Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 0003017 ( Pmc/Corpus ); précédent : 0003016; suivant : 0003018 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Antiviral agents active against influenza A viruses</title>
<author>
<name sortKey="De Clercq, Erik" sort="De Clercq, Erik" uniqKey="De Clercq E" first="Erik" last="De Clercq">Erik De Clercq</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">17139286</idno>
<idno type="pmc">7097821</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7097821</idno>
<idno type="RBID">PMC:7097821</idno>
<idno type="doi">10.1038/nrd2175</idno>
<date when="2006">2006</date>
<idno type="wicri:Area/Pmc/Corpus">000301</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000301</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Antiviral agents active against influenza A viruses</title>
<author>
<name sortKey="De Clercq, Erik" sort="De Clercq, Erik" uniqKey="De Clercq E" first="Erik" last="De Clercq">Erik De Clercq</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nature Reviews. Drug Discovery</title>
<idno type="ISSN">1474-1776</idno>
<idno type="eISSN">1474-1784</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<title>Key Points</title>
<p id="Par2">
<list list-type="bullet">
<list-item>
<p id="Par3">Several drugs are available that could be used, either alone or in combination, for the treatment (prophylaxis or therapy) of an influenza pandemic. These include adamantan(amin)e derivatives (amantadine), neuraminidase inhibitors (zanamivir and oseltamivir), ribavirin and interferon.</p>
</list-item>
<list-item>
<p id="Par4">Amantadine was the first synthetic compound shown to inhibit influenza-virus replication. It blocks the migration of H
<sup>+</sup>
ions into the interior of the virus particles within endosomes, a process that is needed for uncoating to occur.</p>
</list-item>
<list-item>
<p id="Par5">Neuraminidase inhibitors such as oseltamivir and zanamivir interfere with the release of progeny influenza virions from the surface of infected host cells. In doing so, the neuraminidase inhibitors prevent virus infection of new host cells and thereby halt the spread of infection in the respiratory tract.</p>
</list-item>
<list-item>
<p id="Par6">Ribavirin targets a cellular enzyme — inosine 5′-monophosphate dehydrogenase, which has a key role in the biosynthesis of GTP and viral RNA synthesis — and is active against both human and avian influenza viruses.</p>
</list-item>
<list-item>
<p id="Par7">In addition to the available drugs, attempts to further design and develop new antivirals should be intensified, whether based on known molecular targets, such as the neuraminidase or viral uncoating process, or on as-yet relatively unexplored targets such as viral RNA polymerase.</p>
</list-item>
</list>
</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaye, D" uniqKey="Kaye D">D Kaye</name>
</author>
<author>
<name sortKey="Pringle, Cr" uniqKey="Pringle C">CR Pringle</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beigel, Jh" uniqKey="Beigel J">JH Beigel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taubenberger, Jk" uniqKey="Taubenberger J">JK Taubenberger</name>
</author>
<author>
<name sortKey="Morens, Dm" uniqKey="Morens D">DM Morens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kilbourne, Ed" uniqKey="Kilbourne E">ED Kilbourne</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Belshe, Rb" uniqKey="Belshe R">RB Belshe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Palese, P" uniqKey="Palese P">P Palese</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Davies, Wl" uniqKey="Davies W">WL Davies</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horimoto, T" uniqKey="Horimoto T">T Horimoto</name>
</author>
<author>
<name sortKey="Kawaoka, Y" uniqKey="Kawaoka Y">Y Kawaoka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shuck, K" uniqKey="Shuck K">K Shuck</name>
</author>
<author>
<name sortKey="Lamb, Ra" uniqKey="Lamb R">RA Lamb</name>
</author>
<author>
<name sortKey="Pinto, Lh" uniqKey="Pinto L">LH Pinto</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sansom, Ms" uniqKey="Sansom M">MS Sansom</name>
</author>
<author>
<name sortKey="Kerr, Id" uniqKey="Kerr I">ID Kerr</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bright, Ra" uniqKey="Bright R">RA Bright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bright, Ra" uniqKey="Bright R">RA Bright</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Weinstock, Dm" uniqKey="Weinstock D">DM Weinstock</name>
</author>
<author>
<name sortKey="Zuccotti, G" uniqKey="Zuccotti G">G Zuccotti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kolocouris, N" uniqKey="Kolocouris N">N Kolocouris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kolocouris, N" uniqKey="Kolocouris N">N Kolocouris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kolocouris, N" uniqKey="Kolocouris N">N Kolocouris</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stamatiou, G" uniqKey="Stamatiou G">G Stamatiou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zoidis, G" uniqKey="Zoidis G">G Zoidis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stamatiou, G" uniqKey="Stamatiou G">G Stamatiou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zoidis, G" uniqKey="Zoidis G">G Zoidis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tanner, Ja" uniqKey="Tanner J">JA Tanner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Clercq, E" uniqKey="De Clercq E">E De Clercq</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moscona, A" uniqKey="Moscona A">A Moscona</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Matrosovich, M" uniqKey="Matrosovich M">M Matrosovich</name>
</author>
<author>
<name sortKey="Matrosovich, Ty" uniqKey="Matrosovich T">TY Matrosovich</name>
</author>
<author>
<name sortKey="Gray, T" uniqKey="Gray T">T Gray</name>
</author>
<author>
<name sortKey="Roberts, Na" uniqKey="Roberts N">NA Roberts</name>
</author>
<author>
<name sortKey="Klenk, H D" uniqKey="Klenk H">H-D Klenk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Shinya, K" uniqKey="Shinya K">K Shinya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Van Riel, D" uniqKey="Van Riel D">D van Riel</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Abdel Magid, Af" uniqKey="Abdel Magid A">AF Abdel-Magid</name>
</author>
<author>
<name sortKey="Marvanoff, Ca" uniqKey="Marvanoff C">CA Marvanoff</name>
</author>
<author>
<name sortKey="Mehrman, Sj" uniqKey="Mehrman S">SJ Mehrman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Von Itzstein, M" uniqKey="Von Itzstein M">M von Itzstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, Cu" uniqKey="Kim C">CU Kim</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aoki, Fy" uniqKey="Aoki F">FY Aoki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kaiser, L" uniqKey="Kaiser L">L Kaiser</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Welliver, R" uniqKey="Welliver R">R Welliver</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayden, Fg" uniqKey="Hayden F">FG Hayden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kawai, N" uniqKey="Kawai N">N Kawai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Clercq, E" uniqKey="De Clercq E">E De Clercq</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Russell, Rj" uniqKey="Russell R">RJ Russell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mckimm Breschkin, Jl" uniqKey="Mckimm Breschkin J">JL McKimm-Breschkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mckimm Breschkin, J" uniqKey="Mckimm Breschkin J">J McKimm-Breschkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kiso, M" uniqKey="Kiso M">M Kiso</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zurcher, T" uniqKey="Zurcher T">T Zürcher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herlocher, Ml" uniqKey="Herlocher M">ML Herlocher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Herlocher, Ml" uniqKey="Herlocher M">ML Herlocher</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yen, H L" uniqKey="Yen H">H-L Yen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Oxford, J" uniqKey="Oxford J">J Oxford</name>
</author>
<author>
<name sortKey="Balasingam, S" uniqKey="Balasingam S">S Balasingam</name>
</author>
<author>
<name sortKey="Lambkin, R" uniqKey="Lambkin R">R Lambkin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tumpey, Tm" uniqKey="Tumpey T">TM Tumpey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Le, Qm" uniqKey="Le Q">QM Le</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gubareva, Lv" uniqKey="Gubareva L">LV Gubareva</name>
</author>
<author>
<name sortKey="Kaiser, L" uniqKey="Kaiser L">L Kaiser</name>
</author>
<author>
<name sortKey="Matrosovich, Mn" uniqKey="Matrosovich M">MN Matrosovich</name>
</author>
<author>
<name sortKey="Soo Hoo, Y" uniqKey="Soo Hoo Y">Y Soo-Hoo</name>
</author>
<author>
<name sortKey="Hayden, Fg" uniqKey="Hayden F">FG Hayden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ives, Ja" uniqKey="Ives J">JA Ives</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Jong, Md" uniqKey="De Jong M">MD de Jong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Govorkova, Ea" uniqKey="Govorkova E">EA Govorkova</name>
</author>
<author>
<name sortKey="Ilyushina, Na" uniqKey="Ilyushina N">NA Ilyushina</name>
</author>
<author>
<name sortKey="Smith, J" uniqKey="Smith J">J Smith</name>
</author>
<author>
<name sortKey="Webster, Rg" uniqKey="Webster R">RG Webster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yen, H L" uniqKey="Yen H">H-L Yen</name>
</author>
<author>
<name sortKey="Monto, As" uniqKey="Monto A">AS Monto</name>
</author>
<author>
<name sortKey="Webster, Rg" uniqKey="Webster R">RG Webster</name>
</author>
<author>
<name sortKey="Govorkova, Ea" uniqKey="Govorkova E">EA Govorkova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smee, Df" uniqKey="Smee D">DF Smee</name>
</author>
<author>
<name sortKey="Huffman, Jh" uniqKey="Huffman J">JH Huffman</name>
</author>
<author>
<name sortKey="Morrison, Ac" uniqKey="Morrison A">AC Morrison</name>
</author>
<author>
<name sortKey="Barnard, Dl" uniqKey="Barnard D">DL Barnard</name>
</author>
<author>
<name sortKey="Sidwell, Rw" uniqKey="Sidwell R">RW Sidwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sidwell, Rw" uniqKey="Sidwell R">RW Sidwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chand, P" uniqKey="Chand P">P Chand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chand, P" uniqKey="Chand P">P Chand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chand, P" uniqKey="Chand P">P Chand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Gt" uniqKey="Wang G">GT Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Degoey, Da" uniqKey="Degoey D">DA DeGoey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hanessian, S" uniqKey="Hanessian S">S Hanessian</name>
</author>
<author>
<name sortKey="Bayrakdarian, M" uniqKey="Bayrakdarian M">M Bayrakdarian</name>
</author>
<author>
<name sortKey="Luo, X" uniqKey="Luo X">X Luo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kati, Wm" uniqKey="Kati W">WM Kati</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maring, Cj" uniqKey="Maring C">CJ Maring</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, Gt" uniqKey="Wang G">GT Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mishin, V" uniqKey="Mishin V">V Mishin</name>
</author>
<author>
<name sortKey="Hayden, Fg" uniqKey="Hayden F">FG Hayden</name>
</author>
<author>
<name sortKey="Gubareva, Lv" uniqKey="Gubareva L">LV Gubareva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Molla, A" uniqKey="Molla A">A Molla</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gubareva, Lv" uniqKey="Gubareva L">LV Gubareva</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bantia, S" uniqKey="Bantia S">S Bantia</name>
</author>
<author>
<name sortKey="Arnold, Cs" uniqKey="Arnold C">CS Arnold</name>
</author>
<author>
<name sortKey="Parker, Cd" uniqKey="Parker C">CD Parker</name>
</author>
<author>
<name sortKey="Upshaw, R" uniqKey="Upshaw R">R Upshaw</name>
</author>
<author>
<name sortKey="Chand, P" uniqKey="Chand P">P Chand</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sidwell, Rw" uniqKey="Sidwell R">RW Sidwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Barroso, L" uniqKey="Barroso L">L Barroso</name>
</author>
<author>
<name sortKey="Treanor, J" uniqKey="Treanor J">J Treanor</name>
</author>
<author>
<name sortKey="Gubareva, L" uniqKey="Gubareva L">L Gubareva</name>
</author>
<author>
<name sortKey="Hayden, Fg" uniqKey="Hayden F">FG Hayden</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Honda, T" uniqKey="Honda T">T Honda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Masuda, T" uniqKey="Masuda T">T Masuda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macdonald, Sj" uniqKey="Macdonald S">SJ Macdonald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Macdonald, Sjf" uniqKey="Macdonald S">SJF Macdonald</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sidwell, Rw" uniqKey="Sidwell R">RW Sidwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sidwell, Rw" uniqKey="Sidwell R">RW Sidwell</name>
</author>
<author>
<name sortKey="Bailey, Kw" uniqKey="Bailey K">KW Bailey</name>
</author>
<author>
<name sortKey="Wong, M H" uniqKey="Wong M">M-H Wong</name>
</author>
<author>
<name sortKey="Barnard, Dl" uniqKey="Barnard D">DL Barnard</name>
</author>
<author>
<name sortKey="Smee, Df" uniqKey="Smee D">DF Smee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Cb" uniqKey="Smith C">CB Smith</name>
</author>
<author>
<name sortKey="Charette, Rp" uniqKey="Charette R">RP Charette</name>
</author>
<author>
<name sortKey="Fox, Jp" uniqKey="Fox J">JP Fox</name>
</author>
<author>
<name sortKey="Cooney, Mk" uniqKey="Cooney M">MK Cooney</name>
</author>
<author>
<name sortKey="Hall, Ce" uniqKey="Hall C">CE Hall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Knight, V" uniqKey="Knight V">V Knight</name>
</author>
<author>
<name sortKey="Gilbert, Be" uniqKey="Gilbert B">BE Gilbert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayden, Fg" uniqKey="Hayden F">FG Hayden</name>
</author>
<author>
<name sortKey="Sable, Ca" uniqKey="Sable C">CA Sable</name>
</author>
<author>
<name sortKey="Connor, Jd" uniqKey="Connor J">JD Connor</name>
</author>
<author>
<name sortKey="Lane, J" uniqKey="Lane J">J Lane</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mccormick, Jb" uniqKey="Mccormick J">JB McCormick</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huggins, Jw" uniqKey="Huggins J">JW Huggins</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Malakhov, Mp" uniqKey="Malakhov M">MP Malakhov</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gambaryan, As" uniqKey="Gambaryan A">AS Gambaryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gambaryan, As" uniqKey="Gambaryan A">AS Gambaryan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ge, Q" uniqKey="Ge Q">Q Ge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tompkins, Sm" uniqKey="Tompkins S">SM Tompkins</name>
</author>
<author>
<name sortKey="Lo, Cy" uniqKey="Lo C">CY Lo</name>
</author>
<author>
<name sortKey="Tumpey, Tm" uniqKey="Tumpey T">TM Tumpey</name>
</author>
<author>
<name sortKey="Epstein, Sl" uniqKey="Epstein S">SL Epstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, Bj" uniqKey="Li B">BJ Li</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vaillant, A" uniqKey="Vaillant A">A Vaillant</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Iversen, P" uniqKey="Iversen P">P Iversen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Deng, T" uniqKey="Deng T">T Deng</name>
</author>
<author>
<name sortKey="Sharps, J" uniqKey="Sharps J">J Sharps</name>
</author>
<author>
<name sortKey="Fodor, E" uniqKey="Fodor E">E Fodor</name>
</author>
<author>
<name sortKey="Brownlee, Gg" uniqKey="Brownlee G">GG Brownlee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Salomon, R" uniqKey="Salomon R">R Salomon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tuttle, Jv" uniqKey="Tuttle J">JV Tuttle</name>
</author>
<author>
<name sortKey="Tisdale, M" uniqKey="Tisdale M">M Tisdale</name>
</author>
<author>
<name sortKey="Krenitsky, Ta" uniqKey="Krenitsky T">TA Krenitsky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tisdale, M" uniqKey="Tisdale M">M Tisdale</name>
</author>
<author>
<name sortKey="Ellis, M" uniqKey="Ellis M">M Ellis</name>
</author>
<author>
<name sortKey="Klumpp, K" uniqKey="Klumpp K">K Klumpp</name>
</author>
<author>
<name sortKey="Court, S" uniqKey="Court S">S Court</name>
</author>
<author>
