Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Visualizing Europe’s demographic scars with coplots and contour plots

Identifieur interne : 000B02 ( Pmc/Corpus ); précédent : 000B01; suivant : 000B03

Visualizing Europe’s demographic scars with coplots and contour plots

Auteurs : Jonathan Minton ; Laura Vanderbloemen ; Danny Dorling

Source :

RBID : PMC:3781004

Abstract

We present two enhancements to existing methods for visualizing vital statistics data. Data from the Human Mortality Database were used and vital statistics from England and Wales are used for illustration. The simpler of these methods involves coplotting mean age of death with its variance, and the more complex of these methods is to present data as a contour plot. The coplot method shows the effect of the 20th century’s epidemiological transitions. The contour plot method allows more complex and subtle age, period and cohort effects to be seen.

The contour plot shows the effects of broad improvements in public health over the 20th century, including vast reductions in rates of childhood mortality, reduced baseline mortality risks during adulthood and the postponement of higher mortality risks to older ages. They also show the effects of the two world wars and the 1918 influenza pandemic on men of fighting age, women and children. The contour plots also show a cohort effect for people born around 1918, suggesting a possible epigenetic effect of parental exposure to the pandemic which shortened the cohort’s lifespan and which has so far received little attention.

Although this article focuses on data from England and Wales, the associated online appendices contain equivalent visualizations for almost 50 series of data available on the Human Mortality Database. We expect that further analyses of these visualizations will reveal further insights into global public health.


Url:
DOI: 10.1093/ije/dyt115
PubMed: 24062300
PubMed Central: 3781004

Links to Exploration step

PMC:3781004

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Visualizing Europe’s demographic scars with coplots and contour plots</title>
<author>
<name sortKey="Minton, Jonathan" sort="Minton, Jonathan" uniqKey="Minton J" first="Jonathan" last="Minton">Jonathan Minton</name>
<affiliation>
<nlm:aff id="dyt115-AFF1">Department of Urban Studies, University of Glasgow, Glasgow, UK,</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vanderbloemen, Laura" sort="Vanderbloemen, Laura" uniqKey="Vanderbloemen L" first="Laura" last="Vanderbloemen">Laura Vanderbloemen</name>
<affiliation>
<nlm:aff wicri:cut=" and" id="dyt115-AFF1">Department of Health Science, University of York, York, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dorling, Danny" sort="Dorling, Danny" uniqKey="Dorling D" first="Danny" last="Dorling">Danny Dorling</name>
<affiliation>
<nlm:aff id="dyt115-AFF1">School of Geography and the Environment, University of Oxford, Oxford, UK</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">24062300</idno>
<idno type="pmc">3781004</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781004</idno>
<idno type="RBID">PMC:3781004</idno>
<idno type="doi">10.1093/ije/dyt115</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000B02</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000B02</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Visualizing Europe’s demographic scars with coplots and contour plots</title>
<author>
<name sortKey="Minton, Jonathan" sort="Minton, Jonathan" uniqKey="Minton J" first="Jonathan" last="Minton">Jonathan Minton</name>
<affiliation>
<nlm:aff id="dyt115-AFF1">Department of Urban Studies, University of Glasgow, Glasgow, UK,</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Vanderbloemen, Laura" sort="Vanderbloemen, Laura" uniqKey="Vanderbloemen L" first="Laura" last="Vanderbloemen">Laura Vanderbloemen</name>
<affiliation>
<nlm:aff wicri:cut=" and" id="dyt115-AFF1">Department of Health Science, University of York, York, UK</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Dorling, Danny" sort="Dorling, Danny" uniqKey="Dorling D" first="Danny" last="Dorling">Danny Dorling</name>
<affiliation>
<nlm:aff id="dyt115-AFF1">School of Geography and the Environment, University of Oxford, Oxford, UK</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International Journal of Epidemiology</title>
<idno type="ISSN">0300-5771</idno>
<idno type="eISSN">1464-3685</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>We present two enhancements to existing methods for visualizing vital statistics data. Data from the Human Mortality Database were used and vital statistics from England and Wales are used for illustration. The simpler of these methods involves coplotting mean age of death with its variance, and the more complex of these methods is to present data as a contour plot. The coplot method shows the effect of the 20th century’s epidemiological transitions. The contour plot method allows more complex and subtle age, period and cohort effects to be seen.</p>
<p>The contour plot shows the effects of broad improvements in public health over the 20th century, including vast reductions in rates of childhood mortality, reduced baseline mortality risks during adulthood and the postponement of higher mortality risks to older ages. They also show the effects of the two world wars and the 1918 influenza pandemic on men of fighting age, women and children. The contour plots also show a cohort effect for people born around 1918, suggesting a possible epigenetic effect of parental exposure to the pandemic which shortened the cohort’s lifespan and which has so far received little attention.</p>
<p>Although this article focuses on data from England and Wales, the associated online appendices contain equivalent visualizations for almost 50 series of data available on the Human Mortality Database. We expect that further analyses of these visualizations will reveal further insights into global public health.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Davey Smith, G" uniqKey="Davey Smith G">G Davey Smith</name>
</author>
<author>
<name sortKey="Marmot, Mg" uniqKey="Marmot M">MG Marmot</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harris, B" uniqKey="Harris B">B Harris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Szeter, S" uniqKey="Szeter S">S Szeter</name>
</author>
<author>
<name sortKey="Mooney, G" uniqKey="Mooney G">G Mooney</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davey Smith, G" uniqKey="Davey Smith G">G Davey Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Leon, Da" uniqKey="Leon D">DA Leon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alen Sula, C" uniqKey="Alen Sula C">C Alen Sula</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wilkinson, Rg" uniqKey="Wilkinson R">RG Wilkinson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gompertz, B" uniqKey="Gompertz B">B Gompertz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kermack, W" uniqKey="Kermack W">W Kermack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barker, Djp" uniqKey="Barker D">DJP Barker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davey Smith, G" uniqKey="Davey Smith G">G Davey Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rigby, Je" uniqKey="Rigby J">JE Rigby</name>
</author>
<author>
<name sortKey="Dorling, D" uniqKey="Dorling D">D Dorling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lexis, W" uniqKey="Lexis W">W Lexis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sarkar, D" uniqKey="Sarkar D">D Sarkar</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dwork, D" uniqKey="Dwork D">D Dwork</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davey Smith, G" uniqKey="Davey Smith G">G Davey Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ben Shlomo, Y" uniqKey="Ben Shlomo Y">Y Ben-Shlomo</name>
