surname>Shany-Kdoshim</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Polak</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Houri-Haddad</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Feuerstein</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>Killing mechanism of bacteria within multi-species biofilm by blue light</article-title>
<source>J. Oral Microbiol.</source>
<volume>11</volume>
<year>2019</year>
<fpage>1</fpage>
<lpage>10</lpage>
</element-citation>
</ref>
<ref id="bb0305">
<label>61</label>
<element-citation publication-type="journal" id="rf0305">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>C.K.</given-names>
</name>
<name>
<surname>Hamblin</surname>
<given-names>H.R.</given-names>
</name>
<name>
<surname>Hooper</surname>
<given-names>D.C.</given-names>
</name>
<name>
<surname>Dai</surname>
<given-names>T.</given-names>
</name>
</person-group>
<article-title>Antimicrobial blue light inactivation of pathogenic microbes: state of the art</article-title>
<source>Drug Resist. Updat.</source>
<volume>33–35</volume>
<year>2017</year>
<fpage>1</fpage>
<lpage>22</lpage>
</element-citation>
</ref>
<ref id="bb0310">
<label>62</label>
<element-citation publication-type="journal" id="rf0310">
<person-group person-group-type="author">
<name>
<surname>Aboualizadeh</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Bumah</surname>
<given-names>V.V.</given-names>
</name>
<name>
<surname>Masson-Meyers</surname>
<given-names>D.S.</given-names>
</name>
<name>
<surname>Eells</surname>
<given-names>J.T.</given-names>
</name>
<name>
<surname>Hirschmugl</surname>
<given-names>C.J.</given-names>
</name>
<name>
<surname>Enwemeka</surname>
<given-names>C.S.</given-names>
</name>
</person-group>
<article-title>Infrared microspectroscopy study: understanding the antimicrobial activity of selected disinfectants against methicillin-resistant
<italic>Staphylococcus aureus</italic>
(MRSA)</article-title>
<source>PLoS One</source>
<volume>12</volume>
<issue>10</issue>
<year>2017</year>
<object-id pub-id-type="publisher-id">e0186375</object-id>
</element-citation>
</ref>
<ref id="bb0315">
<label>63</label>
<element-citation publication-type="journal" id="rf0315">
<person-group person-group-type="author">
<name>
<surname>Schmid</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Hoenes</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Vatter</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Hessling</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>Antimicrobial effect of visible light—photoinactivation of
<italic>Legionella rubrilucens</italic>
by irradiation at 450, 470, and 620 nm</article-title>
<source>Antibiotics</source>
<volume>8</volume>
<issue>4</issue>
<year>2019</year>
<fpage>187</fpage>
<pub-id pub-id-type="doi">10.3390/antibiotics8040187</pub-id>
</element-citation>
</ref>
<ref id="bb0320">
<label>64</label>
<element-citation publication-type="journal" id="rf0320">
<person-group person-group-type="author">
<name>
<surname>Biener</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Masson-Meyers</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Bumah</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Hussey</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Stoneman</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Enwemeka</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Raicu</surname>
<given-names>V.</given-names>
</name>
</person-group>
<article-title>Blue/violet laser inactivates methicillin-resistant
<italic>Staphylococcus aureus</italic>
by altering its transmembrane potential</article-title>
<source>J. Photochem. Photobiol. B</source>
<volume>170</volume>
<year>2017</year>
<fpage>118</fpage>
<lpage>124</lpage>
<pub-id pub-id-type="pmid">28426977</pub-id>
</element-citation>
</ref>
<ref id="bb0325">
<label>65</label>
<element-citation publication-type="journal" id="rf0325">
<person-group person-group-type="author">
<name>
<surname>Szundi</surname>
<given-names>I.</given-names>
</name>
<name>
<surname>Liao</surname>