<name sortKey="Ford, M" uniqKey="Ford M">M Ford</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Furuta, Y" uniqKey="Furuta Y">Y Furuta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Takahashi, K" uniqKey="Takahashi K">K Takahashi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Furuta, Y" uniqKey="Furuta Y">Y Furuta</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tomassini, J" uniqKey="Tomassini J">J Tomassini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cianci, C" uniqKey="Cianci C">C Cianci</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tomassini, J" uniqKey="Tomassini J">J Tomassini</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sun, C" uniqKey="Sun C">C Sun</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, W L" uniqKey="Wang W">W-L Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Isaacs, A" uniqKey="Isaacs A">A Isaacs</name>
</author>
<author>
<name sortKey="Lindenmann, J" uniqKey="Lindenmann J">J Lindenmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baron, S" uniqKey="Baron S">S Baron</name>
</author>
<author>
<name sortKey="Isaacs, A" uniqKey="Isaacs A">A Isaacs</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Isomura, S" uniqKey="Isomura S">S Isomura</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Phillpotts, Rj" uniqKey="Phillpotts R">RJ Phillpotts</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fried, Mw" uniqKey="Fried M">MW Fried</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Field, Ak" uniqKey="Field A">AK Field</name>
</author>
<author>
<name sortKey="Tytell, Aa" uniqKey="Tytell A">AA Tytell</name>
</author>
<author>
<name sortKey="Lampson, Gp" uniqKey="Lampson G">GP Lampson</name>
</author>
<author>
<name sortKey="Hilleman, Mr" uniqKey="Hilleman M">MR Hilleman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Saravolac, Eg" uniqKey="Saravolac E">EG Saravolac</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ichinohe, T" uniqKey="Ichinohe T">T Ichinohe</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, H" uniqKey="Yang H">H Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reeves, Pm" uniqKey="Reeves P">PM Reeves</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pleschka, S" uniqKey="Pleschka S">S Pleschka</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marjuki, H" uniqKey="Marjuki H">H Marjuki</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Twu, Ky" uniqKey="Twu K">KY Twu</name>
</author>
<author>
<name sortKey="Noah, Dl" uniqKey="Noah D">DL Noah</name>
</author>
<author>
<name sortKey="Rao, P" uniqKey="Rao P">P Rao</name>
</author>
<author>
<name sortKey="Kuo, R L" uniqKey="Kuo R">R-L Kuo</name>
</author>
<author>
<name sortKey="Krug, Rm" uniqKey="Krug R">RM Krug</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bizollon, T" uniqKey="Bizollon T">T Bizollon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hayden, Fg" uniqKey="Hayden F">FG Hayden</name>
</author>
<author>
<name sortKey="Schlepushkin, An" uniqKey="Schlepushkin A">AN Schlepushkin</name>
</author>
<author>
<name sortKey="Pushkarskaya, Nl" uniqKey="Pushkarskaya N">NL Pushkarskaya</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Govorkova, Ea" uniqKey="Govorkova E">EA Govorkova</name>
</author>
<author>
<name sortKey="Fang, H B" uniqKey="Fang H">H-B Fang</name>
</author>
<author>
<name sortKey="Tan, M" uniqKey="Tan M">M Tan</name>
</author>
<author>
<name sortKey="Webster, Rg" uniqKey="Webster R">RG Webster</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ilyushina, N" uniqKey="Ilyushina N">N Ilyushina</name>
</author>
<author>
<name sortKey="Hoffmann, E" uniqKey="Hoffmann E">E Hoffmann</name>
</author>
<author>
<name sortKey="Salomon, R" uniqKey="Salomon R">R Salomon</name>
</author>
<author>
<name sortKey="Webster, R" uniqKey="Webster R">R Webster</name>
</author>
<author>
<name sortKey="Govorkova, E" uniqKey="Govorkova E">E Govorkova</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ison, Mg" uniqKey="Ison M">MG Ison</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="review-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Nat Rev Drug Discov</journal-id>
<journal-id journal-id-type="iso-abbrev">Nat Rev Drug Discov</journal-id>
<journal-title-group>
<journal-title>Nature Reviews. Drug Discovery</journal-title>
</journal-title-group>
<issn pub-type="ppub">1474-1776</issn>
<issn pub-type="epub">1474-1784</issn>
<publisher>
<publisher-name>Nature Publishing Group UK</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">17139286</article-id>
<article-id pub-id-type="pmc">7097821</article-id>
<article-id pub-id-type="publisher-id">BFnrd2175</article-id>
<article-id pub-id-type="doi">10.1038/nrd2175</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Antiviral agents active against influenza A viruses</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>De Clercq</surname>
<given-names>Erik</given-names>
</name>
<address>
<email>erik.declercq@rega.kuleuven.be</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
<bio>
<p id="Par1">Erik De Clercq has been Chairman of the Department of Microbiology and Immunology at the Katholieke Universiteit (KU) Leuven (Belgium) and Chairman of the Directory Board of the Rega Institute for Medical Research. He is President of the Rega Foundation (Belgium). As a full professor since 1977, he has been teaching the courses of cell biology, biochemistry, microbiology and virology at the KU Leuven Medical School (Belgium). He is a director of the Belgian Royal Academy of Medicine and a member of the Academia Europaea. De Clercq's scientific interests are in the antiviral chemotherapy field, and in particular, the development of new antiviral agents for various viral infections, including herpes simplex virus (HSV), varicella-zoster virus, cytomegalovirus (CMV) and human immunodeficiency virus. He has co-discovered several drugs that are used for the treatment of HSV (valaciclovir), herpes zoster (brivudin), CMV (cidofovir), hepatitis B (adefovir dipivoxil) and AIDS (tenofovir disoproxil fumarate, marketed as Viread, and, in combination with emtricitabine, as Truvada, and in combination with emtricitabine and efavirenz, as Atripla).</p>
</bio>
</contrib>
<aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.5596.f</institution-id>
<institution-id institution-id-type="ISNI">0000 0001 0668 7884</institution-id>
<institution>Rega Institute for Medical Research, Katholieke Universiteit Leuven,</institution>
</institution-wrap>
Leuven, B-3000 Belgium</aff>
</contrib-group>
<pub-date pub-type="ppub">
<year>2006</year>
</pub-date>
<volume>5</volume>
<issue>12</issue>
<fpage>1015</fpage>
<lpage>1025</lpage>
<permissions>
<copyright-statement>© Nature Publishing Group 2006</copyright-statement>
<license>
<license-p>This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.</license-p>
</license>
</permissions>
<abstract id="Abs1" abstract-type="KeyPoints">
<title>Key Points</title>
<p id="Par2">
<list list-type="bullet">
<list-item>
<p id="Par3">Several drugs are available that could be used, either alone or in combination, for the treatment (prophylaxis or therapy) of an influenza pandemic. These include adamantan(amin)e derivatives (amantadine), neuraminidase inhibitors (zanamivir and oseltamivir), ribavirin and interferon.</p>
</list-item>
<list-item>
<p id="Par4">Amantadine was the first synthetic compound shown to inhibit influenza-virus replication. It blocks the migration of H
<sup>+</sup>
ions into the interior of the virus particles within endosomes, a process that is needed for uncoating to occur.</p>
</list-item>
<list-item>
<p id="Par5">Neuraminidase inhibitors such as oseltamivir and zanamivir interfere with the release of progeny influenza virions from the surface of infected host cells. In doing so, the neuraminidase inhibitors prevent virus infection of new host cells and thereby halt the spread of infection in the respiratory tract.</p>
</list-item>
<list-item>
<p id="Par6">Ribavirin targets a cellular enzyme — inosine 5′-monophosphate dehydrogenase, which has a key role in the biosynthesis of GTP and viral RNA synthesis — and is active against both human and avian influenza viruses.</p>
</list-item>
<list-item>
<p id="Par7">In addition to the available drugs, attempts to further design and develop new antivirals should be intensified, whether based on known molecular targets, such as the neuraminidase or viral uncoating process, or on as-yet relatively unexplored targets such as viral RNA polymerase.</p>
</list-item>
</list>
</p>
</abstract>
<abstract id="Abs2" abstract-type="web-summary">
<p id="Par8">There are currently serious concerns about the control measures that should be taken if a pandemic of influenza A were to strike. De Clercq discusses the therapeutic potential of agents that have been shown to be active against influenza A viruses, and describes emerging strategies for targeting these viruses.</p>
</abstract>
<abstract id="Abs3">
<p id="Par9">The recent outbreaks of avian influenza A (H5N1) virus, its expanding geographic distribution and its ability to transfer to humans and cause severe infection have raised serious concerns about the measures available to control an avian or human pandemic of influenza A. In anticipation of such a pandemic, several preventive and therapeutic strategies have been proposed, including the stockpiling of antiviral drugs, in particular the neuraminidase inhibitors oseltamivir (Tamiflu; Roche) and zanamivir (Relenza; GlaxoSmithKline). This article reviews agents that have been shown to have activity against influenza A viruses and discusses their therapeutic potential, and also describes emerging strategies for targeting these viruses.</p>
</abstract>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© Springer Nature Limited 2006</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Main</title>
<p id="Par10">In the face of the persistent threat of human influenza A (
<xref rid="Glos1" ref-type="list">H3N2</xref>
, H1N1) and B infections, the outbreaks of avian influenza (H5N1) in Southeast Asia, and the potential of a new human or avian influenza A variant to unleash a pandemic, there is much concern about the shortage in both the number and supply of effective anti-influenza-virus agents
<sup>
<xref ref-type="bibr" rid="CR1">1</xref>
,
<xref ref-type="bibr" rid="CR2">2</xref>
,
<xref ref-type="bibr" rid="CR3">3</xref>
,
<xref ref-type="bibr" rid="CR4">4</xref>
</sup>
. There are, in principle, two mechanisms by which pandemic influenza could originate: first, by direct transmission (of a mutated virus perhaps) from animal (bird) to humans, as happened in 1918 with the 'Spanish influenza' (H1N1)
<sup>
<xref ref-type="bibr" rid="CR5">5</xref>
</sup>
; or second, through reassortment of an avian influenza virus with a human influenza virus, as occurred in 1957 with the 'Asian influenza' (H2N2) and, again, in 1968 with the 'Hong Kong influenza' (H3N2)
<sup>
<xref ref-type="bibr" rid="CR6">6</xref>
,
<xref ref-type="bibr" rid="CR7">7</xref>
</sup>
(
<xref rid="Fig1" ref-type="fig">Fig. 1</xref>
).
<fig id="Fig1">
<label>Figure 1</label>
<caption>
<title>The two mechanisms by which pandemic influenza originates.</title>
<p>In 1918, the 'Spanish influenza' H1N1 virus, closely related to an avian virus, adapted to replicate efficiently in humans. In 1957 and 1968, reassortment events led to, respectively, the 'Asian influenza' H2N2 virus and the 'Hong Kong influenza' H3N2 virus. The 'Asian influenza' H2N2 virus acquired three genetic segments from an avian species (a haemagglutinin (H), a neuraminidase (N) and a polymerase (PB1) gene). The 'Hong Kong influenza' H3N2 virus acquired two genetic segments from an avian species (H and PB1). Future pandemic strains could arise through either mechanism. Figure adapted, with permission, from Ref.
<xref ref-type="bibr" rid="CR7">7</xref>
© (2005) Massachusetts Medical Society.</p>
</caption>
<graphic xlink:href="41573_2006_Article_BFnrd2175_Fig1_HTML" id="d29e240"></graphic>
</fig>
</p>
<p id="Par11">Whether a new influenza pandemic could arise through antigenic 'drift' from an avian influenza virus or antigenic 'shift' through recombination of an avian and human influenza virus can only be speculated on. However, although this question is of crucial importance for future vaccine development, it has much less bearing on antiviral-drug design, as the antiviral drug targets shown in
<xref rid="Fig2" ref-type="fig">Fig. 2</xref>
, and others which will be discussed here, should be relevant to all variants of influenza A virus
<sup>
<xref ref-type="bibr" rid="CR8">8</xref>
</sup>
. In this article, I focus on agents that have been shown to have activity against influenza A viruses, and consider their therapeutic potential.
<fig id="Fig2">
<label>Figure 2</label>
<caption>
<title>Inhibition of the influenza-virus replication cycle by antiviral agents.</title>
<p>After binding to sialic-acid receptors, influenza virions are internalized by receptor-mediated endocytosis. The low pH in the endosome triggers the fusion of viral and endosomal membranes, and the influx of H
<sup>+</sup>
ions through the M2 channel releases the viral RNA genes in the cytoplasm. Adamantan(amin)e derivatives block this uncoating step. RNA replication and transcription occur in the nucleus. This process can be blocked by inhibitors of inosine 5′-monophosphate (IMP) dehydrogenase (a cellular enzyme) or viral RNA polymerase. The stability of the viral mRNA and its translation to viral protein might be prevented by small interfering RNAs (siRNAs). Packaging and budding of virions occur at the cytoplasmic membrane. Neuraminidase (N) inhibitors block the release of the newly formed virions from the infected cells. Figure adapted with permission from Ref.
<xref ref-type="bibr" rid="CR8">8</xref>
© (2004) Macmillan Magazines Ltd. H, haemagglutinin.</p>
</caption>
<graphic xlink:href="41573_2006_Article_BFnrd2175_Fig2_HTML" id="d29e266"></graphic>
</fig>
</p>
<p id="Par12">
<bold>Adamantan(amin)e derivatives</bold>
</p>
<p id="Par13">The first synthetic compound shown to inhibit influenza-virus replication was amantadine
<sup>
<xref ref-type="bibr" rid="CR9">9</xref>
</sup>
. As indicated in
<xref rid="Fig2" ref-type="fig">Fig. 2</xref>
, amantadine blocks the migration of H
<sup>+</sup>
ions into the interior of the virus particles (virions) within endosomes, a process that is needed for the uncoating to occur. The H
<sup>+</sup>
ions are imported through the M2 (matrix 2) channels
<sup>
<xref ref-type="bibr" rid="CR10">10</xref>
</sup>
; the transmembrane domain of the M2 protein, with the amino-acid residues facing the ion-conducting pore, is shown in
<xref rid="Fig3" ref-type="fig">Fig. 3a</xref>
(Ref.
<xref ref-type="bibr" rid="CR11">11</xref>
). Amantadine has been postulated to block the interior channel within the tetrameric M2 helix bundle
<sup>
<xref ref-type="bibr" rid="CR12">12</xref>
</sup>
.
<fig id="Fig3">
<label>Figure 3</label>
<caption>
<title>Adamantan(amin)e derivatives as antiviral drugs.</title>
<p>
<bold>a</bold>
| Amantadine, rimantadine and adamantanamine derivatives share several common structural features which relate to their mode of action: blockade of the M2 channel, which is responsible for transporting H
<sup>+</sup>
ions (protons) into the interior of the virions and initiating the viral uncoating process (
<xref rid="Fig2" ref-type="fig">Fig. 2</xref>
). The figure shows a model of the proposed transmembrane domain of the M2 protein with a top view as seen from the extracellular side and a cross-section in the plane of the lipid layer. Residues which were identified as facing the ion-conducting aqueous pore are indicated.
<bold>b</bold>
| Structures of the adamantan(amin)e derivatives amantadine and rimantadine, and various new adamantanamine derivatives: spiro[cyclopropane-1,2′-adamantan]-2-amine
<sup>
<xref ref-type="bibr" rid="CR16">16</xref>
</sup>
, spiro[pyrrolidine-2,2′-adamantane]
<sup>
<xref ref-type="bibr" rid="CR16">16</xref>
</sup>
, spiro[piperidine-2,2′-adamantane]
<sup>
<xref ref-type="bibr" rid="CR17">17</xref>
</sup>
, 2-(2-adamantyl)piperidine
<sup>
<xref ref-type="bibr" rid="CR18">18</xref>
</sup>
, 3-(2-adamantyl)pyrrolidine
<sup>
<xref ref-type="bibr" rid="CR19">19</xref>
</sup>
, rimantadine 2-isomers
<sup>
<xref ref-type="bibr" rid="CR20">20</xref>
</sup>
, 2-(1-adamantyl)piperidine
<sup>
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
, 2-(1-adamantyl)pyrrolidine
<sup>
<xref ref-type="bibr" rid="CR21">21</xref>
</sup>
and 2-(1-adamantyl)-2-methyl-pyrrolidine
<sup>
<xref ref-type="bibr" rid="CR22">22</xref>
</sup>
. Panel
<bold>a</bold>
reproduced with permission from Ref.