</author>
<author>
<name sortKey="Davey Smith, G" uniqKey="Davey Smith G">G Davey Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borghol, N" uniqKey="Borghol N">N Borghol</name>
</author>
<author>
<name sortKey="Suderman, M" uniqKey="Suderman M">M Suderman</name>
</author>
<author>
<name sortKey="Mcardle, W" uniqKey="Mcardle W">W McArdle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hyman, Se" uniqKey="Hyman S">SE Hyman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ma, Yt" uniqKey="Ma Y">YT Ma</name>
</author>
<author>
<name sortKey="Collins, Si" uniqKey="Collins S">SI Collins</name>
</author>
<author>
<name sortKey="Young, Ls" uniqKey="Young L">LS Young</name>
</author>
<author>
<name sortKey="Murray, Pg" uniqKey="Murray P">PG Murray</name>
</author>
<author>
<name sortKey="Woodman, Cbj" uniqKey="Woodman C">CBJ Woodman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tang, Lp" uniqKey="Tang L">LP Tang</name>
</author>
<author>
<name sortKey="Macleod, Ja" uniqKey="Macleod J">JA Macleod</name>
</author>
<author>
<name sortKey="Hobbs, Fdr" uniqKey="Hobbs F">FDR Hobbs</name>
</author>
<author>
<name sortKey="Wharton, Ba" uniqKey="Wharton B">BA Wharton</name>
</author>
<author>
<name sortKey="Davey Smith, G" uniqKey="Davey Smith G">G Davey Smith</name>
</author>
<author>
<name sortKey="Stewart, Pm" uniqKey="Stewart P">PM Stewart</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horrell, S" uniqKey="Horrell S">S Horrell</name>
</author>
<author>
<name sortKey="Humphries, J" uniqKey="Humphries J">J Humphries</name>
</author>
<author>
<name sortKey="Voth, Hj" uniqKey="Voth H">HJ Voth</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Thayer, Zm" uniqKey="Thayer Z">ZM Thayer</name>
</author>
<author>
<name sortKey="Kuzawa, Cw" uniqKey="Kuzawa C">CW Kuzawa</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roseboom, Tj" uniqKey="Roseboom T">TJ Roseboom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Painter, Rc" uniqKey="Painter R">RC Painter</name>
</author>
<author>
<name sortKey="Roseboom, Tj" uniqKey="Roseboom T">TJ Roseboom</name>
</author>
<author>
<name sortKey="Bleker, Op" uniqKey="Bleker O">OP Bleker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Elias, Sg" uniqKey="Elias S">SG Elias</name>
</author>
<author>
<name sortKey="Peeters, Phm" uniqKey="Peeters P">PHM Peeters</name>
</author>
<author>
<name sortKey="Grobbee, De" uniqKey="Grobbee D">DE Grobbee</name>
</author>
<author>
<name sortKey="Van Noord, Pah" uniqKey="Van Noord P">PAH van Noord</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Roseboom, Tj" uniqKey="Roseboom T">TJ Roseboom</name>
</author>
<author>
<name sortKey="Van Der Meulen, Jhp" uniqKey="Van Der Meulen J">JHP van der Meulen</name>
</author>
<author>
<name sortKey="Osmond, C" uniqKey="Osmond C">C Osmond</name>
</author>
<author>
<name sortKey="Barker, Djp" uniqKey="Barker D">DJP Barker</name>
</author>
<author>
<name sortKey="Ravelli, Acj" uniqKey="Ravelli A">ACJ Ravelli</name>
</author>
<author>
<name sortKey="Bleker, Op" uniqKey="Bleker O">OP Bleker</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Almond, D" uniqKey="Almond D">D Almond</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Omran, Ar" uniqKey="Omran A">AR Omran</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dorling, D" uniqKey="Dorling D">D Dorling</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Olshansky, Sj" uniqKey="Olshansky S">SJ Olshansky</name>
</author>
<author>
<name sortKey="Carnes, Ba" uniqKey="Carnes B">BA Carnes</name>
</author>
<author>
<name sortKey="Desesguelles, A" uniqKey="Desesguelles A">A Désesguelles</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oeppen, J" uniqKey="Oeppen J">J Oeppen</name>
</author>
<author>
<name sortKey="Vaupel, Jw" uniqKey="Vaupel J">JW Vaupel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sankoh, O" uniqKey="Sankoh O">O Sankoh</name>
</author>
<author>
<name sortKey="Byass, P" uniqKey="Byass P">P Byass</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cardwell, Cr" uniqKey="Cardwell C">CR Cardwell</name>
</author>
<author>
<name sortKey="Stene, Lc" uniqKey="Stene L">LC Stene</name>
</author>
<author>
<name sortKey="Joner, G" uniqKey="Joner G">G Joner</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Int J Epidemiol</journal-id>
<journal-id journal-id-type="iso-abbrev">Int J Epidemiol</journal-id>
<journal-id journal-id-type="publisher-id">ije</journal-id>
<journal-id journal-id-type="hwp">intjepid</journal-id>
<journal-title-group>
<journal-title>International Journal of Epidemiology</journal-title>
</journal-title-group>
<issn pub-type="ppub">0300-5771</issn>
<issn pub-type="epub">1464-3685</issn>
<publisher>
<publisher-name>Oxford University Press</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">24062300</article-id>
<article-id pub-id-type="pmc">3781004</article-id>
<article-id pub-id-type="doi">10.1093/ije/dyt115</article-id>
<article-id pub-id-type="publisher-id">dyt115</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Methodology</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Visualizing Europe’s demographic scars with coplots and contour plots</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Minton</surname>
<given-names>Jonathan</given-names>
</name>
<xref ref-type="aff" rid="dyt115-AFF1">
<sup>1</sup>
</xref>
<xref ref-type="corresp" rid="dyt115-COR1">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Vanderbloemen</surname>
<given-names>Laura</given-names>
</name>
<xref ref-type="aff" rid="dyt115-AFF1">
<sup>2</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Dorling</surname>
<given-names>Danny</given-names>
</name>
<xref ref-type="aff" rid="dyt115-AFF1">
<sup>3</sup>
</xref>
</contrib>
</contrib-group>
<aff id="dyt115-AFF1">
<sup>1</sup>
Department of Urban Studies, University of Glasgow, Glasgow, UK,
<sup>2</sup>
Department of Health Science, University of York, York, UK and
<sup>3</sup>
School of Geography and the Environment, University of Oxford, Oxford, UK</aff>
<author-notes>
<corresp id="dyt115-COR1">*Corresponding author. Department of Urban Studies, University of Glasgow, 25 Bute Gardens, Glasgow, G12 8RS. E-mail:
<email>nate.minton@gmail.com</email>
</corresp>
</author-notes>
<pub-date pub-type="ppub">
<month>8</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="epub">
<day>30</day>
<month>8</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>30</day>
<month>8</month>
<year>2013</year>
</pub-date>
<pmc-comment> PMC Release delay is 0 months and 0 days and was based on the . </pmc-comment>
<volume>42</volume>
<issue>4</issue>
<fpage>1164</fpage>
<lpage>1176</lpage>
<history>
<date date-type="accepted">
<day>21</day>
<month>5</month>
<year>2013</year>
</date>
</history>
<permissions>
<copyright-statement>Published by Oxford University Press on behalf of the International Epidemiological Association © The Author 2013</copyright-statement>
<copyright-year>2013</copyright-year>
<license license-type="creative-commons" xlink:href="http://creativecommons.org/licenses/by-nc/3.0">
<license-p>
<pmc-comment>CREATIVE COMMONS</pmc-comment>
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by-nc/3.0/">http://creativecommons.org/licenses/by-nc/3.0/</ext-link>
), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com</license-p>
</license>
</permissions>
<abstract>
