Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.
***** Acces problem to record *****\

Identifieur interne : 000178 ( Pmc/Corpus ); précédent : 0001779; suivant : 0001790 ***** probable Xml problem with record *****

Links to Exploration step


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Age groups and spread of influenza: implications for vaccination strategy</title>
<author>
<name sortKey="Hsieh, Ying Hen" sort="Hsieh, Ying Hen" uniqKey="Hsieh Y" first="Ying-Hen" last="Hsieh">Ying-Hen Hsieh</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">20429954</idno>
<idno type="pmc">2876165</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2876165</idno>
<idno type="RBID">PMC:2876165</idno>
<idno type="doi">10.1186/1471-2334-10-106</idno>
<date when="2010">2010</date>
<idno type="wicri:Area/Pmc/Corpus">000178</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000178</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Age groups and spread of influenza: implications for vaccination strategy</title>
<author>
<name sortKey="Hsieh, Ying Hen" sort="Hsieh, Ying Hen" uniqKey="Hsieh Y" first="Ying-Hen" last="Hsieh">Ying-Hen Hsieh</name>
<affiliation>
<nlm:aff id="Aff1"></nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC Infectious Diseases</title>
<idno type="eISSN">1471-2334</idno>
<imprint>
<date when="2010">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<sec>
<title>Background</title>
<p>The unpredictable nature of the potentially devastating impact of 2009 pH1N1 influenza pandemic highlights the need for pandemic preparedness planning, where modeling studies could be most useful for simulations of possible future scenarios.</p>
</sec>
<sec>
<title>Methods</title>
<p>A compartmental model with pre-symptomatic and asymptomatic influenza infections is proposed which incorporates age groups as well as intervention measures such as age-specific vaccination, in order to study spread of influenza in a community.</p>
</sec>
<sec>
<title>Results</title>
<p>We derive the basic reproduction number and other effective reproduction numbers under various intervention measures. For illustration, we make use of the Pneumonia and Influenza (P&I) mortality data and vaccination data of the very young (age 0-2) and the very old (age >64) during 2004-2005 Taiwan winter influenza season to fit our model and to compute the relevant reproduction numbers. The reproduction number for this winter flu season is estimated to be slightly above one (~1.0001).</p>
</sec>
<sec>
<title>Conclusions</title>
<p>Comparatively large errors in fitting the P&I mortality data of the elderly (>64) were observed shortly after winter school closings in January, which may indicate the impact of younger, more active age groups transmitting influenza to other age groups outside of the school settings; in particular, to the elderly in the households. Pre-symptomatic infections seemed to have little effect on the model fit, while asymptomatic infection by asymptomatic infectives has a more pronounced impact on the model fit for the elderly mortality, perhaps indicating a larger role in disease transmission by asymptomatic infection. Simulations indicate that the impact of vaccination on the disease incidence might not be fully revealed in the change (or the lack thereof) in the effective reproduction number with interventions, but could still be substantial. The estimated per contact transmission probability for susceptible elderly is significantly higher than that of any other age group, perhaps highlighting the vulnerability of the elderly due to close contacts with their caretakers from other age groups. The relative impact of targeting the very young and the very old for vaccination was weakened by their relative inactivity, thus giving evidence of the lack of impact of vaccinating these two groups on the overall transmissibility of the disease in the community. This further underscores the need for morbidity-based strategy to prevent elderly mortality.</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/1471-2334-10-106) contains supplementary material, which is available to authorized users.</p>
</sec>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yamada, T" uniqKey="Yamada T">T Yamada</name>
</author>
<author>
<name sortKey="Dautry, A" uniqKey="Dautry A">A Dautry</name>
</author>
<author>
<name sortKey="Walport, M" uniqKey="Walport M">M Walport</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taubenberger, Jk" uniqKey="Taubenberger J">JK Taubenberger</name>
</author>
<author>
<name sortKey="Morens, Dm" uniqKey="Morens D">DM Morens</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nicholson, Kg" uniqKey="Nicholson K">KG Nicholson</name>
</author>
<author>
<name sortKey="Wood, J" uniqKey="Wood J">J Wood</name>
</author>
<author>
<name sortKey="Zambon, M" uniqKey="Zambon M">M Zambon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jefferson, T" uniqKey="Jefferson T">T Jefferson</name>
</author>
<author>
<name sortKey="Smith, S" uniqKey="Smith S">S Smith</name>
</author>
<author>
<name sortKey="Demicheli, V" uniqKey="Demicheli V">V Demicheli</name>
</author>
<author>