<xref ref-type="bibr" rid="CR11">11</xref>
© (2000) American Society for Microbiology.</p>
</caption>
<graphic xlink:href="41573_2006_Article_BFnrd2175_Fig3_HTML" id="d29e367"></graphic>
</fig>
</p>
<p id="Par14">The adamantan(amin)e derivatives amantadine and rimantadine (
<xref rid="Fig3" ref-type="fig">Fig. 3b</xref>
) have long been available for both the prophylaxis and therapy of influenza A virus infections, but their use has been limited because of the rapid emergence of drug resistance, the ready transmissibility of drug-resistant viruses, and, particularly for amantadine, the occurrence of central nervous system (CNS) side effects.These drawbacks compromise the potential usefulness of amantadine or rimantadine if used as single agents in the treatment of avian or human influenza A virus infections.</p>
<p id="Par15">In particular, the incidence of adamantane resistance among influenza A (H3N2) viruses isolated in the United States
<sup>
<xref ref-type="bibr" rid="CR13">13</xref>
</sup>
and worldwide
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
has been a cause for concern. More than 98% of the adamantane-resistant isolates identified worldwide between 1995 and 2005 contain the same S31N substitution
<sup>
<xref ref-type="bibr" rid="CR14">14</xref>
</sup>
. The global circulation of adamantane-resistant H3N2 viruses is unprecedented and does not seem to be mediated by continued selective drug pressure. It could be argued that if resistance exists in a relatively homogeneous strain of H3N2, and if antiviral use would be curtailed, susceptible strains might (re-)emerge and adamantanes might regain their utility against both epidemic and pandemic influenza
<sup>
<xref ref-type="bibr" rid="CR15">15</xref>
</sup>
.</p>
<p id="Par16">In addition to amantadine and rimantadine, various new adamantan(amin)e derivatives have shown marked activity against influenza A (H2N2 and/or H3N2)
<sup>
<xref ref-type="bibr" rid="CR16">16</xref>
,
<xref ref-type="bibr" rid="CR17">17</xref>
,
<xref ref-type="bibr" rid="CR18">18</xref>
,
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR20">20</xref>
,
<xref ref-type="bibr" rid="CR21">21</xref>
,
<xref ref-type="bibr" rid="CR22">22</xref>
</sup>
(
<xref rid="Fig3" ref-type="fig">Fig. 3b</xref>
). Whether any of these new derivatives might offer any advantage in terms of potency, selectivity, safety or resistance profile over the parent compounds amantadine and rimantadine needs to be further explored. Also, further investigation of the antiviral potential of other 'cage-like' compounds structurally related to the adamantyl entity, such as bananin
<sup>
<xref ref-type="bibr" rid="CR23">23</xref>
</sup>
, might be worthwhile. At present, it can only be speculated whether any of the new adamantan(amin)e derivatives might be active against amantadine-resistant variants and efficacious
<italic>in vivo</italic>
in humans or relevant animal models.</p>
<p id="Par17">
<bold>Neuraminidase inhibitors</bold>
</p>
<p id="Par18">Viral haemagglutinin (H) is needed for the virus to interact with the receptor bearing
<italic>N</italic>
-acetylneuraminic acid (NANA, sialic acid). The viral neuraminidase (N) then cleaves off NANA from the cell-surface glycoprotein at a specific bond: SAα2,3Gal (sialic acid linked to galactose by an α-2,3 linkage) or SAα2,6Gal (sialic acid linked to galactose by an α-2,6 linkage (
<xref rid="Fig4" ref-type="fig">Fig. 4</xref>
)). This enables the progeny virions to leave the infected cells and to spread to other host cells. So, by blocking the release of these newly formed virus particles, neuraminidase inhibitors should prevent further spread of the virus
<sup>
<xref ref-type="bibr" rid="CR24">24</xref>
,
<xref ref-type="bibr" rid="CR25">25</xref>
</sup>
(
<xref rid="Fig4" ref-type="fig">Fig. 4</xref>
). The neuraminidase might also have a role early in influenza infection of the human airway epithelium
<sup>
<xref ref-type="bibr" rid="CR26">26</xref>
</sup>
.
<fig id="Fig4">
<label>Figure 4</label>
<caption>
<title>Viral neuraminidase inhibition.</title>
<p>
<bold>a</bold>
| The neuraminidase cleaves off sialic acid (SA, also known as
<italic>N</italic>
-acetylneuraminic acid or NANA) from the cell receptor for influenza virus (
<bold>b</bold>
), so that the newly formed virus particles can be released from the cells. Neuraminidase inhibitors, such as zanamivir and oseltamivir (
<xref rid="Fig5" ref-type="fig">Fig. 5</xref>
), interfere with the release of progeny influenza virions from the surface of infected host cells. In doing so, the neuraminidase inhibitors prevent virus infection of new host cells and thereby halt the spread of infection in the respiratory tract.
<bold>b</bold>
| SA linked to galactose (Gal) by an α2–3 linkage (SAα2–3Gal) or α2–6 linkage (SAα2–6Gal). Galactose is linked to
<italic>N</italic>
-acetylglucosamine (Glc
<italic>N</italic>
Ac) through a β1–4 linkage. Panel
<bold>a</bold>
adapted with permission from Ref.
<xref ref-type="bibr" rid="CR25">25</xref>
© (2005) Massachusetts Medical Society.</p>
</caption>
<graphic xlink:href="41573_2006_Article_BFnrd2175_Fig4_HTML" id="d29e491"></graphic>
</fig>
</p>
<p id="Par19">Avian (H5N1) influenza viruses and human (H3N2, H1N1) influenza viruses seem to target different receptors of the human respiratory tract: whereas human-derived viruses preferentially recognize SAα2,6Gal located on epithelial cells of the nasal mucosa, paranasal sinuses, pharynx, trachea and bronchi, avian viruses seem to preferentially recognize SAα2,3Gal located more deeply in the respiratory tract, at the
<xref rid="Glos2" ref-type="list">alveolar</xref>
cell wall and junction between the respiratory bronchiole and alveolus
<sup>
<xref ref-type="bibr" rid="CR27">27</xref>
</sup>
. The avian influenza (H5N1) virus might cause severe lower respiratory tract (LRT) disease in humans because it attaches predominantly to type II pneumocytes, alveolar macrophages and non-ciliated bronchiolar cells of the human LRT
<sup>
<xref ref-type="bibr" rid="CR28">28</xref>
</sup>
. In terms of the effectiveness of neuraminidase inhibitors, it would not, in theory, matter whether NANA is bound through an α-2,3 or α-2,6 linkage, as the neuraminidase inhibitors act as
<xref rid="Glos3" ref-type="list">transition state analogues</xref>
<sup>
<xref ref-type="bibr" rid="CR29">29</xref>
</sup>
of NANA, irrespective of how it is bound to the penultimate galactose unit.</p>
<p id="Par20">
<bold>
<italic>Oseltamivir and zanamivir</italic>
</bold>
. The first neuraminidase inhibitors designed according to the 'transition state analogue' principle
<sup>
<xref ref-type="bibr" rid="CR29">29</xref>
</sup>
were DANA (2-deoxy-2,3-didehydro-
<italic>N</italic>
-acetylneuraminic acid) and FANA (2-deoxy-2,3-dehydro-
<italic>N</italic>
-trifluoroacetylneuraminic acid). They served as the lead compounds for the development of the neuraminidase inhibitors that are marketed at present for the treatment (and prophylaxis) of influenza A and B virus infections: zanamivir (Relenza, 4-guanidino-Neu5Ac2en, GG167)
<sup>
<xref ref-type="bibr" rid="CR30">30</xref>
</sup>
and oseltamivir (Tamiflu, GS4071 ethyl ester, GS4104, Ro64-0796)
<sup>
<xref ref-type="bibr" rid="CR31">31</xref>
</sup>
(
<xref rid="Fig5" ref-type="fig">Fig. 5a</xref>
). Both compounds have been found to be highly potent inhibitors (IC
<sub>50</sub>
≤ 1 ng ml
<sup>−1</sup>
) of the influenza neuraminidase, to inhibit influenza A and B virus replication
<italic>in vitro</italic>
and
<italic>in vivo</italic>
(mice, ferrets), to be well tolerated, and to be both prophylactically (significant reduction in number of ill subjects) and therapeutically (significant reduction in duration of illness) effective against influenza A and B virus infection in humans. A crucial difference between zanamivir and oseltamivir, however, is that zanamivir has to be administered by inhalation (10 mg twice daily), whereas oseltamivir can be administered orally (75 or 150 mg twice daily).
<fig id="Fig5">
<label>Figure 5</label>
<caption>
<title>Neuraminidase inhibitors.</title>
<p>
<bold>a</bold>
| Structures of DANA, FANA, zanamivir (4-guanidino-Neu5Ac2en, GG167), oseltamivir (GS4071 ethyl ester, GS4104, Ro64-0796), peramivir (RWJ-270201), cyclopentane derivatives, a cyclopentane amide derivative and pyrrolidine derivatives (A-192558 and A-315675).
<bold>b</bold>
| GS4071 within the active site of the influenza A viral neuraminidase.
<bold>c</bold>
| Locations of oseltamivir-resistance mutations (H274Y) showing that the tyrosine at position 252 is involved in a network of hydrogen bonds in group-1 (H5N1 and H1N1) neuraminidases
<sup>
<xref ref-type="bibr" rid="CR38">38</xref>
</sup>
. Panel
<bold>b</bold>
reproduced with permission from Ref.
<xref ref-type="bibr" rid="CR31">31</xref>
© (1997) American Chemical Society and Ref.
<xref ref-type="bibr" rid="CR37">37</xref>
© (2002) Macmillan Magazines Ltd. Panel
<bold>c</bold>
reproduced with permission from Ref.
<xref ref-type="bibr" rid="CR38">38</xref>
© (2006) Macmillan Magazines Ltd.</p>
</caption>
<graphic xlink:href="41573_2006_Article_BFnrd2175_Fig5_HTML" id="d29e588"></graphic>
</fig>
</p>
<p id="Par21">Neuraminidase inhibitors are anticipated to reduce illness duration by 1–3 days, to reduce the risk of virus transmission to household or healthcare contacts, to reduce the number and severity of complications (sinusitis, bronchitis), to reduce the use of antibiotics and to prevent seasonal influenza-virus infection. As shown in particular for oseltamivir, the earlier the administration, the shorter the duration of fever, the greater the alleviation of symptoms and the faster the return to baseline activity and health scores
<sup>
<xref ref-type="bibr" rid="CR32">32</xref>
</sup>
. Oseltamivir treatment of influenza illness reduces lower respiratory tract complications, particularly bronchitis and pneumonia, concomitantly with a reduction in antibiotic use and need for hospitalization
<sup>
<xref ref-type="bibr" rid="CR33">33</xref>
</sup>
. Also, post-exposure prophylaxis with oseltamivir, 75 mg once daily for seven days, was found to protect close contacts of influenza-infected persons against influenza illness and to prevent spread within households
<sup>
<xref ref-type="bibr" rid="CR34">34</xref>
</sup>
. Post-exposure prophylaxis with oseltamivir can be considered an effective option to prevent the transmission of influenza within households
<sup>
<xref ref-type="bibr" rid="CR35">35</xref>
</sup>
. It should be recognized, however, that oseltamivir is less effective against influenza B than against influenza A with regard to duration of fever and virus persistence
<sup>
<xref ref-type="bibr" rid="CR36">36</xref>
</sup>
.</p>
<p id="Par22">The neuraminidase inhibitor GS4071 has been found to be positioned in the active centre of the neuraminidase
<sup>
<xref ref-type="bibr" rid="CR31">31</xref>
,
<xref ref-type="bibr" rid="CR37">37</xref>
</sup>
(
<xref rid="Fig5" ref-type="fig">Fig. 5b</xref>
). Two structures of the influenza A virus neuraminidase have now been solved: the first containing the N1 neuraminidase of H5N1, and the second containing the N2 neuraminidase as in H3N2
<sup>
<xref ref-type="bibr" rid="CR38">38</xref>
</sup>
(
<xref rid="Fig5" ref-type="fig">Fig. 5c</xref>
). The neuraminidase inhibitors make contact with arginine in position 292 through their carboxylic acid group, and with glutamic acid in position 119 through their basic amine (in the case of oseltamivir) or guanidinium (in the case of zanamivir) group. So, it is not surprising that at these positions mutations (R292K, E119G) can arise that engender resistance to both zanamivir and oseltamivir
<sup>
<xref ref-type="bibr" rid="CR39">39</xref>
</sup>
. The R292K mutation causes high-level resistance to oseltamivir but only low-level (5–30-fold) resistance to zanamivir. In a comprehensive study of more than 1,000 clinical influenza isolates recovered from 1996 to 1999, there was no evidence of naturally occurring resistance to either oseltamivir or zanamivir in any of the isolates
<sup>
<xref ref-type="bibr" rid="CR40">40</xref>
</sup>
. However, in children treated for influenza with oseltamivir, Kiso
<italic>et al</italic>
.