<p>We present two enhancements to existing methods for visualizing vital statistics data. Data from the Human Mortality Database were used and vital statistics from England and Wales are used for illustration. The simpler of these methods involves coplotting mean age of death with its variance, and the more complex of these methods is to present data as a contour plot. The coplot method shows the effect of the 20th century’s epidemiological transitions. The contour plot method allows more complex and subtle age, period and cohort effects to be seen.</p>
<p>The contour plot shows the effects of broad improvements in public health over the 20th century, including vast reductions in rates of childhood mortality, reduced baseline mortality risks during adulthood and the postponement of higher mortality risks to older ages. They also show the effects of the two world wars and the 1918 influenza pandemic on men of fighting age, women and children. The contour plots also show a cohort effect for people born around 1918, suggesting a possible epigenetic effect of parental exposure to the pandemic which shortened the cohort’s lifespan and which has so far received little attention.</p>
<p>Although this article focuses on data from England and Wales, the associated online appendices contain equivalent visualizations for almost 50 series of data available on the Human Mortality Database. We expect that further analyses of these visualizations will reveal further insights into global public health.</p>
</abstract>
<kwd-group>
<kwd>Demography</kwd>
<kwd>visualisation</kwd>
<kwd>mortality</kwd>
<kwd>epidemiological transition</kwd>
<kwd>vital statistics</kwd>
<kwd>public health</kwd>
</kwd-group>
<counts>
<page-count count="13"></page-count>
</counts>
</article-meta>
</front>
<body>
<sec>
<title>Introduction</title>
<p>Accurate records of births and deaths have been collected by some nations for centuries. Their value in understanding long-term trends in population health has long been recognized by epidemiologists and actuaries alike, allowing researchers to identify important changes in mortality since the late 19th century by helping identify otherwise hidden patterns.
<xref ref-type="bibr" rid="dyt115-B1 dyt115-B2 dyt115-B3 dyt115-B4 dyt115-B5 dyt115-B6">
<sup>1–6</sup>
</xref>
High-quality vital statistics make possible the exploration of: age effects, of the type identified by Gompertz; cohort effects, of the type identified by Kermack among others, and those currently associated with Barker’s foetal origins hypothesis; and period effects, such as the 20th century ‘epidemiological transition’.
<xref ref-type="bibr" rid="dyt115-B7 dyt115-B8 dyt115-B9 dyt115-B10 dyt115-B11">
<sup>7–11</sup>
</xref>
</p>
<p>In this paper, we present two enhancements to established visual methods for exploring vital statistics. The simpler enhancement is to coplot mean age of death, a summary measure of central tendency, alongside its variance, a measure of deviation. The more complex of these methods involves converting age- and period-specific mortality rates into contour plots, topographical representations similar to Lexis plots. These measures, unlike life expectancies which involve some element of statistical projection, are purely empirical. Exploring these contour plots allows age, period and cohort effects to be identified simultaneously. They show a cohort effect associated with the 1918 influenza pandemic which has, to our knowledge, received little attention in the demographic and epidemiological literature to date, and has not previously been visualized as clearly as in these new demographic maps.</p>
</sec>
<sec sec-type="methods">
<title>Methods</title>
<sec>
<title>Data used</title>
<p>Data were taken from the Human Mortality Database which presented the number of births and deaths, for males and females separately, for all years for which data are available, and for every single year of age band from 0 to over 100 years inclusive, and partially imputed by the Human Mortality Database for persons aged 80 years and over.
<xref ref-type="bibr" rid="dyt115-B12">
<sup>12</sup>
</xref>
Because of small sample sizes at the older age groups, the contour plots used data up to the age of 80 years inclusive.</p>
<p>As the Human Mortality Database is a collection of vital statistic data, the total number of observations involved in the analyses is huge.
<xref ref-type="bibr" rid="dyt115-B13">
<sup>13</sup>
</xref>
For some nations the records go back for just a few years whereas for others records go back to the 17th century. Results from England and Wales are used mainly for illustration within this article, and results from many other developed world nations are presented in the
<ext-link ext-link-type="uri" xlink:href="http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyt115/-/DC1">Supplementary Appendix</ext-link>
(available as
<ext-link ext-link-type="uri" xlink:href="http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyt115/-/DC1">Supplementary data</ext-link>
at
<italic>IJE</italic>
online).</p>
</sec>
<sec>
<title>Calculation of metrics</title>
<p>Age-, country-, gender- and date-specific crude mortality rates were calculated by dividing the number of deaths at each age by the number of persons alive at that age. Arithmetical means and variances of ages of death were calculated for each country, gender and year; the formulae used were:
<disp-formula>
<graphic xlink:href="dyt115um1"></graphic>
</disp-formula>
where
<italic>x</italic>
refers to age of death,
<italic>f</italic>
to the frequency of observations at that age and
<italic>n</italic>
to the total number of deaths observed for that country, gender and year combination. Variance around the age of death was calculated both including and excluding deaths of persons aged under 5 years to account for the effects of child mortality. These results are presented for England and Wales within the main results below. Equivalent results are presented for other nations in the
<ext-link ext-link-type="uri" xlink:href="http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyt115/-/DC1">Supplementary Appendix</ext-link>
(available as
<ext-link ext-link-type="uri" xlink:href="http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyt115/-/DC1">Supplementary data</ext-link>
at
<italic>IJE</italic>
online).</p>
</sec>
<sec>
<title>Contour map representations</title>
<p>The crude mortality rates produced are each effectively a discrete two-dimensional array of numbers, one dimension representing a year of human age, the other representing a temporal year. Contour plots draw a continuous interpolated topology of these arrays, linking together spaces estimated to have equal values with monotone lines (the contours). They are commonly used in geographical topographical maps, where each contour represents a given height. On a topographical map, therefore, a series of concentric circles would represent either a hill, if the central contour were of a higher value than surrounding contours, or a depression, if the central contour were lower than surrounding contours. Steeper inclines are indicated by the contours being bunched closer together, and where the gradient is shallower the contours are further apart. These plots are similar to Lexis plots, except that these plots link points of equal value that have been interpolated as based on the data, whereas in general Lexis plots do not.
<xref ref-type="bibr" rid="dyt115-B14">
<sup>14</sup>
</xref>
Contour plots were produced using the Lattice package within the R statistical programming environment, and coloured so that white represents a very low mortality rate, and darker shades indicate higher mortality rates.