<given-names>G.L.</given-names>
</name>
<name>
<surname>Einarsdottir</surname>
<given-names>O.</given-names>
</name>
</person-group>
<article-title>Near-infrared time-resolved optical absorption studies of the reaction of fully reduced cytochrome c oxidase with dioxygen</article-title>
<source>Biochem.</source>
<volume>40</volume>
<year>2001</year>
<fpage>2332</fpage>
<lpage>2339</lpage>
<pub-id pub-id-type="pmid">11327853</pub-id>
</element-citation>
</ref>
<ref id="bb0330">
<label>66</label>
<element-citation publication-type="journal" id="rf0330">
<person-group person-group-type="author">
<name>
<surname>Karu</surname>
<given-names>T.I.</given-names>
</name>
<name>
<surname>Kolyakov</surname>
<given-names>S.F.</given-names>
</name>
</person-group>
<article-title>Exact action spectra for cellular responses relevant to phototherapy</article-title>
<source>Photomed. Laser Surg.</source>
<volume>23</volume>
<year>2005</year>
<fpage>355</fpage>
<lpage>361</lpage>
<pub-id pub-id-type="pmid">16144476</pub-id>
</element-citation>
</ref>
<ref id="bb0335">
<label>67</label>
<element-citation publication-type="journal" id="rf0335">
<person-group person-group-type="author">
<name>
<surname>Passarella</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Casamassima</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Molinari</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Pastore</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Quagliariello</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Catalano</surname>
<given-names>I.M.</given-names>
</name>
<name>
<surname>Cingolani</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser</article-title>
<source>FEBS Lett.</source>
<volume>175</volume>
<year>1984</year>
<fpage>95</fpage>
<lpage>99</lpage>
<pub-id pub-id-type="pmid">6479342</pub-id>
</element-citation>
</ref>
<ref id="bb0340">
<label>68</label>
<element-citation publication-type="journal" id="rf0340">
<person-group person-group-type="author">
<name>
<surname>Greco</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Guida</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Perlino</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Marra</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Quagliariello</surname>
<given-names>E.</given-names>
</name>
</person-group>
<article-title>Increase in RNA and protein synthesis by mitochondria irradiated with helium-neon laser</article-title>
<source>Biochem. Biophys. Res. Commun.</source>
<volume>163</volume>
<year>1989</year>
<fpage>1428</fpage>
<lpage>1434</lpage>
<pub-id pub-id-type="pmid">2476986</pub-id>
</element-citation>
</ref>
<ref id="bb0345">
<label>69</label>
<element-citation publication-type="journal" id="rf0345">
<person-group person-group-type="author">
<name>
<surname>Pastore</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Greco</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Petragallo</surname>
<given-names>V.A.</given-names>
</name>
<name>
<surname>Passarella</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Increase in <--H+/e- ratio of the cytochrome c oxidase reaction in mitochondria irradiated with helium-neon laser</article-title>
<source>Biochem. Mol. Biol. Int.</source>
<volume>34</volume>
<year>1994</year>
<fpage>817</fpage>
<lpage>826</lpage>
<pub-id pub-id-type="pmid">7866309</pub-id>
</element-citation>
</ref>
<ref id="bb0350">
<label>70</label>
<element-citation publication-type="journal" id="rf0350">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Naim</surname>
<given-names>J.O.</given-names>
</name>
<name>
<surname>McGowan</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Ippolito</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Lanzafame</surname>
<given-names>R.J.</given-names>
</name>
</person-group>
<article-title>Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria</article-title>
<source>Photochem. Photobiol.</source>
<volume>66</volume>
<year>1997</year>
<fpage>866</fpage>
<lpage>871</lpage>
<pub-id pub-id-type="pmid">9421973</pub-id>
</element-citation>