<sup>
<xref ref-type="bibr" rid="CR41">41</xref>
</sup>
found neuraminidase mutations in viruses from nine patients (18%), six of whom had mutations at position 292 (R292K) and two at position 119 (E119V). Zanamivir-resistant influenza H3N2 viruses might not readily arise
<italic>in vivo</italic>
owing to their poor viability (reduced fitness)
<sup>
<xref ref-type="bibr" rid="CR42">42</xref>
</sup>
.</p>
<p id="Par23">Recombinant viruses containing either the wild-type neuraminidase or a single amino-acid change at residue 119 (E119V) or 292 (R292K) were generated in the influenza A (H3N2) virus by reverse genetics: both mutants showed decreased sensitivity to oseltamivir, and the R292K virus showed cross-resistance to zanamivir. The R292K mutation was associated with compromised viral growth and transmissibility (in accordance with earlier studies
<sup>
<xref ref-type="bibr" rid="CR43">43</xref>
,
<xref ref-type="bibr" rid="CR44">44</xref>
</sup>
), whereas the growth and transmissibility of the E119V virus were comparable to those of wild-type virus
<sup>
<xref ref-type="bibr" rid="CR45">45</xref>
</sup>
.</p>
<p id="Par24">Of note, influenza A (H3N2) virus carrying the R292K mutation in the neuraminidase gene did not transmit to ferrets under conditions in which the wild-type virus was readily transmitted
<sup>
<xref ref-type="bibr" rid="CR43">43</xref>
</sup>
. However, other mutant viruses of influenza A (H3N2) — that is, E119V and H274Y, both engendering resistance to oseltamivir — were found to be readily transmissible in ferrets, although the H274Y mutant required a 100-fold higher dose for infection and was transmitted more slowly than the wild type
<sup>
<xref ref-type="bibr" rid="CR44">44</xref>
</sup>
.</p>
<p id="Par25">The use of neuraminidase inhibitors in the therapy and prophylaxis of influenza A and B virus infections has been considered a new 'millennium conundrum', and the stockpiling of zanamivir and/or oseltamivir has been proposed in preparation of an influenza pandemic
<sup>
<xref ref-type="bibr" rid="CR46">46</xref>
</sup>
. It was also hypothesized that these compounds could, in theory, also inhibit the virus that caused the 1918 pandemic
<sup>
<xref ref-type="bibr" rid="CR46">46</xref>
</sup>
. In fact, recombinant viruses possessing the 1918 neuraminidase or both the 1918 neuraminidase and 1918 haemagglutinin were shown to be effectively inhibited, both
<italic>in vitro</italic>
and
<italic>in vivo</italic>
(mice), by zanamivir and oseltamivir, and a recombinant virus possessing the 1918 M2 ion channel could be effectively inhibited by amantadine and rimantadine. This indicates that current antiviral strategies could be effective in curbing a re-emerging 1918 or 1918-like influenza (H1N1) virus
<sup>
<xref ref-type="bibr" rid="CR47">47</xref>
</sup>
.</p>
<p id="Par26">Recently, resistance of influenza A (H5N1) virus to oseltamivir owing to the H274Y mutation in the neuraminidase gene was described
<sup>
<xref ref-type="bibr" rid="CR48">48</xref>
</sup>
: the patient from whom the oseltamivir-resistant H5N1 strain was isolated recovered from the disease, and the virus was found to be less pathogenic in ferrets than the parent strain and did not show cross-resistance to zanamivir. Although the H274Y mutation in influenza A (H1N1) neuraminidase had been previously reported
<sup>
<xref ref-type="bibr" rid="CR49">49</xref>
,
<xref ref-type="bibr" rid="CR50">50</xref>
</sup>
, its occurrence in influenza A (H5N1) infection raised concern as it was associated with death in two of the eight influenza A (H5N1)-infected patients
<sup>
<xref ref-type="bibr" rid="CR51">51</xref>
</sup>
. However, whether there was a causal relationship between the emergence of the H274Y mutation and the lethal outcome was not established
<sup>
<xref ref-type="bibr" rid="CR51">51</xref>
</sup>
.</p>
<p id="Par27">The efficacy of oseltamivir in the treatment of H5N1 infection in humans could, because of its anecdotal use, not be unequivocally shown. However, it should be noted that oseltamivir has been shown to protect ferrets against lethal influenza H5N1 infection: treatment with oseltamivir at 5 mg kg
<sup>−1</sup>
per day for 5 days twice daily (orally) resulted in complete inhibition of virus replication in the lungs and small intestine on day 5 post-infection and, consequently, prevented mortality
<sup>
<xref ref-type="bibr" rid="CR52">52</xref>
</sup>
. Similarly, oseltamivir has proven efficacious in the treatment of mice infected with the highly pathogenic H5N1 A/Vietnam/1203/04 influenza strain, although prolonged and higher-dose oseltamivir regimens were required for achieving the most beneficial antiviral effect
<sup>
<xref ref-type="bibr" rid="CR53">53</xref>
</sup>
.</p>
<p id="Par28">
<bold>
<italic>Peramivir and other cyclopentane or pyrrolidine derivatives</italic>
</bold>
. Whereas oseltamivir can be described as a cyclohexenyl derivative, there are several cyclopentane and pyrrolidine derivatives that have been described as neuraminidase inhibitors: peramivir (RWJ-270201, BCX-1182)
<sup>
<xref ref-type="bibr" rid="CR54">54</xref>
,
<xref ref-type="bibr" rid="CR55">55</xref>
,
<xref ref-type="bibr" rid="CR56">56</xref>
</sup>
and other cyclopentane
<sup>
<xref ref-type="bibr" rid="CR56">56</xref>
,
<xref ref-type="bibr" rid="CR57">57</xref>
</sup>
and cyclopentane amide
<sup>
<xref ref-type="bibr" rid="CR58">58</xref>
</sup>
derivatives, as well as various pyrrolidine derivatives, including A-192558 (Ref.
<xref ref-type="bibr" rid="CR59">59</xref>
), A-315675 (Refs
<xref ref-type="bibr" rid="CR60">60</xref>
<xref ref-type="bibr" rid="CR62">62</xref>
) and other pyrrolidines
<sup>
<xref ref-type="bibr" rid="CR63">63</xref>
</sup>
(
<xref rid="Fig5" ref-type="fig">Fig. 5a</xref>
). In addition, 2,3-disubstituted tetrahydrofuran-5-carboxylic acid derivatives have been described as influenza-neuraminidase inhibitors, albeit with reduced inhibitory potency compared with the corresponding pyrrolidine analogues
<sup>
<xref ref-type="bibr" rid="CR64">64</xref>
</sup>
.</p>
<p id="Par29">Peramivir and A-315675 retain activity against various zanamivir- and oseltamivir-resistant influenza A and B viruses
<sup>
<xref ref-type="bibr" rid="CR65">65</xref>
</sup>
. Specifically, a new oseltamivir-resistant influenza B variant that carries the D198N substitution in the viral neuraminidase was found to retain susceptibility to peramivir and A-315675. In addition, the neuraminidase E119V mutant, which shows 6,000-fold lower susceptibility to oseltamivir and 175-fold lower susceptibility to zanamivir than wild-type virus, retained full susceptibility to A-315675 (Ref.
<xref ref-type="bibr" rid="CR66">66</xref>
). Taken together, the studies performed with influenza A (H3N2) virus mutants
<sup>
<xref ref-type="bibr" rid="CR41">41</xref>
,
<xref ref-type="bibr" rid="CR42">42</xref>
,
<xref ref-type="bibr" rid="CR43">43</xref>
,
<xref ref-type="bibr" rid="CR44">44</xref>
,
<xref ref-type="bibr" rid="CR45">45</xref>
,
<xref ref-type="bibr" rid="CR65">65</xref>
,
<xref ref-type="bibr" rid="CR66">66</xref>
</sup>
indicate that neuraminidase inhibitors might select for mutations at several positions (E119V, R152K, D198N, H274Y and R292K) that only partially overlap
<sup>
<xref ref-type="bibr" rid="CR67">67</xref>
</sup>
— that is, only partially engender cross-resistance.</p>
<p id="Par30">
<italic>In vivo</italic>
, peramivir was found to strongly suppress influenza A (H1N1) infection in mice following a single intramuscular injection (10 mg kg
<sup>−1</sup>
). This was ascribed to tight binding of peramivir to neuraminidase
<sup>
<xref ref-type="bibr" rid="CR68">68</xref>
</sup>
. Similarly, a single intramuscular/intravenous injection of peramivir one hour before virus exposure offered protection against influenza A (H5N1) in mice
<sup>
<xref ref-type="bibr" rid="CR69">69</xref>
</sup>
. When given orally to humans, however, peramivir did not offer robust protection against human influenza A infection, which was attributed to the very low oral bioavailability (<5%) of peramivir
<sup>
<xref ref-type="bibr" rid="CR70">70</xref>
</sup>
; further studies with parenteral formulations of peramivir are therefore warranted.</p>
<p id="Par31">
<bold>
<italic>Dimeric neuraminidase inhibitors</italic>
</bold>
. Starting from zanamivir, 7-alkyl ether derivatives and bicyclic ether derivatives were synthesized which showed improved influenza A virus plaque-reduction activity
<italic>in vitro</italic>
<sup>
<xref ref-type="bibr" rid="CR71">71</xref>
</sup>
, and improved oral efficacy
<italic>in vivo</italic>
(mice)
<sup>
<xref ref-type="bibr" rid="CR72">72</xref>
</sup>
, respectively, compared with the parent compound, zanamivir. Dimeric derivatives of zanamivir with linking groups of 14–18 atoms in length were found to be 100-fold more potent inhibitors of influenza-virus replication
<italic>in vitro</italic>
and
<italic>in vivo</italic>
than zanamivir
<sup>
<xref ref-type="bibr" rid="CR73">73</xref>
,
<xref ref-type="bibr" rid="CR74">74</xref>
</sup>
. These compounds showed long-lasting antiviral activity owing to extremely long persistence times in the lungs, allowing a once-weekly dosing regimen. This raises the prospect of a new type of anti-influenza drug that could be administered as a single dose in the treatment of influenza, or just once a week in the prevention of infection
<sup>
<xref ref-type="bibr" rid="CR74">74</xref>
</sup>
.</p>
<p id="Par32">
<bold>Ribavirin and viramidine</bold>
</p>
<p id="Par33">Ribavirin has long been recognized as a broad-spectrum antiviral agent with particularly distinct activity against orthomyxoviruses (that is, influenza) and paramyxoviruses (that is, measles and respiratory syncytial virus (RSV))
<sup>
<xref ref-type="bibr" rid="CR75">75</xref>
</sup>
. RSV infection is the only (−)RNA virus infection for which aerosolized ribavirin has been formally approved. Oral ribavirin is also used, in combination with parenteral
<xref rid="Glos4" ref-type="list">PEGylated</xref>
interferon-α, in the treatment of chronic hepatitis C virus (HCV) infection. The intravenous form of ribavirin has been registered for the treatment of haemorrhagic fever with renal syndrome (HFRS). In addition to ribavirin, viramidine — which can be considered to be the amidine
<xref rid="Glos5" ref-type="list">prodrug</xref>
of ribavirin(
<xref rid="Fig6" ref-type="fig">Fig. 6</xref>
) — has been accredited with marked potential as anti-influenza drug
<sup>
<xref ref-type="bibr" rid="CR76">76</xref>
</sup>
. Ribavirin is notable for not generating drug resistance, and resistance of influenza-virus replication to ribavirin has, to the best of my knowledge, not been reported so far. Obviously, the lack of drug-resistance is due to the fact that ribavirin's main target of antiviral action is a cellular enzyme: inosine 5′-monophosphate (IMP) dehydrogenase (responsible for the conversion of IMP to xanthosine 5′-monophosphate), a key enzyme involved in the biosynthesis of GTP and viral RNA synthesis (
<xref rid="Fig6" ref-type="fig">Fig. 6</xref>
).
<fig id="Fig6">
<label>Figure 6</label>
<caption>
<title>IMP dehydrogenase inhibition.</title>
<p>Viramidine acts as a prodrug (precursor) of ribavirin, which is converted intracellularly to its 5′-monophosphate derivative, ribavirin-MP. The latter inhibits inosine 5′-monophosphate (IMP) dehydrogenase, a crucial enzyme in the biosynthesis of RNA, including viral RNA. IMP dehydrogenase is responsible for the conversion of IMP into xanthosine 5′-monophosphate (XMP) which, in turn, is further converted to GMP (guanosine 5′-monophosphate), GDP (guanosine 5′-diphosphate) and GTP (guanosine 5′-triphosphate). The latter serves as substrate, together with ATP, UTP and CTP, in the synthesis of RNA.</p>
</caption>
<graphic xlink:href="41573_2006_Article_BFnrd2175_Fig6_HTML" id="d29e905"></graphic>
</fig>
</p>
<p id="Par34">Ribavirin is active against both human and avian (H5N1) influenza viruses within the 50% effective concentration (EC
<sub>50</sub>
) range of 6–22 μM
<sup>
<xref ref-type="bibr" rid="CR76">76</xref>
</sup>
. Of the three routes (oral, aerosolized and intravenous) by which ribavirin could be administered in the treatment of influenza, the intravenous route is preferred for therapy of acute influenza-virus infection. Oral ribavirin did not offer the expected clinical or virological efficacy in earlier studies with influenza A (H1N1)
<sup>
<xref ref-type="bibr" rid="CR77">77</xref>
</sup>
. Ribavirin aerosol has been used successfully (based on reduction of virus shedding and clinical symptoms) in the treatment of influenza-virus infections in college students
<sup>
<xref ref-type="bibr" rid="CR78">78</xref>
</sup>
. Intravenous ribavirin (producing a mean plasma concentration of 20–60 μM) was associated with symptomatic improvements and elimination of influenza virus from nasopharyngeal swabbings and tracheal aspirates
<sup>
<xref ref-type="bibr" rid="CR79">79</xref>
</sup>
.</p>
<p id="Par35">Intravenous ribavirin has been further investigated, with success, in the treatment of Lassa fever
<sup>
<xref ref-type="bibr" rid="CR80">80</xref>
</sup>
and HFRS
<sup>
<xref ref-type="bibr" rid="CR81">81</xref>
</sup>
. Both studies showed significant benefits of ribavirin in terms of survival and reduction of disease severity. The dosing regimen for intravenous ribavirin consists of a loading dose of 2 grams of ribavirin followed by 1 gram every 6 hours for 4 days. During the following 5 days, administering a maintenance dose of 0.5 gram every 8 hours should generate the concentrations needed to achieve suppression of (human and avian) influenza-virus replication. The dose-limiting toxicity would be haemolytic anaemia, which should be reversible on cessation of therapy.</p>
<p id="Par36">
<bold>Sialidase fusion protein and sialylglycopolymers</bold>
</p>
<p id="Par37">Recently, a recombinant fusion protein composed of the sialidase (neuraminidase) catalytic domain derived from
<italic>Actinomyces viscosus</italic>
fused with a cell-surface-anchoring sequence was reported as a novel broad-spectrum inhibitor of influenza-virus infection
<sup>
<xref ref-type="bibr" rid="CR82">82</xref>
</sup>
. The sialidase fusion protein is to be applied topically as an inhalant to remove the influenza-virus receptors — sialic acids — from the airway epithelium. A sialidase fusion construct, DAS181 (Fludase), was shown to effectively cleave sialic-acid receptors used by both human and avian influenza viruses. DAS181 showed potent antiviral and cell-protective efficacies against a panel of laboratory strains and clinical isolates of influenza A and influenza B, with virus-replication inhibition EC
<sub>50</sub>
values in the range of 0.04–0.9 nM. Significant
<italic>in vivo</italic>
efficacy of the sialidase fusion construct was noted in both prophylactic and therapeutic approaches
<sup>
<xref ref-type="bibr" rid="CR82">82</xref>
</sup>
.</p>
<p id="Par38">The sialic-acid receptors could also be targeted by sialic-acid polyacrylamide conjugates, also termed sialylglycopolymers
<sup>
<xref ref-type="bibr" rid="CR83">83</xref>
,
<xref ref-type="bibr" rid="CR84">84</xref>
</sup>
. Sialylglycopolymers inhibit influenza-virus attachment to the cells.
<italic>In vivo</italic>
, when administered in aerosol form within 24–110 hours of infection, they were found to completely prevent mortality in mice infected with mouse-adapted influenza A strains (H3N2, H1N1). These sialylglycopolymers target the receptor determinant SAα2-6Galβ1-4Glc
<italic>N</italic>
Ac, recognized by human influenza A and B viruses. This would make them potentially valuable for protection against any newly emerging (human) influenza virus strains.</p>
<p id="Par39">
<bold>siRNAs and phosphorothioate oligonucleotides</bold>
</p>
<p id="Par40">
<xref rid="Glos6" ref-type="list">Small interfering RNAs</xref>
(siRNAs) specific for conserved regions of influenza-virus genes were found to reduce virus production in the lungs of infected mice when the siRNAs were given intravenously in complexes with a polycation carrier either before or after initiating virus infection
<sup>
<xref ref-type="bibr" rid="CR85">85</xref>
</sup>
. Delivery of siRNAs specific for highly conserved regions of the nucleoprotein or acidic polymerase significantly reduced lung virus titres in mice infected with influenza A virus and protected the animals from lethal challenge. This protection was specific and not mediated by an antiviral interferon response. The influenza-specific siRNA treatment was broadly effective and protected animals against lethal challenge with highly pathogenic avian influenza A viruses of the H5 and H7 subtypes
<sup>
<xref ref-type="bibr" rid="CR86">86</xref>
</sup>
. It could be predicted that specific siRNAs would be effective against influenza from equally effective results obtained with other specific siRNAs against the SARS (severe acute respiratory syndrome) coronavirus, in comparable situations
<sup>
<xref ref-type="bibr" rid="CR87">87</xref>
</sup>
.</p>
<p id="Par41">
<xref rid="Glos7" ref-type="list">Phosphorothioate oligonucleotides</xref>
(PS-ONs) (that is, REP 9, a 40-mer PS-ON) offer potential, when administered as aerosol in the prophylaxis and therapy of influenza infection
<sup>
<xref ref-type="bibr" rid="CR88">88</xref>
</sup>
. Similarly, antisense phosphorodiamidate morpholino oligomers (ARP-PMOs) could be further pursued for their potential in the treatment of H5N1 influenza A virus infections
<sup>
<xref ref-type="bibr" rid="CR89">89</xref>
</sup>
.</p>
<p id="Par42">
<bold>Influenza-virus RNA-polymerase inhibitors</bold>
</p>
<p id="Par43">The influenza-virus RNA polymerase consists of a complex of three virus-encoded polypeptides (PB1, PB2 and PA) which, in addition to the RNA replicative activity, also contains an endonuclease activity so as to ensure 'cap snatching' to initiate the transcription and subsequent translation process
<sup>
<xref ref-type="bibr" rid="CR90">90</xref>
</sup>
. The polymerase-complex genes contribute to the high virulence of the human H5N1 influenza-virus isolate A/Vietnam/1203/04 (Ref.