<xref ref-type="bibr" rid="dyt115-B15">
<sup>15</sup>
</xref>
<sup>,</sup>
<xref ref-type="bibr" rid="dyt115-B16">
<sup>16</sup>
</xref>
</p>
</sec>
</sec>
<sec sec-type="results">
<title>Results</title>
<sec>
<title>Mean and variance plots</title>
<p>
<xref ref-type="fig" rid="dyt115-F1">Figure 1</xref>
shows the mean/variance plots for England and Wales between 1841 and 2005. Dashed vertical lines have been added for the years 1914, 1918, 1939 and 1945 to indicate the start and end of the World Wars. When deaths at all ages are considered (see also
<xref ref-type="fig" rid="dyt115-F1">Figure 1</xref>
a and c), we see that the mean ages of death increased rapidly during the first half of the 20th century. Afterwards, the rate of increase began to taper off. It is not clear if levels are levelling off to an asymptote or continuing to increase more gradually. Over this same time period, the variance in the mean ages of death at each time period has decreased. The two metrics are strongly inversely correlated (Pearson correlation
<italic>r</italic>
= −0.96 for males;
<italic>r</italic>
= −0.97 for females).
<fig id="dyt115-F1" position="float">
<label>Figure 1</label>
<caption>
<p>Mean age of death and variance around mean age of death in England & Wales from 1841 to 2005. Vertical lines indicate the years 1914, 1918, 1939 and 1945. a) Males, all ages. b) Males, excluding under fives. c) Females, all ages d) Females, excluding under fives</p>
</caption>
<graphic xlink:href="dyt115f1ap"></graphic>
<graphic xlink:href="dyt115f1bp"></graphic>
</fig>
</p>
<p>
<xref ref-type="fig" rid="dyt115-F1">Figure 1</xref>
b and d presents the equivalent trends for males and females, respectively, in persons aged 5 yearsor older. This shows what the trends are when child mortality is ignored. Again, mean ages of death have increased over this time period, but were more gradual, continuing throughout the observed period, rather than mainly occurring during the first half of the 20th century. The strong inverse correlation between the mean and variance is still present when very young deaths are excluded (Pearson correlation
<italic>r</italic>
= −0.98 for males, and
<italic>r</italic>
= −0.99 for females).</p>
<sec>
<title>The impact of the World Wars</title>
<p>Around the time of the two World Wars, the mean and variances briefly cease to be inversely correlated and instead both spike downwards. This is much more strongly pronounced for males than females. This could be caused by high levels of mortality among men fighting in the wars, including dying from diseases associated with warfare and the trenches and battlefields, placing a much increased mortality risk on young adults within a relatively small age range. Data are reported separately for the civilian population only, and are presented in
<xref ref-type="fig" rid="dyt115-F2">Figure 2</xref>
. We see that the concurrent downwards spike was not present or much attenuated for civilians, and that both the male and female trends are very similar to each other, indicating strong support for this hypothesis.
<fig id="dyt115-F2" position="float">
<label>Figure 2</label>
<caption>
<p>Mean ages of death and variance around mean age of death, England & Wales, 1841 to 2005, Civilian population only a) Males, all ages, civilian population only. b) Females, all ages, civilian population only</p>
</caption>
<graphic xlink:href="dyt115f2p"></graphic>
</fig>
</p>
</sec>
</sec>
<sec>
<title>Contour plots</title>
<p>
<xref ref-type="fig" rid="dyt115-F3">Figure 3</xref>
shows the mortality rate contour plots of the same England and Wales datasets. A number of complex patterns are observed, some specific to either males or females, and others common to both genders. Bimodal or ‘bathtub’ mortality patterns can be seen in the contour plots by considering any vertical transect through any of our maps, which presents a cross-sectional snapshot of the relationship between mortality rates and human age in any given year. Comparing a cross section from around 1900 with another around 2000, it is clear the mortality distribution has changed radically as public health has improved. Child mortality rates have reduced drastically, as the thick concentration of broadly parallel lines all but disappears.
<fig id="dyt115-F3" position="float">
<label>Figure 3</label>
<caption>
<p>Contour plots of mortality rates, England & Wales, 1841 to 2005. a) Males in England & Wales, 1841 to 2005. b) Females in England & Wales, 1841 to 2005</p>
</caption>
<graphic xlink:href="dyt115f3p"></graphic>
</fig>
</p>
<sec>
<title>Mortality patterns at older ages</title>
<p>Background levels of relatively high mortality risk that used to be present during early middle age, and in peoples’ 30s and 40s, have been pushed back to much older middle age and early old age: now into peoples’ 50s and 60s. This is made apparent by considering the contour line marked ‘0.01’. If mortality rates were to have become markedly more compressed over time, then the lines at older ages would have moved closer together. Instead, they appear to be moving upwards broadly in parallel, suggesting that average ages of death can be expected to continue to increase for a little longer yet, rather than reach a hard limit of older age in the very near future.</p>
</sec>
<sec>
<title>The direct effect of the World Wars</title>
<p>Both World Wars have a clear effect on the contour maps. A long, thin ‘shard’ of increased mortality is present for males coinciding with World War I, and a less pronounced shard coincides with World War II. The mortality hazard shards begin at age 18 years, the youngest age of usual recruitment, and extend to younger middle age (the oldest age of much recruitment). These tightly wound contours show how severe the effects of the WorldWar I were, as for a brief period young adult males had higher rates of mortality than much older men. Another indication of the direct effect of both World Wars is through the patterns of vertical disruption observed to the upper and lower contour lines during the years in which these events occurred. Looking at the equivalent demographic maps for the civilian population only, as shown in
<xref ref-type="fig" rid="dyt115-F4">Figure 4</xref>
, further indicates the extent to which the excess mortality risk was due to warfare. For female civilians (
<xref ref-type="fig" rid="dyt115-F4">Figure 4</xref>
b), barely any effect is noticeable whatsoever. For male civilians (
<xref ref-type="fig" rid="dyt115-F4">Figure 4</xref>
a), very little effect is apparent for World War II. For the World War I, however, a large effect is still noticeable, indicating much of the cause of the excess mortality impact may have been something separate to, but that coincided with, warfare.
<fig id="dyt115-F4" position="float">
<label>Figure 4</label>
<caption>
<p>Contour plots of mortality rates, England & Wales, 1841 to 2005. a) Males, civilians only, England & Wales, 1841 to 2005. b) Females, civilians only, England & Wales, 1841 to 2005</p>
</caption>
<graphic xlink:href="dyt115f4p"></graphic>
</fig>
</p>
</sec>
<sec>
<title>Evidence of an indirect, cohort effect of World War I</title>
<p>A diagonal ‘tear’ is present in the figures as well, suggesting a cohort effect. To illustrate this,
<xref ref-type="fig" rid="dyt115-F5">Figure 5</xref>
presents the map shown in
<xref ref-type="fig" rid="dyt115-F3">Figure 3</xref>
a annotated with a diagonal bar indicating the cohort of interest and leading to an approximate birth year. We see that this cohort is associated with a drop in the mortality rate contours in older ages compared with any cohort born just a few years previously, implying this cohort experienced greater lifetime mortality risks at all ages. The extent to which the contours drop downwards for this particular contour gives an indication of the magnitude of this effect. A crude visual estimate would suggest being born within this cohort could lead to mortality rates equivalent to those that might otherwise be expected of persons around 5 years older than themselves, in that the downwards dip across the vertical axis is around 5 years. The strong indication that this is a World War I birth cohort is that, if the diagonal line were to be traced back left and downwards, it would intersect the horizontal axis (i.e. reach age = 0) at round about the time of World War I wars, and especially that war may not in fact be as good for babies and other young children as was once thought.