</ref>
<ref id="bb0355">
<label>71</label>
<element-citation publication-type="journal" id="rf0355">
<person-group person-group-type="author">
<name>
<surname>Callaghan</surname>
<given-names>G.A.</given-names>
</name>
<name>
<surname>Riordan</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Gilmore</surname>
<given-names>W.S.</given-names>
</name>
<name>
<surname>McIntyre</surname>
<given-names>I.A.</given-names>
</name>
<name>
<surname>Allen</surname>
<given-names>J.M.</given-names>
</name>
<name>
<surname>Hannigan</surname>
<given-names>B.M.</given-names>
</name>
</person-group>
<article-title>Reactive oxygen species inducible by low-intensity laser irradiation alter DNA synthesis in the haemopoietic cell line U937</article-title>
<source>Lasers Surg. Med.</source>
<volume>19</volume>
<year>1996</year>
<fpage>201</fpage>
<lpage>206</lpage>
<pub-id pub-id-type="pmid">8887924</pub-id>
</element-citation>
</ref>
<ref id="bb0360">
<label>72</label>
<element-citation publication-type="journal" id="rf0360">
<person-group person-group-type="author">
<name>
<surname>Grossman</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Schneid</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Reuveni</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Halevy</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Lubart</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species</article-title>
<source>Lasers Surg. Med.</source>
<volume>22</volume>
<year>1998</year>
<fpage>212</fpage>
<lpage>218</lpage>
<pub-id pub-id-type="pmid">9603282</pub-id>
</element-citation>
</ref>
<ref id="bb0365">
<label>73</label>
<element-citation publication-type="journal" id="rf0365">
<person-group person-group-type="author">
<name>
<surname>Lavi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Shainberg</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Friedmann</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shneyvays</surname>
<given-names>V.</given-names>
</name>
<name>
<surname>Rickover</surname>
<given-names>O.</given-names>
</name>
<name>
<surname>Eichler</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Kaplan</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Lubart</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells</article-title>
<source>J. Biol. Chem.</source>
<volume>278</volume>
<year>2003</year>
<fpage>40917</fpage>
<lpage>40922</lpage>
<pub-id pub-id-type="pmid">12851407</pub-id>
</element-citation>
</ref>
<ref id="bb0370">
<label>74</label>
<element-citation publication-type="journal" id="rf0370">
<person-group person-group-type="author">
<name>
<surname>Lubart</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Eichler</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lavi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Friedman</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shainberg</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Low-energy laser irradiation promotes cellular redox activity</article-title>
<source>Photomed. Laser Surg.</source>
<volume>23</volume>
<year>2005</year>
<fpage>3</fpage>
<lpage>9</lpage>
<pub-id pub-id-type="pmid">15782024</pub-id>
</element-citation>
</ref>
<ref id="bb0375">
<label>75</label>
<element-citation publication-type="journal" id="rf0375">
<person-group person-group-type="author">
<name>
<surname>Eichler</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lavi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Shainberg</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lubart</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Flavins are source of visible-light-induced free radical formation in cells</article-title>
<source>Lasers Surg. Med.</source>
<volume>37</volume>
<year>2005</year>
<fpage>314</fpage>
<lpage>319</lpage>
<pub-id pub-id-type="pmid">16196041</pub-id>
</element-citation>
</ref>
<ref id="bb0380">
<label>76</label>
<element-citation publication-type="journal" id="rf0380">
<person-group person-group-type="author">
<name>