<name sortKey="Harnden, A" uniqKey="Harnden A">A Harnden</name>
</author>
<author>
<name sortKey="Rivetti, A" uniqKey="Rivetti A">A Rivetti</name>
</author>
<author>
<name sortKey="Di Pietrantonj, C" uniqKey="Di Pietrantonj C">C Di Pietrantonj</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jefferson, T" uniqKey="Jefferson T">T Jefferson</name>
</author>
<author>
<name sortKey="Rivetti, D" uniqKey="Rivetti D">D Rivetti</name>
</author>
<author>
<name sortKey="Rivetti, A" uniqKey="Rivetti A">A Rivetti</name>
</author>
<author>
<name sortKey="Rudin, M" uniqKey="Rudin M">M Rudin</name>
</author>
<author>
<name sortKey="Di Pietrantonj, C" uniqKey="Di Pietrantonj C">C Di Pietrantonj</name>
</author>
<author>
<name sortKey="Demicheli, V" uniqKey="Demicheli V">V Demicheli</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lloyd Smith, Jo" uniqKey="Lloyd Smith J">JO Lloyd-Smith</name>
</author>
<author>
<name sortKey="Schreiber, Sj" uniqKey="Schreiber S">SJ Schreiber</name>
</author>
<author>
<name sortKey="Kopp, Pe" uniqKey="Kopp P">PE Kopp</name>
</author>
<author>
<name sortKey="Getz, Wm" uniqKey="Getz W">WM Getz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reichert, Ta" uniqKey="Reichert T">TA Reichert</name>
</author>
<author>
<name sortKey="Sugaya, N" uniqKey="Sugaya N">N Sugaya</name>
</author>
<author>
<name sortKey="Fedson, Ds" uniqKey="Fedson D">DS Fedson</name>
</author>
<author>
<name sortKey="Glezen, Wp" uniqKey="Glezen W">WP Glezen</name>
</author>
<author>
<name sortKey="Simonsen, L" uniqKey="Simonsen L">L Simonsen</name>
</author>
<author>
<name sortKey="Tashiro, T" uniqKey="Tashiro T">T Tashiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Glezen, Wp" uniqKey="Glezen W">WP Glezen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bansal, S" uniqKey="Bansal S">S Bansal</name>
</author>
<author>
<name sortKey="Pourbohloul, B" uniqKey="Pourbohloul B">B Pourbohloul</name>
</author>
<author>
<name sortKey="Meyers, La" uniqKey="Meyers L">LA Meyers</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsu, Sb" uniqKey="Hsu S">SB Hsu</name>
</author>
<author>
<name sortKey="Hsieh, Yh" uniqKey="Hsieh Y">YH Hsieh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Longini, Im" uniqKey="Longini I">IM Longini</name>
</author>
<author>
<name sortKey="Halloran, Me" uniqKey="Halloran M">ME Halloran</name>
</author>
<author>
<name sortKey="Nizam, A" uniqKey="Nizam A">A Nizam</name>
</author>
<author>
<name sortKey="Yang, Y" uniqKey="Yang Y">Y Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Longini, Im" uniqKey="Longini I">IM Longini</name>
</author>
<author>
<name sortKey="Nizam, A" uniqKey="Nizam A">A Nizam</name>
</author>
<author>
<name sortKey="Xu, S" uniqKey="Xu S">S Xu</name>
</author>
<author>
<name sortKey="Ungchusak, K" uniqKey="Ungchusak K">K Ungchusak</name>
</author>
<author>
<name sortKey="Hanshaoworakul, W" uniqKey="Hanshaoworakul W">W Hanshaoworakul</name>
</author>
<author>
<name sortKey="Cummings, Da" uniqKey="Cummings D">DA Cummings</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Germann, Tc" uniqKey="Germann T">TC Germann</name>
</author>
<author>
<name sortKey="Kadau, K" uniqKey="Kadau K">K Kadau</name>
</author>
<author>
<name sortKey="Longini, Im" uniqKey="Longini I">IM Longini</name>
</author>
<author>
<name sortKey="Macken, Ca" uniqKey="Macken C">CA Macken</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Baccam, P" uniqKey="Baccam P">P Baccam</name>
</author>
<author>
<name sortKey="Beauchemin, C" uniqKey="Beauchemin C">C Beauchemin</name>
</author>
<author>
<name sortKey="Macken, Ca" uniqKey="Macken C">CA Macken</name>
</author>
<author>
<name sortKey="Hayden, Fg" uniqKey="Hayden F">FG Hayden</name>
</author>
<author>
<name sortKey="Perelson, As" uniqKey="Perelson A">AS Perelson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alexander, Me" uniqKey="Alexander M">ME Alexander</name>
</author>
<author>
<name sortKey="Bowman, Cs" uniqKey="Bowman C">CS Bowman</name>
</author>
<author>
<name sortKey="Feng, Z" uniqKey="Feng Z">Z Feng</name>
</author>
<author>
<name sortKey="Gardam, M" uniqKey="Gardam M">M Gardam</name>
</author>
<author>
<name sortKey="Moghadas, Sm" uniqKey="Moghadas S">SM Moghadas</name>
</author>
<author>
<name sortKey="Rost, G" uniqKey="Rost G">G Röst</name>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J Wu</name>
</author>
<author>
<name sortKey="Yan, P" uniqKey="Yan P">P Yan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Anderson, R" uniqKey="Anderson R">R Anderson</name>
</author>
<author>
<name sortKey="May, R" uniqKey="May R">R May</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferguson, Nm" uniqKey="Ferguson N">NM Ferguson</name>
</author>
<author>
<name sortKey="Cummings, Dat" uniqKey="Cummings D">DAT Cummings</name>
</author>
<author>
<name sortKey="Cauchemez, S" uniqKey="Cauchemez S">S Cauchemez</name>
</author>
<author>
<name sortKey="Fraser, C" uniqKey="Fraser C">C Fraser</name>
</author>
<author>
<name sortKey="Riley, S" uniqKey="Riley S">S Riley</name>
</author>
<author>
<name sortKey="Meeyai, A" uniqKey="Meeyai A">A Meeyai</name>
</author>
<author>