<xref ref-type="bibr" rid="dyt115-B17">
<sup>17</sup>
</xref>
<fig id="dyt115-F5" position="float">
<label>Figure 5</label>
<caption>
<p>Contour plot of mortality rates for males in England & Wales, 1841 to 2005, with line added to indicate cohort effect</p>
</caption>
<graphic xlink:href="dyt115f5p"></graphic>
</fig>
</p>
</sec>
</sec>
<sec>
<title>International comparison of trends</title>
<p>Similar patterns, including the probable 1918 cohort effect, are shown in other datasets, available in the
<ext-link ext-link-type="uri" xlink:href="http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyt115/-/DC1">Supplementary Appendix</ext-link>
(available as
<ext-link ext-link-type="uri" xlink:href="http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyt115/-/DC1">Supplementary data</ext-link>
at
<italic>IJE</italic>
online). For illustration,
<xref ref-type="fig" rid="dyt115-F6">Figure 6</xref>
a shows the contour map for Italy, where the tear is also apparent. Conversely, the effect is not present in Japan which had little or no involvement in World War I (
<xref ref-type="fig" rid="dyt115-F6">Figure 6</xref>
b). Given the effect’s presence in so many datasets, it appears unlikely to be due to any form of administrative change such as a different way of registering births or deaths. A strong natural experiment in support of this position is made evident by comparing the contour maps of East Germany with West Germany, two administrative regimes inhabited by almost arbitrarily divided parts of the same 1918 population, who collected vital statistics data from the times of their formation to their reunification while not communicating a great deal with each other (and hence are unlikely to have standardized data collection methods).
<xref ref-type="fig" rid="dyt115-F7">Figure 7</xref>
shows that despite this, the cohort effect appears almost identical in both datasets.
<fig id="dyt115-F6" position="float">
<label>Figure 6</label>
<caption>
<p>Italy and Japan, males and females combined. a) Italy 1872 to 2008, males and females combined. b) Japan 1947 to 2009, males and females combined</p>
</caption>
<graphic xlink:href="dyt115f6p"></graphic>
</fig>
<fig id="dyt115-F7" position="float">
<label>Figure 7</label>
<caption>
<p>East and West Germany, 1956 to 2009 a) East Germany b) West Germany</p>
</caption>
<graphic xlink:href="dyt115f7p"></graphic>
</fig>
</p>
</sec>
</sec>
<sec sec-type="discussion">
<title>Discussion</title>
<sec>
<title>Findings</title>
<p>This study showed how mean/variance coplots and contour plots can both be used to explore trends in vital statistics. The coplots provide a simple way of visualizing the epidemiological transition which occurred in England and Wales over the course of the 20th century, as it did in most other nations in Europe. The epidemiological transition, in which infectious disease changed from a major to a minor cause of death, is evident in the general trends indicated by our visualisations.
<xref ref-type="bibr" rid="dyt115-B7">
<sup>7</sup>
</xref>
Owing to drastically reduced rates of child mortality, the ‘bathtub’ relationship between age and mortality has become highly asymmetrical. Both of these trends are towards longer and generally healthier lives. The 1918 cohort effect represents a temporary setback against these general trends. The fact that the variance around mean age of death, as presented previously in
<xref ref-type="fig" rid="dyt115-F1">Figure 1</xref>
and
<xref ref-type="fig" rid="dyt115-F2">Figure 2</xref>
, appears not to have decreased since the 1950s appears to support the hypothesis that rising longevity has some life in it yet.</p>
</sec>
<sec>
<title>A possible end to the epidemiological transition?</title>
<p>At the very end of the study period, the variation of life expectancy stops falling and the rise in mean age appears to slow down (see
<xref ref-type="fig" rid="dyt115-F1">Figure 1</xref>
and
<xref ref-type="fig" rid="dyt115-F2">Figure 2</xref>
). As these two are related, it may be worth pointing out the possibility that very recent years may mark the beginnings of a new period of stability similar to the period up to the year 1900 but the opposite of it. Then variance was high and mean expectancy low. From 2000 onwards the opposite might be the case. The demographic transition that has occurred may have been contained almost entirely in the period 1900–2000, and we may now be entering a new epoch, but it is too soon to say.</p>
</sec>
<sec>
<title>Shortcomings</title>
<p>It is not possible with the data available to disentangle the ultimate causes of the cohort effect, as both the worst infectious disease outbreak of the 20th century and an international war occurred around the same time and in the same places. All we can say is that the effect did not appear to diminish as that cohort aged. There was still an additional disadvantage associated with having been born in 1917–18 even for people reaching age 80 years. Additionally, it is not possible with only vital statistics data to explore the relationship between mortality and morbidity over time. One hypothesis we cannot test is whether higher social class families left the UK for the USA in greater than usual numbers after 1916, which may be worth considering in future work.</p>
</sec>
<sec>
<title>Relationships with previous research</title>
<p>In recent years there have been great advances in understanding how environmental conditions experienced in childhood or later influence health in later years.
<xref ref-type="bibr" rid="dyt115-B1 dyt115-B2 dyt115-B3">
<sup>1–3</sup>
</xref>
<sup>,</sup>
<xref ref-type="bibr" rid="dyt115-B18 dyt115-B19 dyt115-B20 dyt115-B21 dyt115-B22 dyt115-B23">
<sup>18–23</sup>
</xref>
Studies following people exposed
<italic>in utero</italic>
to the 1944 Dutch famine found excessive rates of a range of health problems, including coronary heart disease, obesity and some forms of cancer, but did not indicate increased rates of all-cause mortality.
<xref ref-type="bibr" rid="dyt115-B4">
<sup>4</sup>
</xref>
<sup>,</sup>
<xref ref-type="bibr" rid="dyt115-B18">
<sup>18</sup>
</xref>
<sup>,</sup>
<xref ref-type="bibr" rid="dyt115-B23 dyt115-B24 dyt115-B25 dyt115-B26 dyt115-B27 dyt115-B28 dyt115-B29">
<sup>23–29</sup>
</xref>
The results presented here provide a strong indication that
<italic>in utero</italic>
exposure to events around 1918 led to reduced life expectancies in middle and older age. Recent evidence has shown that even in the USA, a country with less exposure to those factors than European nations, there exist negative effects of being part of the 1918 cohort on morbidity as well as mortality.