<surname>Lubart</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lavi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Friedmann</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Rochkind</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Photochemistry and photobiology of light absorption by living cells</article-title>
<source>Photomed. Laser Surg.</source>
<volume>24</volume>
<year>2006</year>
<fpage>179</fpage>
<lpage>185</lpage>
<pub-id pub-id-type="pmid">16706696</pub-id>
</element-citation>
</ref>
<ref id="bb0385">
<label>77</label>
<element-citation publication-type="journal" id="rf0385">
<person-group person-group-type="author">
<name>
<surname>Eichler</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Lavi</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Friedmann</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Shainberg</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Lubart</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Red light-induced redox reactions in cells observed with TEMPO</article-title>
<source>Photomed. Laser Surg.</source>
<volume>25</volume>
<year>2007</year>
<fpage>170</fpage>
<lpage>174</lpage>
<pub-id pub-id-type="pmid">17603856</pub-id>
</element-citation>
</ref>
<ref id="bb0390">
<label>78</label>
<element-citation publication-type="journal" id="rf0390">
<person-group person-group-type="author">
<name>
<surname>Zhang</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>X.</given-names>
</name>
</person-group>
<article-title>Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway</article-title>
<source>J. Cell. Physiol.</source>
<volume>217</volume>
<year>2008</year>
<fpage>518</fpage>
<lpage>528</lpage>
<pub-id pub-id-type="pmid">18615581</pub-id>
</element-citation>
</ref>
<ref id="bb0395">
<label>79</label>
<element-citation publication-type="journal" id="rf0395">
<person-group person-group-type="author">
<name>
<surname>Wu</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Xing</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Gao</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>W.R.</given-names>
</name>
</person-group>
<article-title>High fluence low-power laser irradiation induces mitochondrial permeability transition mediated by reactive oxygen species</article-title>
<source>J. Cell. Physiol.</source>
<volume>218</volume>
<year>2009</year>
<fpage>603</fpage>
<lpage>611</lpage>
<pub-id pub-id-type="pmid">19006121</pub-id>
</element-citation>
</ref>
<ref id="bb0400">
<label>80</label>
<element-citation publication-type="journal" id="rf0400">
<person-group person-group-type="author">
<name>
<surname>Hockberger</surname>
<given-names>P.E.</given-names>
</name>
</person-group>
<article-title>The discovery of the damaging effect of sunlight on bacteria</article-title>
<source>J. Photochem. Photobiol. B</source>
<volume>58</volume>
<year>2000</year>
<fpage>185</fpage>
<lpage>191</lpage>
<pub-id pub-id-type="pmid">11233649</pub-id>
</element-citation>
</ref>
<ref id="bb0405">
<label>81</label>
<element-citation publication-type="journal" id="rf0405">
<person-group person-group-type="author">
<name>
<surname>Lai</surname>
<given-names>C.C.</given-names>
</name>
<name>
<surname>Shih</surname>
<given-names>T.P.</given-names>
</name>
<name>
<surname>Ko</surname>
<given-names>W.C.</given-names>
</name>
<name>
<surname>Tang</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Hsueh</surname>
<given-names>P.R.</given-names>
</name>
</person-group>
<article-title>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19), The epidemic and the challenges</article-title>
<source>Int. J. Antimicrob. Agents</source>
<volume>55</volume>
<year>2020</year>
<fpage>105924</fpage>
<pub-id pub-id-type="doi">10.1016/j.ijantimicag.2020.105924</pub-id>
<pub-id pub-id-type="pmid">32081636</pub-id>
</element-citation>
</ref>
<ref id="bb0410">
<label>82</label>
<element-citation publication-type="journal" id="rf0410">
<person-group person-group-type="author">
<name>
<surname>Bumah</surname>
<given-names>V.V.</given-names>
</name>
<name>