<name sortKey="Lamsirithaworn, S" uniqKey="Lamsirithaworn S">S Lamsirithaworn</name>
</author>
<author>
<name sortKey="Burke, Ds" uniqKey="Burke D">DS Burke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsieh, Yh" uniqKey="Hsieh Y">YH Hsieh</name>
</author>
<author>
<name sortKey="King, Cc" uniqKey="King C">CC King</name>
</author>
<author>
<name sortKey="Ho, Ms" uniqKey="Ho M">MS Ho</name>
</author>
<author>
<name sortKey="Chen, Cws" uniqKey="Chen C">CWS Chen</name>
</author>
<author>
<name sortKey="Lee, Jy" uniqKey="Lee J">JY Lee</name>
</author>
<author>
<name sortKey="Liu, Fc" uniqKey="Liu F">FC Liu</name>
</author>
<author>
<name sortKey="Wu, Yc" uniqKey="Wu Y">YC Wu</name>
</author>
<author>
<name sortKey="Wu, Jsj" uniqKey="Wu J">JSJ Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsieh, Yh" uniqKey="Hsieh Y">YH Hsieh</name>
</author>
<author>
<name sortKey="King, Cc" uniqKey="King C">CC King</name>
</author>
<author>
<name sortKey="Chen, Cws" uniqKey="Chen C">CWS Chen</name>
</author>
<author>
<name sortKey="Ho, Ms" uniqKey="Ho M">MS Ho</name>
</author>
<author>
<name sortKey="Hsu, Sb" uniqKey="Hsu S">SB Hsu</name>
</author>
<author>
<name sortKey="Wu, Yc" uniqKey="Wu Y">YC Wu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diekmann, O" uniqKey="Diekmann O">O Diekmann</name>
</author>
<author>
<name sortKey="Heesterbeek, Jap" uniqKey="Heesterbeek J">JAP Heesterbeek</name>
</author>
<author>
<name sortKey="Metz, Jaj" uniqKey="Metz J">JAJ Metz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Driessche, P Van Den" uniqKey="Driessche P">P van den Driessche</name>
</author>
<author>
<name sortKey="Watmough, J" uniqKey="Watmough J">J Watmough</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsieh, Yh" uniqKey="Hsieh Y">YH Hsieh</name>
</author>
<author>
<name sortKey="Chen, Ch" uniqKey="Chen C">CH Chen</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hsieh, Yh" uniqKey="Hsieh Y">YH Hsieh</name>
</author>
<author>
<name sortKey="Wang, Ys" uniqKey="Wang Y">YS Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lin, Cy" uniqKey="Lin C">CY Lin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wallinga, J" uniqKey="Wallinga J">J Wallinga</name>
</author>
<author>
<name sortKey="Teunis, P" uniqKey="Teunis P">P Teunis</name>
</author>
<author>
<name sortKey="Kretzschmar, M" uniqKey="Kretzschmar M">M Kretzschmar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cowling, Bj" uniqKey="Cowling B">BJ Cowling</name>
</author>
<author>
<name sortKey="Lau, Ehy" uniqKey="Lau E">EHY Lau</name>
</author>
<author>
<name sortKey="Lam, Clh" uniqKey="Lam C">CLH Lam</name>
</author>
<author>
<name sortKey="Cheng, Cky" uniqKey="Cheng C">CKY Cheng</name>
</author>
<author>
<name sortKey="Kovar, J" uniqKey="Kovar J">J Kovar</name>
</author>
<author>
<name sortKey="Chan, Kh" uniqKey="Chan K">KH Chan</name>
</author>
<author>
<name sortKey="Peiris, Jsm" uniqKey="Peiris J">JSM Peiris</name>
</author>
<author>
<name sortKey="Leung, Gm" uniqKey="Leung G">GM Leung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chowell, G" uniqKey="Chowell G">G Chowell</name>
</author>
<author>
<name sortKey="Miller, Ma" uniqKey="Miller M">MA Miller</name>
</author>
<author>
<name sortKey="Viboud, C" uniqKey="Viboud C">C Viboud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hadeler, Kp" uniqKey="Hadeler K">KP Hadeler</name>
</author>
<author>
<name sortKey="Castillo Chavez, C" uniqKey="Castillo Chavez C">C Castillo-Chavez</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hill, An" uniqKey="Hill A">AN Hill</name>
</author>
<author>
<name sortKey="Longini, Im" uniqKey="Longini I">IM Longini</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">BMC Infect Dis</journal-id>
<journal-id journal-id-type="iso-abbrev">BMC Infect. Dis</journal-id>
<journal-title-group>
<journal-title>BMC Infectious Diseases</journal-title>
</journal-title-group>
<issn pub-type="epub">1471-2334</issn>
<publisher>
<publisher-name>BioMed Central</publisher-name>
<publisher-loc>London</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">20429954</article-id>
<article-id pub-id-type="pmc">2876165</article-id>
<article-id pub-id-type="publisher-id">1086</article-id>
<article-id pub-id-type="doi">10.1186/1471-2334-10-106</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Age groups and spread of influenza: implications for vaccination strategy</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author" corresp="yes">
<name>
<surname>Hsieh</surname>
<given-names>Ying-Hen</given-names>
</name>
<address>
<email>hsieh@mail.cmu.edu.tw</email>
</address>
<xref ref-type="aff" rid="Aff1"></xref>
</contrib>
<aff id="Aff1">
<institution-wrap>
<institution-id institution-id-type="GRID">grid.254145.3</institution-id>
<institution-id institution-id-type="ISNI">0000000100836092</institution-id>
<institution>Department of Public Health and Center for Infectious Disease Epidemiology,</institution>
<institution>China Medical University,</institution>
</institution-wrap>
Taichung, Taiwan</aff>
</contrib-group>
<pub-date pub-type="epub">
<day>30</day>
<month>4</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>30</day>
<month>4</month>