<xref ref-type="bibr" rid="dyt115-B30">
<sup>30</sup>
</xref>
From this it should be assumed that morbidity effects exist in European and other affected nations alongside the mortality effects illustrated here.</p>
<p>There is already debate in the literature concerning possible ends to the demographic transition.
<xref ref-type="bibr" rid="dyt115-B31">
<sup>31</sup>
</xref>
<sup>,</sup>
<xref ref-type="bibr" rid="dyt115-B32">
<sup>32</sup>
</xref>
What this paper does is suggest that below at least age 100 there is evidence of continually falling mortality risk. Our paper includes no data for people exceeding that age.
<xref ref-type="bibr" rid="dyt115-B33">
<sup>33</sup>
</xref>
<sup>,</sup>
<xref ref-type="bibr" rid="dyt115-B34">
<sup>34</sup>
</xref>
</p>
</sec>
<sec>
<title>Implications for research</title>
<p>The coplots and contour plots presented in this article represent just a small sample of the hundreds of figures produced, which are available for readers in the online appendix (available as
<ext-link ext-link-type="uri" xlink:href="http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyt115/-/DC1">Supplementary data</ext-link>
at
<italic>IJE</italic>
online). Coplots and contour plots have been produced for all nations where appropriate data were available from the Human Mortality Database.
<xref ref-type="bibr" rid="dyt115-B12">
<sup>12</sup>
</xref>
The R code used to produce these graphs is available on request from the contact author, and we expect further exploration and analyses of the additional figures will lead to further findings and research outputs. In addition to exploring data currently available and compiled on the Human Mortality Database, the methods could also be applied to other demographic data sources, such as data generated by demographic surveillance systems of majority world populations.
<xref ref-type="bibr" rid="dyt115-B35">
<sup>35</sup>
</xref>
There is also potential to use the methods to look at patterns in cause-specific mortality, or at the age and gender distribution of particular illnesses over time, such as diabetes.
<xref ref-type="bibr" rid="dyt115-B36">
<sup>36</sup>
</xref>
This could help to identify, for example, which types of fatal disease were excluded as a consequence of looking at mean-variance coplots for all ages (
<xref ref-type="fig" rid="dyt115-F1">Figure 1</xref>
a and c) compared with those in persons aged 5 years or older only (
<xref ref-type="fig" rid="dyt115-F1">Figure 1</xref>
b and
<xref ref-type="fig" rid="dyt115-F1">1</xref>
d).</p>
</sec>
<sec>
<title>Implications for practice</title>
<p>As Kermack and colleagues noted almost eight decades ago, the identification of cohort effects can be of practical application for the actuarial sciences, as additional information about how long people can be expected to live can help estimate pensions liabilities and set prices for annuities.
<xref ref-type="bibr" rid="dyt115-B9">
<sup>9</sup>
</xref>
We are also keen to emphasize the medical implications of these findings, and others that may emerge from exploring the material presented in the online appendices (available as
<ext-link ext-link-type="uri" xlink:href="http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyt115/-/DC1">Supplementary data</ext-link>
at
<italic>IJE</italic>
online). Few people from the 1918 cohort are still alive but, if conditions near the end of the World War II were similar, then a ‘baby boomer’ cohort effect may also be present. This would have substantial implications for healthcare planning even if the magnitude of the effect is small compared with the 1918 cohort. These ‘scars' could also be compared to effects found to be associated with enhanced male mortality coincident with the onset of the early 1970s’, 1980s’ and 1990s’ global economic recessions.
<xref ref-type="bibr" rid="dyt115-B13">
<sup>13</sup>
</xref>
</p>
</sec>
</sec>
<sec sec-type="conclusions">
<title>Conclusion</title>
<p>The two methods shown here allow quick exploration of national vital statistics and comparison between nations. Mean-variance coplots allow broad epidemiological transitions to be understood and compared quickly, and contour plots allow more detailed patterns relating to age, period and cohort effects to be explored. Contour plots make it easy to identify concurrent demographic changes, including reduced child mortality and increased longevity, and make it clear when events, such as wars and pandemics, lead to disruptions in these general trends. As such, the methods allow for intuitive visual inspection of complex patterns.</p>
</sec>
<sec sec-type="supplementary-material">
<title>Supplementary Data</title>
<p>
<ext-link ext-link-type="uri" xlink:href="http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyt115/-/DC1">Supplementary data</ext-link>
is available at
<italic>IJE</italic>
online.</p>
<supplementary-material id="PMC_1" content-type="local-data">
<caption>
<title>Supplementary Data</title>
</caption>
<media mimetype="text" mime-subtype="html" xlink:href="supp_42_4_1164__index.html"></media>
<media xlink:role="associated-file" mimetype="application" mime-subtype="msword" xlink:href="supp_dyt115_ije-2012-09-0981-File017.docx"></media>
</supplementary-material>
</sec>
</body>
<back>
<ack>
<title>Acknowledgements</title>
<p>We would like to thank Tom Adams, John Brazier, Tony Danso-Appiah, John Komlos, Ravi Maheswaran, Kate Pickett, Matt Stevenson and Mark Strong for helpful advice at various points. We would also like to thank the anonymous referees who reviewed this paper for their comments, queries and suggestions.</p>
<p>
<bold>Conflict of interest:</bold>
None declared.</p>
<p>
<boxed-text id="dyt115-BOX1" position="float">
<caption>
<title>KEY MESSAGES</title>
</caption>
<p>
<list list-type="bullet">
<list-item>
<p>New, high resolution ways of visualizing mortality by gender, age and time can reveal new patterns in old data. We present two ways of visualizing such data: mean-variance coplots and high density contour plots.</p>
</list-item>
<list-item>
<p>The coplot suggests an end to the epidemiological transition in England and Wales.</p>
</list-item>
<list-item>
<p>The contour plot shows a possible cohort effect associated with the 1918 influenza pandemic.</p>
</list-item>
<list-item>
<p>Both of these hypotheses would have been very hard to generate without first seeing these new visualizations.</p>
</list-item>
<list-item>
<p>Both hypotheses prompt the need for further detailed investigation. The visualizations have been generated for a large number of national datasets, and so could lead to further patterns being identified and hypotheses generated.</p>
</list-item>
</list>
</p>
</boxed-text>
</p>
</ack>
<ref-list>
<title>References</title>
<ref id="dyt115-B1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davey Smith</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Marmot</surname>
<given-names>MG</given-names>
</name>
</person-group>
<article-title>Trends in mortality in Britain: 1920–1986</article-title>
<source>Ann Nutr Metab</source>
<year>1991</year>
<volume>35</volume>
<fpage>53</fpage>
<lpage>63</lpage>
</element-citation>
</ref>
<ref id="dyt115-B2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harris</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>Commentary: ‘The child is father of the man.' The relationship between child health and adult mortality in the 19th and 20th centuries</article-title>
<source>Int J Epidemiol</source>
<year>2001</year>
<volume>30</volume>
<fpage>688</fpage>
<lpage>96</lpage>
<pub-id pub-id-type="pmid">11511584</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Szeter</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Mooney</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Urbanisation, mortality and the standard of living debate: new estimates of the expection of life at birth in nineteenth-century British cities</article-title>
<source>Economic History Review</source>