<surname>Aboualizadeh</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Masson-Meyers</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Eells</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Enwemeka</surname>
<given-names>C.S.</given-names>
</name>
<name>
<surname>Hirschmugl</surname>
<given-names>C.</given-names>
</name>
</person-group>
<article-title>Resistance of B-DNA to blue light induced damage in methicillin-resistant
<italic>Staphylococcus aureus</italic>
</article-title>
<source>J. Photochem. Photobiol. B</source>
<volume>167</volume>
<year>2017</year>
<fpage>150</fpage>
<lpage>157</lpage>
<pub-id pub-id-type="pmid">28064075</pub-id>
</element-citation>
</ref>
<ref id="bb0415">
<label>83</label>
<element-citation publication-type="journal" id="rf0415">
<person-group person-group-type="author">
<name>
<surname>Pang</surname>
<given-names>P.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>N.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>C.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>Y.</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>X.</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>W.</given-names>
</name>
<name>
<surname>Cai</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Yao</surname>
<given-names>M.</given-names>
</name>
</person-group>
<article-title>460 nm visible light irradiation eradicates MRSA
<italic>via</italic>
inducing prophage activation</article-title>
<source>J. Photochem. Photobiol. B</source>
<volume>166</volume>
<year>2017</year>
<fpage>311</fpage>
<lpage>322</lpage>
<pub-id pub-id-type="pmid">28024282</pub-id>
</element-citation>
</ref>
<ref id="bb0420">
<label>84</label>
<element-citation publication-type="journal" id="rf0420">
<person-group person-group-type="author">
<name>
<surname>Guo</surname>
<given-names>Y.R.</given-names>
</name>
<name>
<surname>Cao</surname>
<given-names>Q.D.</given-names>
</name>
<name>
<surname>Hong</surname>
<given-names>Z.S.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>Y.Y.</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>S.D.</given-names>
</name>
<name>
<surname>Jin</surname>
<given-names>H.J.</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>K.S.</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>D.Y.</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>Y.</given-names>
</name>
</person-group>
<article-title>The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status</article-title>
<source>Mil. Med. Res.</source>
<volume>7</volume>
<issue>11</issue>
<year>2020</year>
<fpage>1</fpage>
<lpage>10</lpage>
<pub-id pub-id-type="doi">10.1186/s40779-020-00240-0</pub-id>
<pub-id pub-id-type="pmid">31928528</pub-id>
</element-citation>
</ref>
<ref id="bb0425">
<label>85</label>
<element-citation publication-type="journal" id="rf0425">
<person-group person-group-type="author">
<name>
<surname>de Lima</surname>
<given-names>F.M.</given-names>
</name>
<name>
<surname>Villaverde</surname>
<given-names>A.B.</given-names>
</name>
<name>
<surname>Salgado</surname>
<given-names>M.A.</given-names>
</name>
<name>
<surname>Castro-Faria-Neto</surname>
<given-names>H.C.</given-names>
</name>
<name>
<surname>Munin</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Albertini</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Aimbire</surname>
<given-names>F.</given-names>
</name>
</person-group>
<article-title>Low intensity laser therapy (LILT)
<italic>in vivo</italic>
acts on the neutrophils recruitment and chemokines/cytokines levels in a model of acute pulmonary inflammation induced by aerosol of lipopolysaccharide from
<italic>Escherichia coli</italic>
in rat</article-title>
<source>J. Photochem. Photobiol. B</source>
<volume>101</volume>
<year>2010</year>
<fpage>271</fpage>
<lpage>278</lpage>
<pub-id pub-id-type="pmid">20728373</pub-id>
</element-citation>
</ref>
<ref id="bb0430">
<label>86</label>
<element-citation publication-type="journal" id="rf0430">
<person-group person-group-type="author">
<name>
<surname>Brochetti</surname>
<given-names>R.A.</given-names>
</name>
<name>
<surname>Leal</surname>