<year>2010</year>
</pub-date>
<pub-date pub-type="collection">
<year>2010</year>
</pub-date>
<volume>10</volume>
<elocation-id>106</elocation-id>
<history>
<date date-type="received">
<day>21</day>
<month>9</month>
<year>2009</year>
</date>
<date date-type="accepted">
<day>30</day>
<month>4</month>
<year>2010</year>
</date>
</history>
<permissions>
<copyright-statement>© Hsieh; licensee BioMed Central Ltd. 2010</copyright-statement>
<license license-type="OpenAccess">
<license-p>This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/2.0">http://creativecommons.org/licenses/by/2.0</ext-link>
), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract id="Abs1">
<sec>
<title>Background</title>
<p>The unpredictable nature of the potentially devastating impact of 2009 pH1N1 influenza pandemic highlights the need for pandemic preparedness planning, where modeling studies could be most useful for simulations of possible future scenarios.</p>
</sec>
<sec>
<title>Methods</title>
<p>A compartmental model with pre-symptomatic and asymptomatic influenza infections is proposed which incorporates age groups as well as intervention measures such as age-specific vaccination, in order to study spread of influenza in a community.</p>
</sec>
<sec>
<title>Results</title>
<p>We derive the basic reproduction number and other effective reproduction numbers under various intervention measures. For illustration, we make use of the Pneumonia and Influenza (P&I) mortality data and vaccination data of the very young (age 0-2) and the very old (age >64) during 2004-2005 Taiwan winter influenza season to fit our model and to compute the relevant reproduction numbers. The reproduction number for this winter flu season is estimated to be slightly above one (~1.0001).</p>
</sec>
<sec>
<title>Conclusions</title>
<p>Comparatively large errors in fitting the P&I mortality data of the elderly (>64) were observed shortly after winter school closings in January, which may indicate the impact of younger, more active age groups transmitting influenza to other age groups outside of the school settings; in particular, to the elderly in the households. Pre-symptomatic infections seemed to have little effect on the model fit, while asymptomatic infection by asymptomatic infectives has a more pronounced impact on the model fit for the elderly mortality, perhaps indicating a larger role in disease transmission by asymptomatic infection. Simulations indicate that the impact of vaccination on the disease incidence might not be fully revealed in the change (or the lack thereof) in the effective reproduction number with interventions, but could still be substantial. The estimated per contact transmission probability for susceptible elderly is significantly higher than that of any other age group, perhaps highlighting the vulnerability of the elderly due to close contacts with their caretakers from other age groups. The relative impact of targeting the very young and the very old for vaccination was weakened by their relative inactivity, thus giving evidence of the lack of impact of vaccinating these two groups on the overall transmissibility of the disease in the community. This further underscores the need for morbidity-based strategy to prevent elderly mortality.</p>
</sec>
<sec>
<title>Electronic supplementary material</title>
<p>The online version of this article (doi:10.1186/1471-2334-10-106) contains supplementary material, which is available to authorized users.</p>
</sec>
</abstract>
<kwd-group xml:lang="en">
<title>Keywords</title>
<kwd>Influenza</kwd>
<kwd>Seasonal Influenza</kwd>
<kwd>Reproduction Number</kwd>
<kwd>Basic Reproduction Number</kwd>
<kwd>Asymptomatic Infection</kwd>
</kwd-group>
<custom-meta-group>
<custom-meta>
<meta-name>issue-copyright-statement</meta-name>
<meta-value>© The Author(s) 2010</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
</front>
<body>
<sec id="Sec1">
<title>Background</title>
<p>In the spring of 2009, the novel H1N1 influenza virus first emerged in Mexico and later spread widely throughout the world within just a few months. The World Health Organization (WHO) announced on June 11 the start of 2009 influenza pandemic [
<xref ref-type="bibr" rid="CR1">1</xref>
], and further issued an advisory on August 28 for countries in the northern hemisphere to prepare for a second wave of pandemic spread in the coming fall/winter [
<xref ref-type="bibr" rid="CR2">2</xref>
]. As of November 8, more than 206 countries and overseas territories or communities worldwide have reported laboratory confirmed cases of the pandemic pH1N1 virus, including over 6250 deaths [
<xref ref-type="bibr" rid="CR3">3</xref>
].</p>
<p>To lessen the severity of this pandemic, developing an effective flu vaccine and a global vaccination strategy is considered to be among the most important medical interventions [
<xref ref-type="bibr" rid="CR4">4</xref>
]. However, to have the greatest impact, pandemic vaccines need to be available quickly and in large quantities, and to be delivered to the population optimally. Moreover, vaccines against a novel pandemic strain might take up to six months to manufacture and deliver, even in developed countries [