<year>1998</year>
<volume>51</volume>
<fpage>84</fpage>
<lpage>112</lpage>
</element-citation>
</ref>
<ref id="dyt115-B4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davey Smith</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Life-course approaches to inequalities in adult chronic disease risk</article-title>
<source>Proc Nutr Soc</source>
<year>2007</year>
<volume>66</volume>
<fpage>216</fpage>
<lpage>36</lpage>
<pub-id pub-id-type="pmid">17466104</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Leon</surname>
<given-names>DA</given-names>
</name>
</person-group>
<article-title>Trends in European life expectancy: a salutary view</article-title>
<source>Int J Epidemiol</source>
<year>2011</year>
<volume>40</volume>
<fpage>271</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="pmid">21415000</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alen Sula</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Philosophy through the macroscope: technologies, representations, and the history of the profession</article-title>
<source>J Interact Technol Pedagogy</source>
<year>2012</year>
<comment>available at
<ext-link ext-link-type="uri" xlink:href="http://jitp.commons.gc.cuny.edu/philosophy-through-the-macroscope-technologies-representations-and-the-history-of-the-profession/">http://jitp.commons.gc.cuny.edu/philosophy-through-the-macroscope-technologies-representations-and-the-history-of-the-profession/</ext-link>
(27 June 2013, date last accessed)</comment>
</element-citation>
</ref>
<ref id="dyt115-B7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wilkinson</surname>
<given-names>RG</given-names>
</name>
</person-group>
<article-title>The epidemiological transition: from material scarcity to social disadvantage?</article-title>
<source>Daedalus</source>
<year>1994</year>
<volume>123</volume>
<fpage>61</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="pmid">11639364</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gompertz</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies</article-title>
<source>Phil Trans R Soc Lond</source>
<year>1825</year>
<volume>115</volume>
<fpage>513</fpage>
<lpage>83</lpage>
</element-citation>
</ref>
<ref id="dyt115-B9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kermack</surname>
<given-names>W</given-names>
</name>
</person-group>
<article-title>Death-rates in Great Britain and Sweden. Some general regularities and their significance</article-title>
<source>Int J Epidemiol</source>
<year>2001</year>
<volume>30</volume>
<fpage>678</fpage>
<lpage>83</lpage>
<pub-id pub-id-type="pmid">11511582</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barker</surname>
<given-names>DJP</given-names>
</name>
</person-group>
<article-title>The Developmental Origins of Adult Disease</article-title>
<source>J Am Coll Nutr</source>
<year>2004</year>
<volume>23</volume>
<issue>Suppl 6</issue>
<fpage>S588</fpage>
<lpage>95</lpage>
</element-citation>
</ref>
<ref id="dyt115-B11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davey Smith</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Commentary: William Ogilvy Kermack and the childhood origins of adult health and disease</article-title>
<source>Int J Epidemiol</source>
<year>2001</year>
<volume>30</volume>
<fpage>696</fpage>
<lpage>703</lpage>
<pub-id pub-id-type="pmid">11511585</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B12">
<label>12</label>
<element-citation publication-type="webpage">
<collab>Human Mortality Database</collab>
<comment>University of California, Berkeley (USA), and Max Plank Institute for Demographic Research (Germany). 2011. Available at
<ext-link ext-link-type="uri" xlink:href="www.mortality.org">www.mortality.org</ext-link>
(11 June 2011, date last accessed)</comment>
</element-citation>
</ref>
<ref id="dyt115-B13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rigby</surname>
<given-names>JE</given-names>
</name>
<name>
<surname>Dorling</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Mortality in relation to sex in the affluent world</article-title>
<source>J Epidemiol Commun Health</source>
<year>2007</year>
<volume>61</volume>
<fpage>159</fpage>
<lpage>64</lpage>
</element-citation>
</ref>
<ref id="dyt115-B14">
<label>14</label>
<element-citation publication-type="webpage">
<person-group person-group-type="author">
<name>
<surname>Lexis</surname>
<given-names>W</given-names>
</name>
</person-group>
<source>Einleitung in die Theorie der Bevölkerungsstatistik
<italic>[Introduction to the theory of population statistics],</italic>
</source>
<year>1875</year>
<comment>available at
<ext-link ext-link-type="uri" xlink:href="http://www.worldcat.org/title/einleitung-in-die-theorie-der-bevolkerungsstatistik/oclc/27127671">http://www.worldcat.org/title/einleitung-in-die-theorie-der-bevolkerungsstatistik/oclc/27127671</ext-link>
(27 June 2013, date last accessed)</comment>
</element-citation>
</ref>
<ref id="dyt115-B15">
<label>15</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Sarkar</surname>
<given-names>D</given-names>
</name>
</person-group>
<source>Lattice: Multivariate Data Visualization with R</source>
<year>2008</year>
<publisher-loc>New York</publisher-loc>
<publisher-name>Springer</publisher-name>
</element-citation>
</ref>
<ref id="dyt115-B16">
<label>16</label>
<element-citation publication-type="book">
<collab>R Development Core Team</collab>
<source>R: A Language and Environment for Statistical Computing</source>
<year>2011</year>
<publisher-loc>Vienna, Austria</publisher-loc>
<publisher-name>R Foundation for Statistical Computing</publisher-name>
<comment>
<ext-link ext-link-type="uri" xlink:href="http://www.r-project.org/">http://www.r-project.org/</ext-link>
(27 June 2013, date last accessed)</comment>
</element-citation>
</ref>
<ref id="dyt115-B17">
<label>17</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Dwork</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>War is Good for Babies and Other Young Children: A History of the Infant and Child Welfare Movement in England 1898–1918</article-title>
<year>1987</year>
<publisher-loc>London</publisher-loc>
<publisher-name>Tavistock</publisher-name>
</element-citation>
</ref>
<ref id="dyt115-B18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davey Smith</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Epidemiology, epigenetics and the ‘Gloomy Prospect’: embracing randomness in population health research and practice</article-title>
<source>Int J Epidemiol</source>
<year>2011</year>
<volume>40</volume>
<fpage>537</fpage>
<lpage>62</lpage>
<pub-id pub-id-type="pmid">21807641</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ben-Shlomo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Davey Smith</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Deprivation in infancy or in adult life: which is more important for mortality risk?</article-title>
<source>Lancet</source>
<year>1991</year>
<volume>337</volume>
<fpage>530</fpage>
<lpage>34</lpage>
<pub-id pub-id-type="pmid">1671899</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borghol</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Suderman</surname>
<given-names>M</given-names>
</name>
<name>
<surname>McArdle</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Associations with early-life socio-economic position in adult DNA methylation</article-title>
<source>Int J Epidemiol</source>
<year>2012</year>
<volume>41</volume>
<fpage>62</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">22422449</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hyman</surname>
<given-names>SE</given-names>
</name>
</person-group>
<article-title>How adversity gets under the skin</article-title>
<source>Nat Neurosci</source>
<year>2009</year>
<volume>12</volume>
<fpage>241</fpage>
<lpage>43</lpage>
<pub-id pub-id-type="pmid">19238182</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ma</surname>
<given-names>YT</given-names>
</name>
<name>