<xref ref-type="bibr" rid="CR91">91</xref>
). This observation highlights the importance of novel antivirals that target the polymerase for further development of therapy and prophylaxis of human and avian influenza-virus infections.</p>
<p id="Par44">Few compounds have been reported to be operating at either the RNA replicase (RNA polymerase) or endonuclease level. Like the inhibitors that have been found to inhibit the reverse transcriptase (RNA-dependent DNA polymerase) of HIV or RNA replicase (RNA-dependent RNA polymerase) of HCV, influenza RNA-replicase inhibitors can be divided into two classes: nucleosides and non-nucleosides. Examples of the nucleoside type of inhibitors are 2′-deoxy-2′-fluoroguanosine (FdG)
<sup>
<xref ref-type="bibr" rid="CR92">92</xref>
,
<xref ref-type="bibr" rid="CR93">93</xref>
</sup>
and T-705
<sup>
<xref ref-type="bibr" rid="CR94">94</xref>
,
<xref ref-type="bibr" rid="CR95">95</xref>
,
<xref ref-type="bibr" rid="CR96">96</xref>
</sup>
(
<xref rid="Fig7" ref-type="fig">Fig. 7</xref>
).
<fig id="Fig7">
<label>Figure 7</label>
<caption>
<title>Influenza-virus RNA-polymerase inhibitors.</title>
<p>
<bold>a</bold>
| FdG, Flutimide, thiadiazolo [2,3-a]pyrimidine and pyrimidinyl acylthiourea.
<bold>b</bold>
| The postulated mode of action of T-705, according to Furuta and colleagues
<sup>
<xref ref-type="bibr" rid="CR96">96</xref>
</sup>
.</p>
</caption>
<graphic xlink:href="41573_2006_Article_BFnrd2175_Fig7_HTML" id="d29e1065"></graphic>
</fig>
</p>
<p id="Par45">T-705 is a substituted pyrazine with potent anti-influenza-virus activity
<italic>in vitro</italic>
and
<italic>in vivo</italic>
. According to a comparative study, T-705 would even be more potent than oseltamivir when increasing the multiplicity of infection (
<italic>in vitro</italic>
) or using a higher virus-challenge dose (
<italic>in vivo</italic>
)
<sup>
<xref ref-type="bibr" rid="CR95">95</xref>
</sup>
. It has been postulated that T-705 is converted intracellularly to the ribonucleotide T-705-4-ribofuranosyl-5′-monophosphate (T-705 RMP) by a phosphoribosyl transferase and, on further phosphorylation to its 5′-triphosphate (
<xref rid="Fig7" ref-type="fig">Fig. 7</xref>
), T-705 RTP would then inhibit influenza-virus RNA polymerase in a GTP-competitive manner
<sup>
<xref ref-type="bibr" rid="CR96">96</xref>
</sup>
. Unlike ribavirin 5′-monophosphate, T-705 RMP did not significantly inhibit IMP dehydrogenase, indicating that it owes its anti-influenza virus activity mainly, if not exclusively, to inhibition of the influenza-virus RNA polymerase.</p>
<p id="Par46">In addition to the RNA polymerase, the 'cap snatching' or 'cap scavenging' endonuclease activity associated with the PB1–PB2–PA complex could be an attractive target for influenza-virus inhibitors: it can be inhibited by 4-substituted 2,4-dioxobutanoic acid derivatives
<sup>
<xref ref-type="bibr" rid="CR97">97</xref>
</sup>
and
<italic>N</italic>
-hydroxamic acid/
<italic>N</italic>
-hydroxy-imide derivatives
<sup>
<xref ref-type="bibr" rid="CR98">98</xref>
</sup>
. Likewise, flutimide, a 2,6-diketopiperazine (
<xref rid="Fig7" ref-type="fig">Fig. 7</xref>
) identified in extracts of the fungal species
<italic>Delitschia confertaspora</italic>
, has been shown to specifically inhibit the cap-dependent endonuclease activity associated with influenza viral RNA polymerase and to inhibit the replication of influenza A and B virus in cell culture
<sup>
<xref ref-type="bibr" rid="CR99">99</xref>
</sup>
. Both the viral RNA polymerase and endonuclease should be further explored as targets for the development of anti-influenza agents.</p>
<p id="Par47">Recently, a new class of potent influenza-virus inhibitors (EC
<sub>50</sub>
for virus replication: 0.08–0.09 μM) has been reported
<sup>
<xref ref-type="bibr" rid="CR100">100</xref>
</sup>
, represented by thiadiazolo[2,3-a]pyrimidine and pyrimidinyl acylthiourea (
<xref rid="Fig7" ref-type="fig">Fig. 7</xref>
). Although the mechanism of action of this class of highly potent and selective inhibitors of influenza virus remains to be established, they represent a highly interesting lead worth pursuing. A series of novel bisheterocycle tandem derivatives consisting of methyloxazole and thiazole might also serve as leads for further optimization, although the lead compounds showed only modest activity against influenza A virus
<sup>
<xref ref-type="bibr" rid="CR101">101</xref>
</sup>
.</p>
<p id="Par48">
<bold>Interferon (inducers)</bold>
</p>
<p id="Par49">Interferon was originally discovered almost 50 years ago, with influenza virus as its inducer
<sup>
<xref ref-type="bibr" rid="CR102">102</xref>
</sup>
. In fact, Baron and Isaacs alluded to the absence of interferon in lungs from fatal cases of influenza
<sup>
<xref ref-type="bibr" rid="CR103">103</xref>
</sup>
. In some earlier studies, interferon instilled by the intranasal route did not offer significant protection in the prophylaxis of influenza-A-virus infections
<sup>
<xref ref-type="bibr" rid="CR104">104</xref>
,
<xref ref-type="bibr" rid="CR105">105</xref>
</sup>
.</p>
<p id="Par50">Since then, PEGylated interferon-α (injected parenterally), in combination with (oral) ribavirin has become the standard therapy for chronic HCV infections. So, extensive experience with this combination has been accumulated
<sup>
<xref ref-type="bibr" rid="CR106">106</xref>
</sup>
, which could be readily implemented in the prophylaxis and therapy of human as well as avian influenza-virus infections in humans. In the prophylaxis and therapy of influenza-virus infections, the duration of treatment would be much shorter than in the treatment of hepatitis C, which would obviously affect the convenience (cost/benefit) and side effects that are inherently linked to the use of interferon and ribavirin.</p>
<p id="Par51">In addition to interferon, interferon inducers such as poly(I)·poly(C), discovered ∼40 years ago
<sup>
<xref ref-type="bibr" rid="CR107">107</xref>
</sup>
might also have a role in the control of influenza-virus infections. Prophylaxis using liposome-encapsulated double-stranded RNA (poly(I)·poly(C)) provided complete and long-lasting protection against influenza A infection
<sup>
<xref ref-type="bibr" rid="CR108">108</xref>
</sup>
. Furthermore, when combined with (intranasal) vaccination, poly(I)·poly(C) conferred complete protection against influenza-virus infection, which might have been mediated by an upregulated expression of Toll-like receptor 3 and interferon-α/β as well as T
<sub>H</sub>
1- and T
<sub>H</sub>
2-related cytokines
<sup>
<xref ref-type="bibr" rid="CR109">109</xref>
</sup>
. It is unclear whether the use of exogenous interferon or the induction of endogenous interferon by poly(I).poly(C) or other double-stranded RNAs might help in the prophylaxis or therapy of avian or human influenza-virus infections, but in view of the 'renaissance' of interferon in the treatment of HCV infection, the potential of interferon for influenza might well deserve to be revisited.</p>
<p id="Par52">
<bold>Signal-transduction inhibitors</bold>
</p>
<p id="Par53">Signal-transduction inhibitors, such as those targeted at either ErbB tyrosine kinase
<sup>
<xref ref-type="bibr" rid="CR110">110</xref>
</sup>
or the Abl kinase family (that is, imatimib
<sup>
<xref ref-type="bibr" rid="CR111">111</xref>
</sup>
), have recently been shown to suppress the
<italic>in vitro</italic>
replication and
<italic>in vivo</italic>
dissemination of poxviruses. Likewise, the signalling cascade could be considered an attractive opportunity for future strategies to block influenza-virus production. The export of the influenza-virus ribonucleoprotein (RNP) from the nucleus depends on the cellular Raf/MEK/ERK kinase (MAPK) signalling cascade
<sup>
<xref ref-type="bibr" rid="CR112">112</xref>
</sup>
, and this PKCα-mediated activation of ERK signalling is specifically triggered by the accumulation of influenza-A-virus haemagglutinin at the cell membrane
<sup>
<xref ref-type="bibr" rid="CR113">113</xref>
</sup>
. The PKCα-mediated ERK activation could therefore be considered a potential target for intervention with influenza-virus propagation.</p>
<p id="Par54">
<bold>Other potential targets</bold>
</p>
<p id="Par55">Recently, the CPSF30-binding site on the NS1A protein of influenza A virus was proposed as a potential target for the development of antivirals directed against influenza A virus
<sup>
<xref ref-type="bibr" rid="CR114">114</xref>
</sup>
. The NS1A protein inhibits the 3′-end processing of cellular pre-mRNAs by binding to the 30-kDa subunit of cleavage and polyadenylation specificity factor (CPSF30). This binding site is also required for efficient virus replication. A fragment of CPSF30, termed F2F3 because it spans the second and third zinc-finger domains, was found to specifically bind to the CPSF30 binding site: it inhibited influenza-A-virus replication but did not inhibit the 3′-end processing of cellular pre-mRNAs. This might indicate that the CPSF30-binding site of NS1A could possibly be targeted by low-molecular-mass inhibitors of HIV replication
<sup>
<xref ref-type="bibr" rid="CR114">114</xref>
</sup>
.</p>
<p id="Par56">
<bold>Combination therapy</bold>
</p>
<p id="Par57">Drug-combination regimens used in the treatment of
<italic>Mycobacterium tuberculosis</italic>
and HIV infections achieve greater benefit than each compound given individually, reduce the likelihood of drug-resistance development and might allow the individual drug doses to be lowered, thereby diminishing adverse effects. In the therapy (or prophylaxis) of influenza-virus infections, the combination of (PEGylated) interferon and ribavirin could be further complemented with amantadine (or rimantadine). This triple-drug combination has shown efficacy in the treatment of chronic HCV infection
<sup>
<xref ref-type="bibr" rid="CR115">115</xref>
</sup>
. Against influenza, such a triple-drug regimen might theoretically be expected to yield a beneficial outcome. The three drugs are, individually, all active against influenza-virus replication
<italic>in vitro</italic>
and act through different mechanisms, which implies that, when combined, they might achieve an additive or even synergistic action, while reducing the risk of emergence of drug-resistant virus variants. As early as 1984, Hayden
<italic>et al</italic>
.
<sup>
<xref ref-type="bibr" rid="CR116">116</xref>
</sup>
pointed to the additive synergistic action between interferon-α2 and rimantadine or ribavirin. Similarly, combinations of (PEGylated) interferon with neuraminidase inhibitors (zanamivir, oseltamivir or peramivir) could also be considered, and so might combinations of ribavirin (or viramidine) with the neuraminidase inhibitors.</p>
<p id="Par58">Combinations of the adamantan(amin)es (amantadine or rimantadine) with the neuraminidase inhibitors (zanamivir or oseltamivir) should also receive attention.
<italic>In vitro</italic>
, rimantadine was found to act synergistically with zanamivir, oseltamivir or peramivir in reducing the extracellular yield of influenza A (H3N2) virus
<sup>
<xref ref-type="bibr" rid="CR117">117</xref>
</sup>
.