<xref ref-type="bibr" rid="CR5">5</xref>
]. Given the potential threat of drug-resistance resulting from widespread use of antiviral treatment against pandemic flu, vaccine appears to be our primary weapon to prevent and to mitigate a pandemic. However, in addition to the need to consider the logistics of implementing large-scale vaccination, distinctly different age-specific mortalities had also been observed during some past flu pandemics (e.g., in 1918 [
<xref ref-type="bibr" rid="CR6">6</xref>
]), which require different priorities when large-scale vaccination is to be implemented.</p>
<p>Moreover, vaccine for influenza is known to have different efficacy (i.e., reduction in the number of infectives) and effectiveness (i.e., reduction in symptomatic case number) for different age groups, see e.g., [
<xref ref-type="bibr" rid="CR7">7</xref>
<xref ref-type="bibr" rid="CR9">9</xref>
]. Setting priority for vaccination by targeting age groups most vulnerable (the elderly, infants, etc.) to prevent mortalities is commonly employed in most countries. However, when vaccinating those at greatest risk of mortality becomes impractical (if, e.g., medical care is relatively inaccessible) or inefficient (if, e.g., immune response is deficient), targeting those most likely to expose them to infection might be more preferable [
<xref ref-type="bibr" rid="CR10">10</xref>
]. In this way, the very young and the old might be better protected by vaccinating those who are most likely to be in contact with them (thereby reducing their risk of exposure), rather than by being vaccinated. Comparison of influenza mortality among elderly Japanese during time periods when schoolchildren were and were not vaccinated suggests that the infected children pose a risk to others [
<xref ref-type="bibr" rid="CR11">11</xref>
], including the elderly. Moreover, several past US experiences (as summarized in [
<xref ref-type="bibr" rid="CR12">12</xref>
]) also are consistent with this conclusion. Nonetheless, influenza policymakers have typically advocated protecting those individuals of ages 6-24 months and >65 years directly.</p>
<p>Bansal et al. [
<xref ref-type="bibr" rid="CR13">13</xref>
] recently carried out a comparative analysis of two classes of suggested vaccination strategies, namely, the mortality-based strategies that target the high-risk populations and the morbidity-based strategies that target the high-prevalence populations, by applying the methods of contact network epidemiology to a model of disease transmission in a large urban population. Using a range of mortality rates reported previously for past influenza epidemics and pandemics, they concluded that the optimal strategy depends critically on the viral transmission level (or reproduction number) of the virus. That is, the morbidity-based strategies outperform the mortality-based strategies for moderately transmissible strains, while the reverse is true for highly transmissible strains. However, they also cautioned that when information pertaining to viral transmission rate of a particular disease and the frequency of new introductions into the community prior to an outbreak is unreliable or not available, a mortality-based vaccination priority is recommended. This further demonstrates the importance of targeting and, moreover, the uncertainty surrounding this issue.</p>
<p>To further the uncertainties regarding influenza pandemic preparedness planning, it is widely believed that asymptomatic cases (i.e., individuals who had been infected but showed little or no symptoms) and asymptomatic infection of influenza (i.e., infection caused by an asymptomatic case) do indeed occur regularly (e.g., [
<xref ref-type="bibr" rid="CR14">14</xref>
<xref ref-type="bibr" rid="CR17">17</xref>
]).</p>
<p>Model with only asymptomatic infections, by either asymptomatic or subclinical infectives, during their infectivity period had been recently studied in [
<xref ref-type="bibr" rid="CR14">14</xref>
]. In this current study, we will consider a traditional compartmental model which incorporates both pre-symptomatic and asymptomatic infections, in order to explore the role which they could play in the overall spread of disease, if any. Moreover, the age-group structure of the model, by dividing the population into seven groups of the very young, preschool children, younger and older schoolchildren, young adults, adults, and the elderly, allows us to study targeted public health policies (e.g., immunization) aimed at different age groups. Our model also allows for inclusion of immunity and other age-dependent intervention measures such as quarantine and voluntary home withdrawal (see e.g., [
<xref ref-type="bibr" rid="CR15">15</xref>
,
<xref ref-type="bibr" rid="CR16">16</xref>
]). A full model will be proposed to take into account of the above-mentioned factors that may be important in determining the best vaccine strategy.</p>
</sec>
<sec id="Sec2">
<title>Methods</title>
<sec id="Sec3">
<title>Model Formulation</title>
<p>Our model is an age-dependent compartmental model. The model flowchart is given in Fig.