<surname>Collins</surname>
<given-names>SI</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>LS</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>PG</given-names>
</name>
<name>
<surname>Woodman</surname>
<given-names>CBJ</given-names>
</name>
</person-group>
<article-title>Smoking initiation is followed by the early acquisition of epigenetic change in cervical epithelium: a longitudinal study</article-title>
<source>Br J Cancer</source>
<year>2011</year>
<volume>104</volume>
<fpage>1500</fpage>
<lpage>04</lpage>
<pub-id pub-id-type="pmid">21487403</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tang</surname>
<given-names>LP</given-names>
</name>
<name>
<surname>Macleod</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Hobbs</surname>
<given-names>FDR</given-names>
</name>
<name>
<surname>Wharton</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Davey Smith</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Stewart</surname>
<given-names>PM</given-names>
</name>
</person-group>
<article-title>Fetal origins of adult disease: tracing and recruitment of offspring whose mothers participated in a trial of nutritional supplementation during pregnancy – the Sorrento experience</article-title>
<source>Nutr Bull</source>
<year>2004</year>
<volume>4</volume>
<fpage>310</fpage>
<lpage>16</lpage>
</element-citation>
</ref>
<ref id="dyt115-B24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horrell</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Humphries</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Voth</surname>
<given-names>HJ</given-names>
</name>
</person-group>
<article-title>Destined for deprivation: Human capital formation and intergenerational poverty in nineteenth-century England</article-title>
<source>Explorations in Economic History</source>
<year>2001</year>
<volume>38</volume>
<fpage>339</fpage>
<lpage>65</lpage>
<pub-id pub-id-type="pmid">18524044</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Thayer</surname>
<given-names>ZM</given-names>
</name>
<name>
<surname>Kuzawa</surname>
<given-names>CW</given-names>
</name>
</person-group>
<article-title>Biological memories of past environments: epigenetic pathways to health disparities</article-title>
<source>Epigenetics</source>
<year>2011</year>
<volume>6</volume>
<fpage>798</fpage>
<lpage>803</lpage>
<pub-id pub-id-type="pmid">21597338</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roseboom</surname>
<given-names>TJ</given-names>
</name>
</person-group>
<article-title>Coronary heart disease after prenatal exposure to the Dutch famine, 1944-45</article-title>
<source>Heart</source>
<year>2000</year>
<volume>84</volume>
<fpage>595</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="pmid">11083734</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Painter</surname>
<given-names>RC</given-names>
</name>
<name>
<surname>Roseboom</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>Bleker</surname>
<given-names>OP</given-names>
</name>
</person-group>
<article-title>Prenatal exposure to the Dutch famine and disease in later life: an overview</article-title>
<source>Reprod Toxicol</source>
<year>2012</year>
<volume>20</volume>
<fpage>345</fpage>
<lpage>52</lpage>
<pub-id pub-id-type="pmid">15893910</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Elias</surname>
<given-names>SG</given-names>
</name>
<name>
<surname>Peeters</surname>
<given-names>PHM</given-names>
</name>
<name>
<surname>Grobbee</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>van Noord</surname>
<given-names>PAH</given-names>
</name>
</person-group>
<article-title>Breast Cancer Risk After Caloric Restriction During the 1944-1945 Dutch Famine</article-title>
<source>J Natl Cancer Inst</source>
<year>2004</year>
<volume>96</volume>
<fpage>539</fpage>
<lpage>46</lpage>
<pub-id pub-id-type="pmid">15069116</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Roseboom</surname>
<given-names>TJ</given-names>
</name>
<name>
<surname>van der Meulen</surname>
<given-names>JHP</given-names>
</name>
<name>
<surname>Osmond</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Barker</surname>
<given-names>DJP</given-names>
</name>
<name>
<surname>Ravelli</surname>
<given-names>ACJ</given-names>
</name>
<name>
<surname>Bleker</surname>
<given-names>OP</given-names>
</name>
</person-group>
<article-title>Adult survival after prenatal exposure to the Dutch famine 1944-45</article-title>
<source>Paediatr Perinat Epidemiol</source>
<year>2001</year>
<volume>15</volume>
<fpage>220</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="pmid">11489148</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Almond</surname>
<given-names>D</given-names>
</name>
</person-group>
<article-title>Is the 1918 Influenza Pandemic Over? Long-Term Effects of In Utero Influenza Exposure in the Post-1940 U.S. Population</article-title>
<source>J Polit Econ</source>
<year>2006</year>
<volume>114</volume>
<fpage>672</fpage>
<lpage>712</lpage>
</element-citation>
</ref>
<ref id="dyt115-B31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Omran</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>The Epidemiologic Transition: A Theory of the Epidemiology of Population Change</article-title>
<source>Milbank Q</source>
<year>2005</year>
<volume>83</volume>
<fpage>731</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">16279965</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B32">
<label>32</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Dorling</surname>
<given-names>D</given-names>
</name>
</person-group>
<source>Population 10 Billion: The Coming Demographic Crisis and How to Survive It</source>
<year>2013</year>
<publisher-loc>London</publisher-loc>
<publisher-name>Constable</publisher-name>
</element-citation>
</ref>
<ref id="dyt115-B33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Olshansky</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Carnes</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Désesguelles</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Prospects for longevity</article-title>
<source>Science</source>
<year>2001</year>
<volume>291</volume>
<fpage>1491</fpage>
<lpage>92</lpage>
<pub-id pub-id-type="pmid">11234076</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oeppen</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Vaupel</surname>
<given-names>JW</given-names>
</name>
</person-group>
<article-title>Broken limits to life expectancy</article-title>
<source>Science</source>
<year>2002</year>
<volume>296</volume>
<fpage>1029</fpage>
<lpage>31</lpage>
<pub-id pub-id-type="pmid">12004104</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sankoh</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Byass</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>The INDEPTH Network: filling vital gaps in global epidemiology</article-title>
<source>Int J Epidemiol</source>
<year>2012</year>
<volume>41</volume>
<fpage>579</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="pmid">22798690</pub-id>
</element-citation>
</ref>
<ref id="dyt115-B36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cardwell</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Stene</surname>
<given-names>LC</given-names>
</name>
<name>
<surname>Joner</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Birth order and childhood type 1 diabetes risk: a pooled analysis of 31 observational studies</article-title>
<source>Int J Epidemiol</source>
<year>2011</year>
<volume>40</volume>
<fpage>363</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">21149280</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000B02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:3781004
   |texte=   Visualizing Europe’s demographic scars with coplots and contour plots
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:24062300" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PandemieGrippaleV1 

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021