<italic>In vivo</italic>
, oseltamivir at 10 mg kg
<sup>−1</sup>
per day and amantadine at 15 mg kg
<sup>−1</sup>
per day provided similar protection against influenza A (H5N1)-associated death risk in mice, but when both were combined they provided an incremental protection against lethality compared with both compounds given as single-agent chemotherapy
<sup>
<xref ref-type="bibr" rid="CR118">118</xref>
</sup>
. The only controlled study in humans was a comparison of rimantadine alone versus rimantadine plus inhaled zanamivir in hospitalized (adult) patients with serious influenza
<sup>
<xref ref-type="bibr" rid="CR119">119</xref>
</sup>
. Although preliminary, this study pointed to a higher clinical benefit for the combination of zanamivir with rimantadine.</p>
<p id="Par59">
<bold>Conclusions</bold>
</p>
<p id="Par60">Several drugs are available that could be used, either alone or in combination, for the treatment (prophylaxis or therapy) of a pandemic influenza-virus infection, whether avian or human. These include adamantan(amin)e derivatives (amantadine), neuraminidase inhibitors (zanamivir and oseltamivir), ribavirin and interferon. In the meantime, attempts should be intensified to further design and develop new antivirals, whether based on known molecular targets, such as the neuraminidase or viral uncoating process, or on as-yet relatively unexplored targets such as the viral RNA polymerase. The latter could, in principle, be targeted by both nucleoside and non-nucleoside inhibitor types, an approach which has proven most successful in the cases of the HIV reverse transcriptase and HCV RNA polymerase.</p>
</sec>
</body>
<back>
<app-group>
<app id="App1">
<sec id="Sec2">
<title>Related links</title>
<sec id="Sec3">
<title>FURTHER INFORMATION</title>
<p id="Par62">
<ext-link ext-link-type="uri" xlink:href="http://www.nature.com/nature/focus/avianflu/index.html">Avian flu web focus</ext-link>
</p>
</sec>
</sec>
</app>
</app-group>
<ack>
<title>Acknowledgements</title>
<p>I thank C. Callebaut for her invaluable editorial assistance.</p>
</ack>
<notes notes-type="COI-statement">
<title>Competing interests</title>
<p id="Par61">The author declares no competing financial interests.</p>
</notes>
<glossary>
<title>Glossary</title>
<def-list>
<def-item id="Glos1">
<term>HXNY</term>
<def>
<p>In the naming system for virus strains, H refers to haemagglutinin and N to neuraminidase.</p>
</def>
</def-item>
<def-item id="Glos2">
<term>Alveoli</term>
<def>
<p>Lung structures responsible for gas (O
<sub>2</sub>
↔ CO
<sub>2</sub>
) exchange.</p>
</def>
</def-item>
<def-item id="Glos3">
<term>Transition state analogue</term>
<def>
<p>A structural mimic of the intermediary state between reactant(s) and product(s) in a given reaction.</p>
</def>
</def-item>
<def-item id="Glos4">
<term>PEGylation</term>
<def>
<p>Addition of poly(ethylene glycol) (PEG) groups to proteins can increase their resistance to proteolytic degradation, improve their water solubility and reduce their antigenicity.</p>
</def>
</def-item>
<def-item id="Glos5">
<term>Prodrug</term>
<def>
<p>A pharmacologically inactive compound that is converted to the active form of the drug by endogenous enzymes or metabolism. It is generally designed to overcome problems associated with stability, toxicity, lack of specificity or limited (oral) bioavailability.</p>
</def>
</def-item>
<def-item id="Glos6">
<term>Small interfering RNAs</term>
<def>
<p>(siRNAs). Small (∼20 nucleotide) RNA constructs that interfere with RNA translation.</p>
</def>
</def-item>
<def-item id="Glos7">
<term>Phosphorothioate oligonucleotides</term>
<def>
<p>Antisense oligonucleotides in which phosphate groups are replaced by thiophosphate groups.</p>
</def>
</def-item>
</def-list>
</glossary>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferguson</surname>
<given-names>NM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Strategies for containing an emerging influenza pandemic in Southeast Asia</article-title>
<source>Nature</source>
<year>2005</year>
<volume>437</volume>
<fpage>209</fpage>
<lpage>214</lpage>
<pub-id pub-id-type="pmid">16079797</pub-id>
</element-citation>
</ref>
<ref id="CR2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferguson</surname>
<given-names>NM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Strategies for mitigating an influenza pandemic</article-title>
<source>Nature</source>
<year>2006</year>
<volume>442</volume>
<fpage>448</fpage>
<lpage>452</lpage>
<pub-id pub-id-type="pmid">16642006</pub-id>
</element-citation>
</ref>
<ref id="CR3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaye</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pringle</surname>
<given-names>CR</given-names>
</name>
</person-group>
<article-title>Avian influenza viruses and their implication for human health</article-title>
<source>Clin. Infect. Dis.</source>
<year>2005</year>
<volume>40</volume>
<fpage>108</fpage>
<lpage>112</lpage>
<pub-id pub-id-type="pmid">15614699</pub-id>
</element-citation>
</ref>
<ref id="CR4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beigel</surname>
<given-names>JH</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Avian influenza A (H5N1) infection in humans</article-title>
<source>N. Engl. J. Med.</source>
<year>2005</year>
<volume>353</volume>
<fpage>1374</fpage>
<lpage>1385</lpage>
<pub-id pub-id-type="pmid">16192482</pub-id>
</element-citation>
</ref>
<ref id="CR5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taubenberger</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Morens</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>1918 influenza: the mother of all pandemics</article-title>
<source>Emerging Infect. Dis.</source>
<year>2006</year>
<volume>12</volume>
<fpage>15</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="pmid">16494711</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kilbourne</surname>
<given-names>ED</given-names>
</name>
</person-group>
<article-title>Influenza pandemics of the 20th century</article-title>
<source>Emerging Infect. Dis.</source>
<year>2006</year>
<volume>12</volume>
<fpage>9</fpage>
<lpage>14</lpage>
<pub-id pub-id-type="pmid">16494710</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Belshe</surname>
<given-names>RB</given-names>
</name>
</person-group>
<article-title>The origins of pandemic influenza — lessons from the 1918 virus</article-title>
<source>N. Engl. J. Med.</source>
<year>2005</year>
<volume>353</volume>
<fpage>2209</fpage>
<lpage>2211</lpage>
<pub-id pub-id-type="pmid">16306515</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Palese</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Influenza: old and new threats</article-title>
<source>Nature Med.</source>
<year>2004</year>
<volume>10</volume>
<fpage>S82</fpage>
<lpage>S87</lpage>
<pub-id pub-id-type="pmid">15577936</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Davies</surname>
<given-names>WL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antiviral activity of 1-adamantanamine (amantadine)</article-title>
<source>Science</source>
<year>1964</year>
<volume>144</volume>
<fpage>862</fpage>
<lpage>863</lpage>
<pub-id pub-id-type="pmid">14151624</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Horimoto</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Kawaoka</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Influenza: lessons from past pandemics, warnings from current incidents</article-title>
<source>Nature Rev. Microbiol.</source>
<year>2005</year>
<volume>3</volume>
<fpage>591</fpage>
<lpage>600</lpage>
<pub-id pub-id-type="pmid">16064053</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shuck</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lamb</surname>
<given-names>RA</given-names>
</name>
<name>
<surname>Pinto</surname>
<given-names>LH</given-names>
</name>
</person-group>
<article-title>Analysis of the pore structure of the influenza A virus M
<sub>2</sub>
ion channel by the substituted-cysteine accessibility method</article-title>
<source>J. Virol.</source>
<year>2000</year>
<volume>74</volume>
<fpage>7755</fpage>
<lpage>7761</lpage>
<pub-id pub-id-type="pmid">10933681</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sansom</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Kerr</surname>
<given-names>ID</given-names>
</name>
</person-group>
<article-title>Influenza virus M2 protein: a molecular modelling study of the ion channel</article-title>
<source>Protein Eng.</source>
<year>1993</year>
<volume>6</volume>
<fpage>65</fpage>
<lpage>74</lpage>
<pub-id pub-id-type="pmid">7679490</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bright</surname>
<given-names>RA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States</article-title>
<source>JAMA</source>
<year>2006</year>
<volume>295</volume>
<fpage>891</fpage>
<lpage>894</lpage>
<pub-id pub-id-type="pmid">16456087</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bright</surname>
<given-names>RA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern</article-title>
<source>Lancet</source>
<year>2005</year>
<volume>366</volume>
<fpage>1175</fpage>
<lpage>1181</lpage>
<pub-id pub-id-type="pmid">16198766</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weinstock</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Zuccotti</surname>
<given-names>G</given-names>
</name>
</person-group>
<article-title>Adamantane resistance in influenza A</article-title>
<source>JAMA</source>
<year>2006</year>
<volume>295</volume>
<fpage>934</fpage>
<lpage>936</lpage>
<pub-id pub-id-type="pmid">16493107</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kolocouris</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synthesis and antiviral activity evaluation of some aminoadamantane derivatives</article-title>
<source>J. Med. Chem.</source>
<year>1994</year>
<volume>37</volume>
<fpage>2896</fpage>
<lpage>2902</lpage>
<pub-id pub-id-type="pmid">8071937</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kolocouris</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synthesis and antiviral activity evaluation of some new aminoadamantane derivatives. 2</article-title>
<source>J. Med. Chem.</source>
<year>1996</year>
<volume>39</volume>
<fpage>3307</fpage>
<lpage>3318</lpage>
<pub-id pub-id-type="pmid">8765514</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kolocouris</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synthesis of 2-(2-adamantyl)piperidines and structure anti-influenza virus A activity relationship study using a combination of NMR spectroscopy and molecular modeling</article-title>
<source>Bioorg. Med. Chem. Lett.</source>
<year>1999</year>
<volume>9</volume>
<fpage>3465</fpage>
<lpage>3470</lpage>
<pub-id pub-id-type="pmid">10617092</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stamatiou</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Novel 3-(2-adamantyl)pyrrolidines with potent activity against influenza A virus — identification of aminoadamantane derivatives bearing two pharmacophoric amine groups</article-title>
<source>Bioorg. Med. Chem. Lett.</source>
<year>2001</year>
<volume>11</volume>
<fpage>2137</fpage>
<lpage>2142</lpage>
<pub-id pub-id-type="pmid">11514155</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zoidis</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Are the 2-isomers of the drug rimantadine active anti-influenza A agents?</article-title>
<source>Antiviral Chem. Chemother.</source>
<year>2003</year>
<volume>14</volume>
<fpage>153</fpage>
<lpage>164</lpage>
</element-citation>
</ref>
<ref id="CR21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stamatiou</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heterocyclic rimantadine analogues with antiviral activity</article-title>
<source>Bioorg. Med. Chem.</source>
<year>2003</year>
<volume>11</volume>
<fpage>5485</fpage>
<lpage>5492</lpage>
<pub-id pub-id-type="pmid">14642592</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zoidis</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Heterocyclic rimantadine analogues with antiviral activity</article-title>
<source>Bioorg. Med. Chem.</source>
<year>2006</year>
<volume>14</volume>
<fpage>3341</fpage>
<lpage>3348</lpage>
<pub-id pub-id-type="pmid">16439137</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tanner</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus</article-title>
<source>Chem. Biol.</source>
<year>2005</year>
<volume>12</volume>
<fpage>303</fpage>
<lpage>311</lpage>
<pub-id pub-id-type="pmid">15797214</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Clercq</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Antivirals and antiviral strategies</article-title>
<source>Nature Rev. Microbiol.</source>
<year>2004</year>
<volume>2</volume>
<fpage>704</fpage>
<lpage>720</lpage>
<pub-id pub-id-type="pmid">15372081</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moscona</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Neuraminidase inhibitors for influenza</article-title>
<source>N. Engl. J. Med.</source>
<year>2005</year>
<volume>353</volume>
<fpage>1363</fpage>
<lpage>1373</lpage>
<pub-id pub-id-type="pmid">16192481</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matrosovich</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Matrosovich</surname>
<given-names>TY</given-names>
</name>
<name>
<surname>Gray</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Klenk</surname>
<given-names>H-D</given-names>
</name>
</person-group>
<article-title>Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium</article-title>
<source>J. Virol.</source>
<year>2004</year>
<volume>78</volume>
<fpage>12665</fpage>
<lpage>12667</lpage>
<pub-id pub-id-type="pmid">15507653</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Shinya</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Avian flu: influenza virus receptors in the human airway</article-title>
<source>Nature</source>
<year>2006</year>
<volume>440</volume>
<fpage>435</fpage>
<lpage>436</lpage>
<pub-id pub-id-type="pmid">16554799</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>van Riel</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>H5N1 virus attachment to lower respiratory tract</article-title>
<source>Science</source>
<year>2006</year>
<volume>312</volume>
<fpage>399</fpage>
<pub-id pub-id-type="pmid">16556800</pub-id>
</element-citation>
</ref>
<ref id="CR29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Abdel-Magid</surname>
<given-names>AF</given-names>
</name>
<name>
<surname>Marvanoff</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Mehrman</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>Synthesis of influenza neuraminidase inhibitors</article-title>
<source>Curr. Opin. Drug Discov. Devel.</source>
<year>2001</year>
<volume>4</volume>
<fpage>776</fpage>
<lpage>791</lpage>
<pub-id pub-id-type="pmid">11899618</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>von Itzstein</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Rational design of potent sialidase-based inhibitors of influenza virus replication</article-title>
<source>Nature</source>
<year>1993</year>
<volume>363</volume>
<fpage>418</fpage>
<lpage>423</lpage>
<pub-id pub-id-type="pmid">8502295</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>CU</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity</article-title>
<source>J. Am. Chem. Soc.</source>
<year>1997</year>
<volume>119</volume>
<fpage>681</fpage>
<lpage>690</lpage>
<pub-id pub-id-type="pmid">16526129</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aoki</surname>
<given-names>FY</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Early administration of oral oseltamivir increases the benefits of influenza treatment</article-title>
<source>J. Antimicrob. Chemother.</source>
<year>2003</year>
<volume>51</volume>
<fpage>123</fpage>
<lpage>129</lpage>
<pub-id pub-id-type="pmid">12493796</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kaiser</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Impact of oseltamivir treatment on influenza-related lower respiratory tract complications and hospitalizations</article-title>
<source>Arch. Intern. Med.</source>
<year>2003</year>
<volume>163</volume>
<fpage>1667</fpage>
<lpage>1672</lpage>
<pub-id pub-id-type="pmid">12885681</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Welliver</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effectiveness of oseltamivir in preventing influenza in household contacts</article-title>
<source>JAMA</source>
<year>2001</year>
<volume>285</volume>
<fpage>748</fpage>
<lpage>754</lpage>
<pub-id pub-id-type="pmid">11176912</pub-id>
</element-citation>
</ref>
<ref id="CR35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hayden</surname>
<given-names>FG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Management of influenza in households: a prospective, randomized comparison of oseltamivir treatment with or without postexposure prophylaxis</article-title>
<source>J. Infect. Dis.</source>
<year>2004</year>
<volume>189</volume>
<fpage>440</fpage>
<lpage>449</lpage>
<pub-id pub-id-type="pmid">14745701</pub-id>
</element-citation>
</ref>
<ref id="CR36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kawai</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A comparison of the effectiveness of oseltamivir for the treatment of influenza A and influenza B: a Japanese multicenter study of the 2003–2004 and 2004–2005 influenza seasons</article-title>
<source>Clin. Infect. Dis.</source>
<year>2006</year>
<volume>43</volume>
<fpage>439</fpage>
<lpage>444</lpage>
<pub-id pub-id-type="pmid">16838232</pub-id>
</element-citation>
</ref>
<ref id="CR37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>De Clercq</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Strategies in the design of antiviral drugs</article-title>
<source>Nature Rev. Drug Discov.</source>
<year>2002</year>
<volume>1</volume>
<fpage>13</fpage>
<lpage>25</lpage>
<pub-id pub-id-type="pmid">12119605</pub-id>
</element-citation>
</ref>
<ref id="CR38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Russell</surname>
<given-names>RJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design</article-title>
<source>Nature</source>
<year>2006</year>
<volume>443</volume>
<fpage>45</fpage>
<lpage>49</lpage>
<pub-id pub-id-type="pmid">16915235</pub-id>
</element-citation>
</ref>
<ref id="CR39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McKimm-Breschkin</surname>
<given-names>JL</given-names>
</name>
</person-group>
<article-title>Resistance of influenza viruses to neuraminidase inhibitors — a review</article-title>
<source>Antiviral Res.</source>
<year>2000</year>
<volume>47</volume>
<fpage>1</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="pmid">10930642</pub-id>
</element-citation>
</ref>
<ref id="CR40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McKimm-Breschkin</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neuraminidase sequence analysis and susceptibilities of influenza virus clinical isolates to zanamivir and oseltamivir</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>2003</year>
<volume>47</volume>
<fpage>2264</fpage>
<lpage>2272</lpage>
<pub-id pub-id-type="pmid">12821478</pub-id>
</element-citation>
</ref>
<ref id="CR41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kiso</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Resistant influenza A viruses in children treated with oseltamivir: descriptive study</article-title>