<given-names>M.P.</given-names>
</name>
<name>
<surname>Rodrgues</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>da Palma</surname>
<given-names>P.K.</given-names>
</name>
<name>
<surname>de Oliveira</surname>
<given-names>L.V.F.</given-names>
</name>
<name>
<surname>Horliana</surname>
<given-names>A.C.R.T.</given-names>
</name>
<name>
<surname>Damazo</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>de Oliveira</surname>
<given-names>A.P.L.</given-names>
</name>
<name>
<surname>Paula Vieira</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Lino-Dos-Santos-Franco</surname>
<given-names>A.</given-names>
</name>
</person-group>
<article-title>Photobiomodulation therapy improves both inflammatory and fibrotic parameters in experimental model of lung fibrosis in mice</article-title>
<source>Lasers Med. Sci.</source>
<volume>32</volume>
<year>2017</year>
<fpage>1825</fpage>
<lpage>1834</lpage>
<pub-id pub-id-type="pmid">28712048</pub-id>
</element-citation>
</ref>
<ref id="bb0435">
<label>87</label>
<element-citation publication-type="journal" id="rf0435">
<person-group person-group-type="author">
<name>
<surname>de Brito</surname>
<given-names>A.A.</given-names>
</name>
<name>
<surname>da Silveira</surname>
<given-names>E.C.</given-names>
</name>
<name>
<surname>Rigonato-Liveira</surname>
<given-names>N.C.</given-names>
</name>
<name>
<surname>Soares</surname>
<given-names>S.S.</given-names>
</name>
<name>
<surname>Brandao-Rangel</surname>
<given-names>M.A.R.</given-names>
</name>
<name>
<surname>Soares</surname>
<given-names>C.R.</given-names>
</name>
<name>
<surname>Santos</surname>
<given-names>T.G.</given-names>
</name>
<name>
<surname>Alves</surname>
<given-names>C.E.</given-names>
</name>
<name>
<surname>Herculano</surname>
<given-names>K.Z.</given-names>
</name>
<name>
<surname>Vieira</surname>
<given-names>R.P.</given-names>
</name>
<name>
<surname>Lino-dos-Santos-Franco</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Albertini</surname>
<given-names>R.</given-names>
</name>
<name>
<surname>Aimbire</surname>
<given-names>F.</given-names>
</name>
<name>
<surname>de Oliveira</surname>
<given-names>A.P.</given-names>
</name>
</person-group>
<article-title>Low-level laser therapy attenuates lung inflammation and airway remodeling in a murine model of idiopathic pulmonary fibrosis, Relevance to cytokines secretion from lung structural cells</article-title>
<source>J. Photochem. Photobiol. B</source>
<volume>203</volume>
<year>2020</year>
<fpage>111731</fpage>
<pub-id pub-id-type="doi">10.1016/j.jphotobiol.2019.111731</pub-id>
<pub-id pub-id-type="pmid">31935633</pub-id>
</element-citation>
</ref>
<ref id="bb0440">
<label>88</label>
<element-citation publication-type="journal" id="rf0440">
<person-group person-group-type="author">
<name>
<surname>Aguiar</surname>
<given-names>A.C.C.</given-names>
</name>
<name>
<surname>Murce</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Cortopassi</surname>
<given-names>W.A.</given-names>
</name>
<name>
<surname>Pimentel</surname>
<given-names>A.S.</given-names>
</name>
<name>
<surname>Almeida</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Barros</surname>
<given-names>D.C.S.</given-names>
</name>
<name>
<surname>Guedes</surname>
<given-names>J.S.</given-names>
</name>
<name>
<surname>Meneghetti</surname>
<given-names>M.R.</given-names>
</name>
<name>
<surname>Krettli</surname>
<given-names>A.U.</given-names>
</name>
</person-group>
<article-title>Chloroquine analogs as antimalarial candidates with potent
<italic>in vitro</italic>
and
<italic>in vivo</italic>
activity</article-title>
<source>Int. J. Parasitol. Drug Resist.</source>
<volume>8</volume>
<year>2018</year>
<fpage>459</fpage>
<lpage>464</lpage>
</element-citation>
</ref>
<ref id="bb0445">
<label>89</label>
<element-citation publication-type="journal" id="rf0445">
<person-group person-group-type="author">
<name>
<surname>Savarino</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Boelaert</surname>
<given-names>J.R.</given-names>
</name>
<name>