<xref rid="Fig1" ref-type="fig">1</xref>
, where the subscript i denotes the i
<sup>th</sup>
age group. The model variables are described as follows, with the time unit t in days:
<fig id="Fig1">
<label>Figure 1</label>
<caption>
<p>
<bold>Model flow diagram</bold>
.</p>
</caption>
<graphic xlink:href="12879_2009_Article_1086_Fig1_HTML" id="d29e303"></graphic>
</fig>
</p>
<p>
<italic>S</italic>
<sub>
<italic>i</italic>
</sub>
<italic>(t)</italic>
: number of susceptible individuals of the
<italic>i</italic>
th age group at time
<italic>t</italic>
;</p>
<p>
<italic>V</italic>
<sub>
<italic>i</italic>
</sub>
<italic>(t)</italic>
: number of vaccinated individuals of the
<italic>i</italic>
th age group at time
<italic>t</italic>
;</p>
<p>
<italic>E</italic>
<sub>
<italic>i</italic>
</sub>
<italic>(t)</italic>
: number of exposed (infected) individuals of the
<italic>i</italic>
th age group at time
<italic>t</italic>
;</p>
<p>
<inline-formula id="IEq1">
<inline-graphic xlink:href="12879_2009_Article_1086_IEq1_HTML.gif"></inline-graphic>
</inline-formula>
: number of exposed (infected) vaccinated individuals of the
<italic>i</italic>
th age group at time
<italic>t</italic>
;</p>
<p>
<italic>Q</italic>
<sub>
<italic>i</italic>
</sub>
<italic>(t)</italic>
: number of quarantined infected individuals of the
<italic>i</italic>
th age group at time
<italic>t</italic>
;</p>
<p>
<italic>I</italic>
<sub>
<italic>i</italic>
</sub>
<italic>(t)</italic>
: number of infective individuals of the
<italic>i</italic>
th age group at time
<italic>t</italic>
;</p>
<p>
<italic>I</italic>
<sub>
<italic>i</italic>
</sub>
<sup>
<italic>v</italic>
</sup>
<italic>(t)</italic>
: number of vaccinated infective individuals of the
<italic>i</italic>
th age group at time
<italic>t</italic>
;</p>
<p>
<italic>A</italic>
<sub>
<italic>i</italic>
</sub>
<italic>(t)</italic>
: number of asymptomatic (subclinical) infective individuals of the
<italic>i</italic>
th age group at time
<italic>t</italic>
;</p>
<p>
<italic>H</italic>
<sub>
<italic>i</italic>
</sub>
<italic>(t)</italic>
: number of hospitalized (treated) individuals of the
<italic>i</italic>
th age group at time
<italic>t</italic>
;</p>
<p>
<italic>Z</italic>
<sub>
<italic>i</italic>
</sub>
<italic>(t)</italic>
: number of recovered and immune individuals of the
<italic>i</italic>
th age group at time
<italic>t</italic>
;</p>
<p>
<italic>D</italic>
<sub>
<italic>i</italic>
</sub>
<italic>(t)</italic>
: cumulative number of influenza deaths of the
<italic>i</italic>
th age group at time
<italic>t</italic>
;</p>
<p>c
<sub>ij</sub>
: contact rate of an individual of
<italic>i</italic>
th group with an individual of
<italic>j</italic>
th group;</p>
<p>
<italic>β</italic>
<sub>
<italic>ij</italic>
</sub>
: per contact transmission probability of a susceptible individual of
<italic>i</italic>
th group by an infective of
<italic>j</italic>
th group.</p>
<p>
<italic>π</italic>
<sub>
<italic>i</italic>
</sub>
: age-specific vaccine efficacy for age group
<italic>i</italic>
.</p>
<p>
<italic>λ</italic>
<sub>
<italic>i</italic>
</sub>
<italic>(t)</italic>
and
<inline-formula id="IEq2">
<inline-graphic xlink:href="12879_2009_Article_1086_IEq2_HTML.gif"></inline-graphic>
</inline-formula>
: disease incidence rates for the susceptible and vaccinated individuals of age group i. See [Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
] for detailed formulae.</p>
<p>The rest of the model parameters are listed in Tables
<xref rid="Tab1" ref-type="table">1</xref>
-
<xref rid="Tab2" ref-type="table">2</xref>
, with the age-specific parameters given in Table
<xref rid="Tab2" ref-type="table">2</xref>
. The detailed description of the model is given in [Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
]. Our main model assumptions are as follows:
<table-wrap id="Tab1">
<label>Table 1</label>
<caption>
<p>Model parameters with parameter values taken from published literature [
<xref ref-type="bibr" rid="CR15">15</xref>
,
<xref ref-type="bibr" rid="CR19">19</xref>
,
<xref ref-type="bibr" rid="CR21">21</xref>
]. The parameter values without a source (mostly 0) are assumed values.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="center">Parameter</th>
<th align="center">Description</th>
<th align="center">Baseline value</th>
<th align="center">Source</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">
<italic>σ</italic>
</td>
<td align="left">mean vaccine waning rate</td>
<td align="center">0</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">
<italic>1/γ</italic>
</td>
<td align="left">mean incubation period of exposed individuals</td>
<td align="center">1.48</td>
<td align="center">[
<xref ref-type="bibr" rid="CR21">21</xref>
]</td>
</tr>
<tr>
<td align="center">
<italic>1/γ</italic>
<sub>
<italic>1</italic>
</sub>
</td>