<source>Lancet</source>
<year>2004</year>
<volume>364</volume>
<fpage>759</fpage>
<lpage>765</lpage>
<pub-id pub-id-type="pmid">15337401</pub-id>
</element-citation>
</ref>
<ref id="CR42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zürcher</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mutations conferring zanamivir resistance in human influenza virus N2 neuraminidases compromise virus fitness and are not stably maintained
<italic>in vitro</italic>
</article-title>
<source>J. Antimicrob. Chemother.</source>
<year>2006</year>
<volume>58</volume>
<fpage>723</fpage>
<lpage>732</lpage>
<pub-id pub-id-type="pmid">16891631</pub-id>
</element-citation>
</ref>
<ref id="CR43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herlocher</surname>
<given-names>ML</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Influenza virus carrying an R292K mutation in the neuraminidase gene is not transmitted in ferrets</article-title>
<source>Antiviral Res.</source>
<year>2002</year>
<volume>54</volume>
<fpage>99</fpage>
<lpage>111</lpage>
<pub-id pub-id-type="pmid">12062395</pub-id>
</element-citation>
</ref>
<ref id="CR44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Herlocher</surname>
<given-names>ML</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Influenza viruses resistant to the antiviral drug oseltamivir: transmission studies in ferrets</article-title>
<source>J. Infect. Dis.</source>
<year>2004</year>
<volume>190</volume>
<fpage>1627</fpage>
<lpage>1630</lpage>
<pub-id pub-id-type="pmid">15478068</pub-id>
</element-citation>
</ref>
<ref id="CR45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yen</surname>
<given-names>H-L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neuraminidase inhibitor-resistant influenza viruses may differ substantially in fitness and transmissibility</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>2005</year>
<volume>49</volume>
<fpage>4075</fpage>
<lpage>4084</lpage>
<pub-id pub-id-type="pmid">16189083</pub-id>
</element-citation>
</ref>
<ref id="CR46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oxford</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Balasingam</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lambkin</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>A new millennium conundrum: how to use a powerful class of influenza anti-neuraminidase drugs (NAIs) in the community</article-title>
<source>J. Antimicrob. Chemother.</source>
<year>2004</year>
<volume>53</volume>
<fpage>133</fpage>
<lpage>136</lpage>
<pub-id pub-id-type="pmid">14688047</pub-id>
</element-citation>
</ref>
<ref id="CR47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tumpey</surname>
<given-names>TM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Existing antivirals are effective against influenza viruses with genes from the 1918 pandemic virus</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2002</year>
<volume>99</volume>
<fpage>13849</fpage>
<lpage>13854</lpage>
<pub-id pub-id-type="pmid">12368467</pub-id>
</element-citation>
</ref>
<ref id="CR48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Le</surname>
<given-names>QM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Avian flu: isolation of drug-resistant H5N1 virus</article-title>
<source>Nature</source>
<year>2005</year>
<volume>437</volume>
<fpage>1108</fpage>
<pub-id pub-id-type="pmid">16228009</pub-id>
</element-citation>
</ref>
<ref id="CR49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gubareva</surname>
<given-names>LV</given-names>
</name>
<name>
<surname>Kaiser</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Matrosovich</surname>
<given-names>MN</given-names>
</name>
<name>
<surname>Soo-Hoo</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Hayden</surname>
<given-names>FG</given-names>
</name>
</person-group>
<article-title>Selection of influenza virus mutants in experimentally infected volunteers treated with oseltamivir</article-title>
<source>J. Infect. Dis.</source>
<year>2001</year>
<volume>183</volume>
<fpage>523</fpage>
<lpage>531</lpage>
<pub-id pub-id-type="pmid">11170976</pub-id>
</element-citation>
</ref>
<ref id="CR50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ives</surname>
<given-names>JA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The H274Y mutation in the influenza A/H1N1 neuraminidase active site following oseltamivir phosphate treatment leave virus severely compromised both
<italic>in vitro</italic>
and
<italic>in vivo</italic>
</article-title>
<source>Antiviral Res.</source>
<year>2002</year>
<volume>55</volume>
<fpage>307</fpage>
<lpage>317</lpage>
<pub-id pub-id-type="pmid">12103431</pub-id>
</element-citation>
</ref>
<ref id="CR51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>de Jong</surname>
<given-names>MD</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Oseltamivir resistance during treatment of influenza A (H5N1) infection</article-title>
<source>N. Engl. J. Med.</source>
<year>2005</year>
<volume>353</volume>
<fpage>2667</fpage>
<lpage>2672</lpage>
<pub-id pub-id-type="pmid">16371632</pub-id>
</element-citation>
</ref>
<ref id="CR52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Govorkova</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Ilyushina</surname>
<given-names>NA</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>RG</given-names>
</name>
</person-group>
<article-title>Oseltamivir protects ferrets against lethal H5N1 influenza virus infection</article-title>
<source>Antiviral Res.</source>
<year>2006</year>
<volume>70</volume>
<fpage>A29</fpage>
</element-citation>
</ref>
<ref id="CR53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yen</surname>
<given-names>H-L</given-names>
</name>
<name>
<surname>Monto</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>RG</given-names>
</name>
<name>
<surname>Govorkova</surname>
<given-names>EA</given-names>
</name>
</person-group>
<article-title>Virulence may determine the necessary duration and dosage of oseltamivir treatment for highly pathogenic A/Vietnam/1203/04 influenza virus in mice</article-title>
<source>J. Infect. Dis.</source>
<year>2005</year>
<volume>192</volume>
<fpage>665</fpage>
<lpage>672</lpage>
<pub-id pub-id-type="pmid">16028136</pub-id>
</element-citation>
</ref>
<ref id="CR54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smee</surname>
<given-names>DF</given-names>
</name>
<name>
<surname>Huffman</surname>
<given-names>JH</given-names>
</name>
<name>
<surname>Morrison</surname>
<given-names>AC</given-names>
</name>
<name>
<surname>Barnard</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Sidwell</surname>
<given-names>RW</given-names>
</name>
</person-group>
<article-title>Cyclopentane neuraminidase inhibitors with potent in vitro anti-influenza virus activities</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>2001</year>
<volume>45</volume>
<fpage>743</fpage>
<lpage>748</lpage>
<pub-id pub-id-type="pmid">11181354</pub-id>
</element-citation>
</ref>
<ref id="CR55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sidwell</surname>
<given-names>RW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>In vivo</italic>
influenza virus-inhibitory effects of the cyclopentane neuraminidase inhibitor RJW-270201</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>2001</year>
<volume>45</volume>
<fpage>749</fpage>
<lpage>757</lpage>
<pub-id pub-id-type="pmid">11181355</pub-id>
</element-citation>
</ref>
<ref id="CR56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chand</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Comparison of the anti-influenza virus activity of cyclopentane derivatives with oseltamivir and zanamivir
<italic>in vivo</italic>
</article-title>
<source>Bioorg. Med. Chem.</source>
<year>2005</year>
<volume>13</volume>
<fpage>4071</fpage>
<lpage>4077</lpage>
<pub-id pub-id-type="pmid">15911320</pub-id>
</element-citation>
</ref>
<ref id="CR57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chand</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Systematic structure-based design and stereoselective synthesis of novel multisubstituted cyclopentane derivatives with potent antiinfluenza activity</article-title>
<source>J. Med. Chem.</source>
<year>2001</year>
<volume>44</volume>
<fpage>4379</fpage>
<lpage>4392</lpage>
<pub-id pub-id-type="pmid">11728184</pub-id>
</element-citation>
</ref>
<ref id="CR58">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chand</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Syntheses and neuraminidase inhibitory activity of multisubstituted cyclopentane amide derivatives</article-title>
<source>J. Med. Chem.</source>
<year>2004</year>
<volume>47</volume>
<fpage>1919</fpage>
<lpage>1929</lpage>
<pub-id pub-id-type="pmid">15055992</pub-id>
</element-citation>
</ref>
<ref id="CR59">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>GT</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Design, synthesis, and structural analysis of influenza neuraminidase inhibitors containing pyrrolidine cores</article-title>
<source>J. Med. Chem.</source>
<year>2001</year>
<volume>44</volume>
<fpage>1192</fpage>
<lpage>1201</lpage>
<pub-id pub-id-type="pmid">11312919</pub-id>
</element-citation>
</ref>
<ref id="CR60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>DeGoey</surname>
<given-names>DA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Enantioselective synthesis of antiinfluenza compound A-315675</article-title>
<source>J. Org. Chem.</source>
<year>2002</year>
<volume>67</volume>
<fpage>5445</fpage>
<lpage>5453</lpage>
<pub-id pub-id-type="pmid">12153241</pub-id>
</element-citation>
</ref>
<ref id="CR61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hanessian</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bayrakdarian</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Luo</surname>
<given-names>X</given-names>
</name>
</person-group>
<article-title>Total synthesis of A-315675: a potent inhibitor of influenza neuraminidase</article-title>
<source>J. Am. Chem. Soc.</source>
<year>2002</year>
<volume>124</volume>
<fpage>4716</fpage>
<lpage>4721</lpage>
<pub-id pub-id-type="pmid">11971721</pub-id>
</element-citation>
</ref>
<ref id="CR62">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kati</surname>
<given-names>WM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>In vitro</italic>
characterization of A-315675, a highly potent inhibitor of A and B strain influenza virus neuraminidases and influenza virus replication</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>2002</year>
<volume>46</volume>
<fpage>1014</fpage>
<lpage>1021</lpage>
<pub-id pub-id-type="pmid">11897583</pub-id>
</element-citation>
</ref>
<ref id="CR63">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maring</surname>
<given-names>CJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Structure-based characterization and optimization of novel hydrophobic binding interactions in a series of pyrrolidine influenza neuraminidase inhibitors</article-title>
<source>J. Med. Chem.</source>
<year>2005</year>
<volume>48</volume>
<fpage>3980</fpage>
<lpage>3990</lpage>
<pub-id pub-id-type="pmid">15943472</pub-id>
</element-citation>
</ref>
<ref id="CR64">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>GT</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Design, synthesis, and structural analysis of inhibitors of influenza neuraminidase containing a 2,3-disubstituted tetrahydrofuran-5-carboxylic acid core</article-title>
<source>Bioorg. Med. Chem. Lett.</source>
<year>2005</year>
<volume>15</volume>
<fpage>125</fpage>
<lpage>128</lpage>
<pub-id pub-id-type="pmid">15582424</pub-id>
</element-citation>
</ref>
<ref id="CR65">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mishin</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Hayden</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Gubareva</surname>
<given-names>LV</given-names>
</name>
</person-group>
<article-title>Susceptibilities of antiviral-resistant influenza viruses to novel neuraminidase inhibitors</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>2005</year>
<volume>49</volume>
<fpage>4515</fpage>
<lpage>4520</lpage>
<pub-id pub-id-type="pmid">16251290</pub-id>
</element-citation>
</ref>
<ref id="CR66">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Molla</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>In vitro</italic>
selection and characterization of influenza A (A/N9) virus variants resistant to a novel neuraminidase inhibitor, A-315675</article-title>
<source>J. Virol.</source>
<year>2002</year>
<volume>76</volume>
<fpage>5380</fpage>
<lpage>5386</lpage>
<pub-id pub-id-type="pmid">11991966</pub-id>
</element-citation>
</ref>
<ref id="CR67">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gubareva</surname>
<given-names>LV</given-names>
</name>
</person-group>
<article-title>Molecular mechanisms of influenza virus resistance to neuraminidase inhibitors</article-title>
<source>Virus Res.</source>
<year>2004</year>
<volume>103</volume>
<fpage>199</fpage>
<lpage>203</lpage>
<pub-id pub-id-type="pmid">15163510</pub-id>
</element-citation>
</ref>
<ref id="CR68">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bantia</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Arnold</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Parker</surname>
<given-names>CD</given-names>
</name>
<name>
<surname>Upshaw</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Chand</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Anti-influenza virus activity of peramivir in mice with single intramuscular injection</article-title>
<source>Antiviral Res.</source>
<year>2006</year>
<volume>69</volume>
<fpage>39</fpage>
<lpage>45</lpage>
<pub-id pub-id-type="pmid">16325932</pub-id>
</element-citation>
</ref>
<ref id="CR69">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sidwell</surname>
<given-names>RW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Effect of single i. m. or i. v. injection of peramivir on an influenza A (H5N1) virus infection in mice</article-title>
<source>Antiviral Res.</source>
<year>2006</year>
<volume>70</volume>
<fpage>A50</fpage>
</element-citation>
</ref>
<ref id="CR70">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Barroso</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Treanor</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gubareva</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Hayden</surname>
<given-names>FG</given-names>
</name>
</person-group>
<article-title>Efficacy and tolerability of the oral neuraminidase inhibitor peramivir in experimental human influenza: randomized, controlled trials for prophylaxis and treatment</article-title>
<source>Antiviral Ther.</source>
<year>2005</year>
<volume>10</volume>
<fpage>901</fpage>
<lpage>910</lpage>
</element-citation>
</ref>
<ref id="CR71">
<label>71</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Honda</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synthesis and anti-influenza virus activity of 7-
<italic>O</italic>
-alkylated derivatives related to zanamivir</article-title>
<source>Bioorg. Med. Chem. Lett.</source>
<year>2002</year>
<volume>12</volume>
<fpage>1925</fpage>
<lpage>1928</lpage>
<pub-id pub-id-type="pmid">12113810</pub-id>
</element-citation>
</ref>
<ref id="CR72">
<label>72</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Masuda</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synthesis and anti-influenza evaluation of orally active bicyclic ether derivatives related to zanamivir</article-title>
<source>Bioorg. Med. Chem. Lett.</source>
<year>2003</year>
<volume>13</volume>
<fpage>669</fpage>
<lpage>673</lpage>
<pub-id pub-id-type="pmid">12639555</pub-id>
</element-citation>
</ref>
<ref id="CR73">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macdonald</surname>
<given-names>SJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Dimeric zanamivir conjugates with various linking groups are potent, long-lasting inhibitors of influenza neuraminidase including H5N1 avian influenza</article-title>
<source>J. Med. Chem.</source>
<year>2005</year>
<volume>48</volume>
<fpage>2964</fpage>
<lpage>2971</lpage>
<pub-id pub-id-type="pmid">15828835</pub-id>
</element-citation>
</ref>
<ref id="CR74">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Macdonald</surname>
<given-names>SJF</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Potent and long-acting dimeric inhibitors of influenza virus neuraminidase are effective at a once-weekly dosing regimen</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>2004</year>
<volume>48</volume>
<fpage>4542</fpage>
<lpage>4549</lpage>
<pub-id pub-id-type="pmid">15561823</pub-id>
</element-citation>
</ref>
<ref id="CR75">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sidwell</surname>
<given-names>RW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Broad-spectrum antiviral activity of virazole: 1-β-
<sc>D</sc>
-ribofuranosyl-1,2,4-triazole-3-carboxamide</article-title>
<source>Science</source>
<year>1972</year>
<volume>177</volume>
<fpage>705</fpage>
<lpage>706</lpage>
<pub-id pub-id-type="pmid">4340949</pub-id>
</element-citation>
</ref>
<ref id="CR76">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sidwell</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Bailey</surname>
<given-names>KW</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>M-H</given-names>
</name>
<name>
<surname>Barnard</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Smee</surname>
<given-names>DF</given-names>
</name>
</person-group>
<article-title>
<italic>In vitro</italic>
and
<italic>in vivo</italic>
influenza virus-inhibitory effects of viramidine</article-title>
<source>Antiviral Res.</source>
<year>2005</year>
<volume>68</volume>
<fpage>10</fpage>
<lpage>17</lpage>
<pub-id pub-id-type="pmid">16087250</pub-id>
</element-citation>
</ref>
<ref id="CR77">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Charette</surname>
<given-names>RP</given-names>
</name>
<name>
<surname>Fox</surname>
<given-names>JP</given-names>
</name>
<name>
<surname>Cooney</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Hall</surname>
<given-names>CE</given-names>
</name>
</person-group>
<article-title>Lack of effect of oral ribavirin in naturally occurring influenza A virus (H1N1) infection</article-title>
<source>J. Infect. Dis.</source>
<year>1980</year>
<volume>141</volume>
<fpage>548</fpage>
<lpage>554</lpage>
<pub-id pub-id-type="pmid">7373088</pub-id>
</element-citation>
</ref>
<ref id="CR78">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Knight</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Gilbert</surname>
<given-names>BE</given-names>
</name>
</person-group>
<article-title>Ribavirin aerosol treatment of influenza</article-title>
<source>Infect. Dis. Clin. North Am.</source>
<year>1987</year>
<volume>1</volume>
<fpage>441</fpage>
<lpage>457</lpage>
<pub-id pub-id-type="pmid">3332797</pub-id>
</element-citation>
</ref>
<ref id="CR79">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hayden</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Sable</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Connor</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Lane</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Intravenous ribavirin by constant infusion for serious influenza and parainfluenzavirus infection</article-title>