<surname>Cassone</surname>
<given-names>A.</given-names>
</name>
<name>
<surname>Majori</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Cauda</surname>
<given-names>R.</given-names>
</name>
</person-group>
<article-title>Effects of chloroquine on viral infections: an old drug against today's diseases?</article-title>
<source>Lancet Infect. Dis.</source>
<volume>3</volume>
<year>2003</year>
<fpage>722</fpage>
<lpage>727</lpage>
<pub-id pub-id-type="pmid">14592603</pub-id>
</element-citation>
</ref>
<ref id="bb0450">
<label>90</label>
<element-citation publication-type="journal" id="rf0450">
<person-group person-group-type="author">
<name>
<surname>Vincent</surname>
<given-names>M.J.</given-names>
</name>
<name>
<surname>Bergeron</surname>
<given-names>E.</given-names>
</name>
<name>
<surname>Benjannet</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Erickson</surname>
<given-names>B.R.</given-names>
</name>
<name>
<surname>Rollin</surname>
<given-names>P.E.</given-names>
</name>
<name>
<surname>Ksiazek</surname>
<given-names>T.G.</given-names>
</name>
<name>
<surname>Seidah</surname>
<given-names>N.G.</given-names>
</name>
<name>
<surname>Nichol</surname>
<given-names>S.T.</given-names>
</name>
</person-group>
<article-title>Chloroquine is a potent inhibitor of SARS coronavirus infection and spread</article-title>
<source>Virol. J.</source>
<volume>2</volume>
<year>2005</year>
<fpage>69</fpage>
<pub-id pub-id-type="pmid">16115318</pub-id>
</element-citation>
</ref>
<ref id="bb0455">
<label>91</label>
<element-citation publication-type="journal" id="rf0455">
<person-group person-group-type="author">
<name>
<surname>Askenova</surname>
<given-names>I.Z.</given-names>
</name>
<name>
<surname>Burduli</surname>
<given-names>N.M.</given-names>
</name>
</person-group>
<article-title>Pathogenetic effects of low-intensity laser therapy for chronic obstructive pulmonary disease</article-title>
<source>Ter. Arkh.</source>
<volume>88</volume>
<year>2015</year>
<fpage>32</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="doi">10.17116/terarkh201688332-35</pub-id>
</element-citation>
</ref>
<ref id="bb0460">
<label>92</label>
<element-citation publication-type="journal" id="rf0460">
<person-group person-group-type="author">
<name>
<surname>Yusupalieva</surname>
<given-names>M.M.</given-names>
</name>
<name>
<surname>Savtchenko</surname>
<given-names>V.M.</given-names>
</name>
</person-group>
<article-title>The effectiveness of combined laser therapy for the treatment of the patients presenting with bronchial asthma and concomitant allergic rhinitis</article-title>
<source>Vopr. Kurortol. Fizioter. Lech. Fiz. Kult.</source>
<volume>94</volume>
<year>2017</year>
<fpage>14</fpage>
<lpage>18</lpage>
<pub-id pub-id-type="doi">10.17116/kurort201794414-18</pub-id>
<pub-id pub-id-type="pmid">29119955</pub-id>
</element-citation>
</ref>
<ref id="bb0465">
<label>93</label>
<element-citation publication-type="journal" id="rf0465">
<person-group person-group-type="author">
<name>
<surname>Jarvis</surname>
<given-names>D.L.</given-names>
</name>
<name>
<surname>Garcia</surname>
<given-names>A.</given-names>
<suffix>Jr.</suffix>
</name>
</person-group>
<article-title>Long-term stability of baculoviruses stored under various conditions</article-title>
<source>BioTechniques</source>
<volume>16</volume>
<year>1994</year>
<fpage>508</fpage>
<lpage>513</lpage>
<pub-id pub-id-type="pmid">8185926</pub-id>
</element-citation>
</ref>
<ref id="bb0470">
<label>94</label>
<element-citation publication-type="journal" id="rf0470">
<person-group person-group-type="author">
<name>
<surname>Richardson</surname>
<given-names>T.B.</given-names>
</name>
<name>
<surname>Porter</surname>
<given-names>C.D.</given-names>
</name>
</person-group>
<article-title>Inactivation of murine leukaemia virus by exposure to visible light</article-title>
<source>Virology</source>
<volume>341</volume>
<year>2005</year>
<fpage>321</fpage>
<lpage>329</lpage>
<pub-id pub-id-type="pmid">16099012</pub-id>
</element-citation>
</ref>