<td align="left">mean time to onset of those who had been quarantined</td>
<td align="center">NA</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">
<italic>ρ</italic>
</td>
<td align="left">mean recovery rate of untreated infectives</td>
<td align="center">1/2.85</td>
<td align="center">[
<xref ref-type="bibr" rid="CR19">19</xref>
]</td>
</tr>
<tr>
<td align="center">
<italic>ρ</italic>
<sup>
<italic>V</italic>
</sup>
</td>
<td align="left">mean recovery rate of vaccinated infectives with
<italic>ρ</italic>
<sup>
<italic>V</italic>
</sup>
<italic>ρ</italic>
</td>
<td align="center">1/2.85</td>
<td align="center">[
<xref ref-type="bibr" rid="CR19">19</xref>
]</td>
</tr>
<tr>
<td align="center">
<italic>ρ</italic>
<sub>
<italic>2</italic>
</sub>
</td>
<td align="left">mean recovery rate of asymptomatic infectives</td>
<td align="center">1/2.85</td>
<td align="center">[
<xref ref-type="bibr" rid="CR19">19</xref>
]</td>
</tr>
<tr>
<td align="center">
<italic>ω</italic>
</td>
<td align="left">mean immune waning rate</td>
<td align="center">0</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">
<italic>ϵ</italic>
</td>
<td align="left">migration rate of the population</td>
<td align="center">0</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">
<italic>ϵ</italic>
<sub>
<italic>1</italic>
</sub>
</td>
<td align="left">migration rate of symptomatic infectives</td>
<td align="center">0</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">
<italic>θ</italic>
</td>
<td align="left">immigration rate of the population</td>
<td align="center">0</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">
<italic>θ</italic>
<sub>
<italic>1</italic>
</sub>
</td>
<td align="left">immigration rate of symptomatic infectives</td>
<td align="center">0</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">
<italic>q</italic>
</td>
<td align="left">quarantine rate of unvaccinated exposed individuals</td>
<td align="center">0</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">
<italic>q</italic>
<sup>
<italic>V</italic>
</sup>
</td>
<td align="left">quarantine rate of vaccinated exposed individuals</td>
<td align="center">0</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">1-ϕ</td>
<td align="left">home withdrawal rate of untreated symptomatic infectives</td>
<td align="center">0</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">1-ϕ
<sub>1</sub>
</td>
<td align="left">home withdrawal rate of all "well" individuals</td>
<td align="center">0</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">
<italic>τ</italic>
</td>
<td align="left">reduction in infectivity of unvaccinated pre-symptomatic infectives</td>
<td align="center">0.4</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">
<italic>τ</italic>
<sub>
<italic>1</italic>
</sub>
</td>
<td align="left">reduction in infectivity of asymptomatic infectives</td>
<td align="center">0.5</td>
<td align="center">[
<xref ref-type="bibr" rid="CR15">15</xref>
]</td>
</tr>
<tr>
<td align="center">
<italic>τ</italic>
<sub>
<italic>2</italic>
</sub>
</td>
<td align="left">reduction factor in contact due to hospital isolation</td>
<td align="center">0</td>
<td align="center"></td>
</tr>
<tr>
<td align="center">
<italic>κ</italic>
</td>
<td align="left">reduction in infectivity of vaccinated infectives</td>
<td align="center">0.5</td>
<td align="center">[
<xref ref-type="bibr" rid="CR15">15</xref>
]</td>
</tr>
</tbody>
</table>
</table-wrap>
<table-wrap id="Tab2">
<label>Table 2</label>
<caption>
<p>Age-specific model parameters with the following sources: the age-specific values of vaccine efficacy and effectiveness [
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
], fraction of the symptomatic infectives [
<xref ref-type="bibr" rid="CR15">15</xref>
] and [
<xref ref-type="bibr" rid="CR28">28</xref>
], and all other values from 2003-2006 Taiwan flu monitor surveillance data.</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left">parameter\age group</th>
<th align="center">0-2</th>
<th align="center">3-5</th>
<th align="center">6-7</th>
<th align="center">8-14</th>
<th align="center">15-21</th>
<th align="center">22-64</th>
<th align="center">≥ 65</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">time-dependent vaccination rate
<italic>ν</italic>
<sub>
<italic>i</italic>
</sub>
<italic>(t)</italic>
</td>
<td align="center">
<italic>υ</italic>
<sub>
<italic>1</italic>
</sub>
<italic>(t)</italic>
</td>
<td align="center">0</td>
<td align="center">0</td>
<td align="center">0</td>
<td align="center">0</td>
<td align="center">0</td>
<td align="center">
<italic>υ</italic>
<sub>
<italic>7</italic>
</sub>
<italic>(t)</italic>
</td>
</tr>
<tr>
<td align="left">vaccine efficacy
<italic>π</italic>
<sub>
<italic>i</italic>
</sub>
[
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
]</td>
<td align="center">0.7</td>