<source>Antiviral Ther.</source>
<year>1996</year>
<volume>1</volume>
<fpage>51</fpage>
<lpage>56</lpage>
</element-citation>
</ref>
<ref id="CR80">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McCormick</surname>
<given-names>JB</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Lassa fever. Effective therapy with ribavirin</article-title>
<source>N. Engl. J. Med.</source>
<year>1986</year>
<volume>314</volume>
<fpage>20</fpage>
<lpage>26</lpage>
<pub-id pub-id-type="pmid">3940312</pub-id>
</element-citation>
</ref>
<ref id="CR81">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Huggins</surname>
<given-names>JW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Prospective, double-blind, concurrent, placebo-controlled clinical trial of intravenous ribavirin therapy of hemorrhagic fever with renal syndrome</article-title>
<source>J. Infect. Dis.</source>
<year>1991</year>
<volume>164</volume>
<fpage>1119</fpage>
<lpage>1127</lpage>
<pub-id pub-id-type="pmid">1683355</pub-id>
</element-citation>
</ref>
<ref id="CR82">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Malakhov</surname>
<given-names>MP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>2006</year>
<volume>50</volume>
<fpage>1470</fpage>
<lpage>1479</lpage>
<pub-id pub-id-type="pmid">16569867</pub-id>
</element-citation>
</ref>
<ref id="CR83">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gambaryan</surname>
<given-names>AS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Polymeric inhibitor of influenza virus attachment protects mice from experimental influenza infection</article-title>
<source>Antiviral Res.</source>
<year>2002</year>
<volume>55</volume>
<fpage>201</fpage>
<lpage>205</lpage>
<pub-id pub-id-type="pmid">12076764</pub-id>
</element-citation>
</ref>
<ref id="CR84">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gambaryan</surname>
<given-names>AS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Polymer-bound 6′ sialyl-
<italic>N</italic>
-acetyllactosamine protects mice infected by influenza virus</article-title>
<source>Antiviral Res.</source>
<year>2005</year>
<volume>68</volume>
<fpage>116</fpage>
<lpage>123</lpage>
<pub-id pub-id-type="pmid">16214231</pub-id>
</element-citation>
</ref>
<ref id="CR85">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ge</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of influenza virus production in virus-infected mice by RNA interference</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2004</year>
<volume>101</volume>
<fpage>8676</fpage>
<lpage>8681</lpage>
<pub-id pub-id-type="pmid">15173599</pub-id>
</element-citation>
</ref>
<ref id="CR86">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tompkins</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Lo</surname>
<given-names>CY</given-names>
</name>
<name>
<surname>Tumpey</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Epstein</surname>
<given-names>SL</given-names>
</name>
</person-group>
<article-title>Protection against lethal influenza virus challenge by RNA interference
<italic>in vivo</italic>
</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>2004</year>
<volume>101</volume>
<fpage>8682</fpage>
<lpage>8686</lpage>
<pub-id pub-id-type="pmid">15173583</pub-id>
</element-citation>
</ref>
<ref id="CR87">
<label>87</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>BJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque</article-title>
<source>Nature Med.</source>
<year>2005</year>
<volume>11</volume>
<fpage>944</fpage>
<lpage>951</lpage>
<pub-id pub-id-type="pmid">16116432</pub-id>
</element-citation>
</ref>
<ref id="CR88">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vaillant</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Rep 9: a potent broad spectrum aerosol prophylaxis and therapy against influenza infection
<italic>in vivo</italic>
</article-title>
<source>Antiviral Res.</source>
<year>2006</year>
<volume>70</volume>
<fpage>A52</fpage>
</element-citation>
</ref>
<ref id="CR89">
<label>89</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Iversen</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of multiple influenza A subtypes in cell culture with antisense phosphorodiamidate morpholino oligomers</article-title>
<source>Antiviral Res.</source>
<year>2006</year>
<volume>70</volume>
<fpage>A49</fpage>
</element-citation>
</ref>
<ref id="CR90">
<label>90</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Deng</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Sharps</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fodor</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Brownlee</surname>
<given-names>GG</given-names>
</name>
</person-group>
<article-title>
<italic>In vitro</italic>
assembly of PB2 with a PB1–PA dimer supports a new model of assembly of influenza A virus polymerase subunits into a functional trimeric complex</article-title>
<source>J. Virol.</source>
<year>2005</year>
<volume>79</volume>
<fpage>8669</fpage>
<lpage>8674</lpage>
<pub-id pub-id-type="pmid">15956611</pub-id>
</element-citation>
</ref>
<ref id="CR91">
<label>91</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Salomon</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The polymerase complex genes contribute to the high virulence of the human H5N1 influenza virus isolate A/Vietnam/1203/04</article-title>
<source>J. Exp. Med.</source>
<year>2006</year>
<volume>203</volume>
<fpage>689</fpage>
<lpage>697</lpage>
<pub-id pub-id-type="pmid">16533883</pub-id>
</element-citation>
</ref>
<ref id="CR92">
<label>92</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tuttle</surname>
<given-names>JV</given-names>
</name>
<name>
<surname>Tisdale</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Krenitsky</surname>
<given-names>TA</given-names>
</name>
</person-group>
<article-title>Purine 2′-deoxy-2′-fluororibosides as antiinfluenza virus agents</article-title>
<source>J. Med. Chem.</source>
<year>1993</year>
<volume>36</volume>
<fpage>119</fpage>
<lpage>125</lpage>
<pub-id pub-id-type="pmid">8421277</pub-id>
</element-citation>
</ref>
<ref id="CR93">
<label>93</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tisdale</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Ellis</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Klumpp</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Court</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ford</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Inhibition of influenza virus transcription by 2′-deoxy-2′-fluoroguanosine</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>1995</year>
<volume>39</volume>
<fpage>2454</fpage>
<lpage>2458</lpage>
<pub-id pub-id-type="pmid">8585725</pub-id>
</element-citation>
</ref>
<ref id="CR94">
<label>94</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Furuta</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>In vitro</italic>
and
<italic>in vivo</italic>
activities of anti-influenza virus compound T-705</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>2002</year>
<volume>46</volume>
<fpage>977</fpage>
<lpage>981</lpage>
<pub-id pub-id-type="pmid">11897578</pub-id>
</element-citation>
</ref>
<ref id="CR95">
<label>95</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Takahashi</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>
<italic>In vitro</italic>
and
<italic>in vivo</italic>
activities of T-705 and oseltamivir against influenza virus</article-title>
<source>Antiviral Chem. Chemother.</source>
<year>2003</year>
<volume>14</volume>
<fpage>235</fpage>
<lpage>241</lpage>
</element-citation>
</ref>
<ref id="CR96">
<label>96</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Furuta</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mechanism of action of T-705 against influenza virus</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>2005</year>
<volume>49</volume>
<fpage>981</fpage>
<lpage>986</lpage>
<pub-id pub-id-type="pmid">15728892</pub-id>
</element-citation>
</ref>
<ref id="CR97">
<label>97</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tomassini</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of cap (m
<sup>7</sup>
GpppXm)-dependent endonuclease of influenza virus by 4-substituted 2,4-dioxobutanoic acid compounds</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>1994</year>
<volume>38</volume>
<fpage>2827</fpage>
<lpage>2837</lpage>
<pub-id pub-id-type="pmid">7695269</pub-id>
</element-citation>
</ref>
<ref id="CR98">
<label>98</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cianci</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Identification of
<italic>N</italic>
-hydroxamic acid and
<italic>N</italic>
-hydroxy-imide compounds that inhibit the influenza virus polymerase</article-title>
<source>Antiviral Chem. Chemother.</source>
<year>1996</year>
<volume>7</volume>
<fpage>353</fpage>
<lpage>360</lpage>
</element-citation>
</ref>
<ref id="CR99">
<label>99</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tomassini</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel antiviral agent which inhibits the endonuclease of influenza viruses</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>1996</year>
<volume>40</volume>
<fpage>1189</fpage>
<lpage>1193</lpage>
<pub-id pub-id-type="pmid">8723464</pub-id>
</element-citation>
</ref>
<ref id="CR100">
<label>100</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sun</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel class of potent influenza virus inhibitors: polysubstituted acylthiourea and its fused heterocycle derivatives</article-title>
<source>Bioorg. Med. Chem. Lett.</source>
<year>2006</year>
<volume>16</volume>
<fpage>162</fpage>
<lpage>166</lpage>
<pub-id pub-id-type="pmid">16216505</pub-id>
</element-citation>
</ref>
<ref id="CR101">
<label>101</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>W-L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synthesis and biological evaluation of novel bisheterocycle-containing compounds as potential anti-influenza virus agents</article-title>
<source>Bioorg. Med. Chem. Lett.</source>
<year>2005</year>
<volume>15</volume>
<fpage>5284</fpage>
<lpage>5287</lpage>
<pub-id pub-id-type="pmid">16183283</pub-id>
</element-citation>
</ref>
<ref id="CR102">
<label>102</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Isaacs</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lindenmann</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Virus interference. I. The interferon</article-title>
<source>Proc. R. Soc. Lond. B Biol. Sci.</source>
<year>1957</year>
<volume>147</volume>
<fpage>258</fpage>
<lpage>267</lpage>
<pub-id pub-id-type="pmid">13465720</pub-id>
</element-citation>
</ref>
<ref id="CR103">
<label>103</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baron</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Isaacs</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Absence of interferon in lungs from fatal cases of influenza</article-title>
<source>Br. Med. J.</source>
<year>1962</year>
<volume>5270</volume>
<fpage>18</fpage>
<lpage>20</lpage>
</element-citation>
</ref>
<ref id="CR104">
<label>104</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Isomura</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The preventive effect of human interferon-α on influenza infection; modification of clinical manifestations of influenza in children in a closed community</article-title>
<source>Biken J.</source>
<year>1982</year>
<volume>25</volume>
<fpage>131</fpage>
<lpage>137</lpage>
<pub-id pub-id-type="pmid">7165687</pub-id>
</element-citation>
</ref>
<ref id="CR105">
<label>105</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Phillpotts</surname>
<given-names>RJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Intranasal lymphoblastoid interferon (“Wellferon”) prophylaxis against rhinovirus and influenza virus in volunteers</article-title>
<source>J. Interferon Res.</source>
<year>1984</year>
<volume>4</volume>
<fpage>535</fpage>
<lpage>541</lpage>
<pub-id pub-id-type="pmid">6094684</pub-id>
</element-citation>
</ref>
<ref id="CR106">
<label>106</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fried</surname>
<given-names>MW</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Peginterferon α-2a plus ribavirin for chronic hepatitis C virus infection</article-title>
<source>N. Engl. J. Med.</source>
<year>2002</year>
<volume>347</volume>
<fpage>975</fpage>
<lpage>982</lpage>
<pub-id pub-id-type="pmid">12324553</pub-id>
</element-citation>
</ref>
<ref id="CR107">
<label>107</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Field</surname>
<given-names>AK</given-names>
</name>
<name>
<surname>Tytell</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Lampson</surname>
<given-names>GP</given-names>
</name>
<name>
<surname>Hilleman</surname>
<given-names>MR</given-names>
</name>
</person-group>
<article-title>Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes</article-title>
<source>Proc. Natl Acad. Sci. USA</source>
<year>1967</year>
<volume>58</volume>
<fpage>1004</fpage>
<lpage>1010</lpage>
<pub-id pub-id-type="pmid">5233831</pub-id>
</element-citation>
</ref>
<ref id="CR108">
<label>108</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Saravolac</surname>
<given-names>EG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Immunoprophylactic strategies against respiratory influenza virus infection</article-title>
<source>Vaccine</source>
<year>2001</year>
<volume>19</volume>
<fpage>2227</fpage>
<lpage>2232</lpage>
<pub-id pub-id-type="pmid">11257338</pub-id>
</element-citation>
</ref>
<ref id="CR109">
<label>109</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ichinohe</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synthetic double-stranded RNA poly(I:C) combined with mucosal vaccine protects against influenza virus infection</article-title>
<source>J. Virol.</source>
<year>2005</year>
<volume>79</volume>
<fpage>2910</fpage>
<lpage>2919</lpage>
<pub-id pub-id-type="pmid">15709010</pub-id>
</element-citation>
</ref>
<ref id="CR110">
<label>110</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yang</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Antiviral chemotherapy facilitates control of poxvirus infections through inhibition of cellular signal transduction</article-title>
<source>J. Clin. Invest.</source>
<year>2005</year>
<volume>115</volume>
<fpage>379</fpage>
<lpage>387</lpage>
<pub-id pub-id-type="pmid">15690085</pub-id>
</element-citation>
</ref>
<ref id="CR111">
<label>111</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reeves</surname>
<given-names>PM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases</article-title>
<source>Nature Med.</source>
<year>2005</year>
<volume>11</volume>
<fpage>731</fpage>
<lpage>739</lpage>
<pub-id pub-id-type="pmid">15980865</pub-id>
</element-citation>
</ref>
<ref id="CR112">
<label>112</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pleschka</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade</article-title>
<source>Nature Cell Biol.</source>
<year>2001</year>
<volume>3</volume>
<fpage>301</fpage>
<lpage>305</lpage>
<pub-id pub-id-type="pmid">11231581</pub-id>
</element-citation>
</ref>
<ref id="CR113">
<label>113</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marjuki</surname>
<given-names>H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Membrane accumulation of influenza A virus hemagglutinin triggers nuclear export of the viral genome via protein kinase Cα-mediated activation of ERK signaling</article-title>
<source>J. Biol. Chem.</source>
<year>2006</year>
<volume>281</volume>
<fpage>16707</fpage>
<lpage>16715</lpage>
<pub-id pub-id-type="pmid">16608852</pub-id>
</element-citation>
</ref>
<ref id="CR114">
<label>114</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Twu</surname>
<given-names>KY</given-names>
</name>
<name>
<surname>Noah</surname>
<given-names>DL</given-names>
</name>
<name>
<surname>Rao</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kuo</surname>
<given-names>R-L</given-names>
</name>
<name>
<surname>Krug</surname>
<given-names>RM</given-names>
</name>
</person-group>
<article-title>The CPSF30 binding site on the NS1A protein of influenza A virus is a potential antiviral target</article-title>
<source>J. Virol.</source>
<year>2006</year>
<volume>80</volume>
<fpage>3957</fpage>
<lpage>3965</lpage>
<pub-id pub-id-type="pmid">16571812</pub-id>
</element-citation>
</ref>
<ref id="CR115">
<label>115</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bizollon</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Triple antiviral therapy with amantadine for IFN-ribavirin nonresponders with recurrent posttransplantation hepatitis C</article-title>
<source>Transplantation</source>
<year>2005</year>
<volume>79</volume>
<fpage>325</fpage>
<lpage>329</lpage>
<pub-id pub-id-type="pmid">15699763</pub-id>
</element-citation>
</ref>
<ref id="CR116">
<label>116</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hayden</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Schlepushkin</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Pushkarskaya</surname>
<given-names>NL</given-names>
</name>
</person-group>
<article-title>Combined interferon-α
<sub>2</sub>
, rimantadine hydrochloride, and ribavirin inhibition of influenza virus replication
<italic>in vitro</italic>
</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>1984</year>
<volume>25</volume>
<fpage>53</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">6703684</pub-id>
</element-citation>
</ref>
<ref id="CR117">
<label>117</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Govorkova</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Fang</surname>
<given-names>H-B</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>RG</given-names>
</name>
</person-group>
<article-title>Neuraminidase inhibitor-rimantadine combinations exert additive and synergistic anti-influenza virus effects in MDCK cells</article-title>
<source>Antimicrob. Agents Chemother.</source>
<year>2004</year>
<volume>48</volume>
<fpage>4855</fpage>
<lpage>4863</lpage>
<pub-id pub-id-type="pmid">15561867</pub-id>
</element-citation>
</ref>
<ref id="CR118">
<label>118</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ilyushina</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Hoffmann</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Salomon</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Webster</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Govorkova</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Advantages of combination chemotherapy for highly pathogenic A/Vietnam/1203/04 (H5N1) influenza virus in mice</article-title>
<source>Antiviral Res.</source>
<year>2006</year>
<volume>70</volume>
<fpage>A29</fpage>
</element-citation>
</ref>
<ref id="CR119">
<label>119</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ison</surname>
<given-names>MG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Safety and efficacy of nebulized zanamivir in hospitalized patients with serious influenza</article-title>
<source>Antiviral Ther.</source>
<year>2003</year>
<volume>8</volume>
<fpage>183</fpage>
<lpage>190</lpage>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 0003017 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 0003017 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021