<ref id="bb0475">
<label>95</label>
<element-citation publication-type="journal" id="rf0475">
<person-group person-group-type="author">
<name>
<surname>Muller-Breitkreutz</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Mohr</surname>
<given-names>H.</given-names>
</name>
<name>
<surname>Briviba</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Sies</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Inactivation of viruses by chemically and photchemically generated singlet molecular oxygen</article-title>
<source>J. Photochem. Photobiol. B</source>
<volume>30</volume>
<issue>1</issue>
<year>1995</year>
<fpage>63</fpage>
<lpage>70</lpage>
<pub-id pub-id-type="pmid">8558363</pub-id>
</element-citation>
</ref>
<ref id="bb0480">
<label>96</label>
<element-citation publication-type="journal" id="rf0480">
<person-group person-group-type="author">
<name>
<surname>Bachmann</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Knuver-Hopf</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Lambrecht</surname>
<given-names>B.</given-names>
</name>
<name>
<surname>Mohr</surname>
<given-names>H.</given-names>
</name>
</person-group>
<article-title>Target structures for HIV-1 inactivation by methylene blue and light</article-title>
<source>J. Med. Virol.</source>
<volume>47</volume>
<year>1995</year>
<fpage>172</fpage>
<lpage>178</lpage>
<pub-id pub-id-type="pmid">8830122</pub-id>
</element-citation>
</ref>
<ref id="bb0485">
<label>97</label>
<element-citation publication-type="journal" id="rf0485">
<person-group person-group-type="author">
<name>
<surname>Wagner</surname>
<given-names>S.J.</given-names>
</name>
</person-group>
<article-title>Virus inactivation in blood components by photoactive phenothiazine dyes</article-title>
<source>Transfus. Med. Rev.</source>
<volume>16</volume>
<year>2002</year>
<fpage>61</fpage>
<lpage>66</lpage>
<pub-id pub-id-type="pmid">11788930</pub-id>
</element-citation>
</ref>
<ref id="bb0490">
<label>98</label>
<element-citation publication-type="journal" id="rf0490">
<person-group person-group-type="author">
<name>
<surname>Schuit</surname>
<given-names>M.</given-names>
</name>
<name>
<surname>Gardner</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>S.</given-names>
</name>
<name>
<surname>Bower</surname>
<given-names>K.</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>G.</given-names>
</name>
<name>
<surname>Freeburger</surname>
<given-names>D.</given-names>
</name>
<name>
<surname>Dabisch</surname>
<given-names>P.</given-names>
</name>
</person-group>
<article-title>The influence of simulated sunlight on the inactivation of influenza virus in aerosols</article-title>
<source>J. Infect. Dis.</source>
<volume>221</volume>
<year>2020</year>
<fpage>372</fpage>
<lpage>378</lpage>
<pub-id pub-id-type="doi">10.1093/infdis/jiz582</pub-id>
<pub-id pub-id-type="pmid">31778532</pub-id>
</element-citation>
</ref>
<ref id="bb0495">
<label>99</label>
<element-citation publication-type="journal" id="rf0495">
<person-group person-group-type="author">
<name>
<surname>Winter</surname>
<given-names>J.</given-names>
</name>
<name>
<surname>Weinberger</surname>
<given-names>S.</given-names>
</name>
</person-group>
<article-title>Sunlight destroys coronavirus</article-title>
<source>Yahoo News</source>
<issue>April 17</issue>
<year>2020</year>
</element-citation>
</ref>
</ref-list>
<ack id="ac0005">
<sec id="s0040">
<title>Acknowledgement</title>
<p id="p0145">We thank Dr. Aldo Brugnera of São Paulo Brazil for his correspondence with Dr. Chukuka S. Enwemeka, which inspired this paper, and Dr. Jack Greiner of Harvard Medical School for his feedback on the paper.</p>
</sec>
</ack>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B40 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000B40 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:7194064
   |texte=   Light as a potential treatment for pandemic coronavirus infections: A perspective
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:32388486" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021