<td align="center">0.7</td>
<td align="center">0.7</td>
<td align="center">0.7</td>
<td align="center">0.5</td>
<td align="center">0.5</td>
<td align="center">0.4</td>
</tr>
<tr>
<td align="left">fraction of asymptomatic infectives
<italic>α</italic>
<sub>
<italic>i</italic>
</sub>
[
<xref ref-type="bibr" rid="CR15">15</xref>
,
<xref ref-type="bibr" rid="CR28">28</xref>
]</td>
<td align="center">0.5</td>
<td align="center">0.5</td>
<td align="center">0.5</td>
<td align="center">0.5</td>
<td align="center">0.5</td>
<td align="center">0.5</td>
<td align="center">0.7</td>
</tr>
<tr>
<td align="left">reduced fraction of asymptomatic infectives due to vaccination
<inline-formula id="IEq3">
<inline-graphic xlink:href="12879_2009_Article_1086_IEq3_HTML.gif"></inline-graphic>
</inline-formula>
[
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
]</td>
<td align="center">0.4</td>
<td align="center">0.4</td>
<td align="center">0.4</td>
<td align="center">0.4</td>
<td align="center">0.4</td>
<td align="center">0.4</td>
<td align="center">0.6</td>
</tr>
<tr>
<td align="left">mortality rate of untreated infectives
<italic>δ</italic>
<sub>
<italic>i</italic>
</sub>
</td>
<td align="center">6 × 10
<sup>-4</sup>
</td>
<td align="center">5 × 10
<sup>-4</sup>
</td>
<td align="center">5 × 10
<sup>-5</sup>
</td>
<td align="center">5 × 10
<sup>-5</sup>
</td>
<td align="center">5 × 10
<sup>-5</sup>
</td>
<td align="center">1 × 10
<sup>-4</sup>
</td>
<td align="center">0.002</td>
</tr>
<tr>
<td align="left">mortality rate of untreated vaccinated infectives
<inline-formula id="IEq4">
<inline-graphic xlink:href="12879_2009_Article_1086_IEq4_HTML.gif"></inline-graphic>
</inline-formula>
*</td>
<td align="center">6 × 10
<sup>-4</sup>
</td>
<td align="center">5 × 10
<sup>-4</sup>
</td>
<td align="center">5 × 10
<sup>-5</sup>
</td>
<td align="center">5 × 10
<sup>-5</sup>
</td>
<td align="center">5 × 10
<sup>-5</sup>
</td>
<td align="center">1 × 10
<sup>-4</sup>
</td>
<td align="center">0.002</td>
</tr>
<tr>
<td align="left">mortality rate of hospitalized infectives
<inline-formula id="IEq5">
<inline-graphic xlink:href="12879_2009_Article_1086_IEq5_HTML.gif"></inline-graphic>
</inline-formula>
</td>
<td align="center">0.006</td>
<td align="center">0.005</td>
<td align="center">5 × 10
<sup>-4</sup>
</td>
<td align="center">5 × 10
<sup>-4</sup>
</td>
<td align="center">5 × 10
<sup>-4</sup>
</td>
<td align="center">0.001</td>
<td align="center">0.02</td>
</tr>
<tr>
<td align="left">mean recovery rate of the hospitalized infectives
<italic>ρ</italic>
<sub>
<italic>1</italic>
</sub>
</td>
<td align="center">1/4.85</td>
<td align="center">1/4.72</td>
<td align="center">1/4.45</td>
<td align="center">1/4.56</td>
<td align="center">1/5.55</td>
<td align="center">1/9.16</td>
<td align="center">1/16.94</td>
</tr>
<tr>
<td align="left">
<bold>hospitalization rate of unvaccinated symptomatic infectives</bold>
<italic>h</italic>
<sub>
<italic>i</italic>
</sub>
</td>
<td align="center">
<bold>0.007</bold>
</td>
<td align="center">
<bold>0.007</bold>
</td>
<td align="center">
<bold>0.007</bold>
</td>
<td align="center">
<bold>0.007</bold>
</td>
<td align="center">
<bold>0.007</bold>
</td>
<td align="center">
<bold>0.007</bold>
</td>
<td align="center">
<bold>0.09</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>hospitalization rate of vaccinated symptomatic infectives</bold>
<inline-formula id="IEq6">
<inline-graphic xlink:href="12879_2009_Article_1086_IEq6_HTML.gif"></inline-graphic>
</inline-formula>
*</td>
<td align="center">
<bold>0.007</bold>
</td>
<td align="center">
<bold>0.007</bold>
</td>
<td align="center">
<bold>0.007</bold>
</td>
<td align="center">
<bold>0.007</bold>
</td>
<td align="center">
<bold>0.007</bold>
</td>
<td align="center">
<bold>0.007</bold>
</td>
<td align="center">
<bold>0.06</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>per contact transmission probability of infectees in i</bold>
<sup>
<bold>th</bold>
</sup>
<bold>group</bold>
<italic>β</italic>
<sub>
<italic>ij</italic>
</sub>
<italic>β</italic>
<sub>
<italic>i</italic>
</sub>
</td>
<td align="center">
<bold>0.047</bold>
</td>
<td align="center">
<bold>0.039</bold>
</td>
<td align="center">
<bold>0.031</bold>
</td>
<td align="center">
<bold>0.031</bold>
</td>
<td align="center">
<bold>0.047</bold>
</td>
<td align="center">
<bold>0.045</bold>
</td>
<td align="center">
<bold>0.155</bold>
</td>
</tr>
<tr>
<td align="left">
<bold>per contact transmission probability of infectors in i</bold>
<sup>
<bold>th</bold>
</sup>
<bold>group</bold>
<italic>β</italic>
<sub>
<italic>ij</italic>
</sub>
<italic>β</italic>
<sub>
<italic>j</italic>
</sub>
</td>
<td align="center">
<bold>0.083</bold>
</td>
<td align="center">
<bold>0.029</bold>
</td>
<td align="center">
<bold>0.045</bold>
</td>
<td align="center">
<bold>0.008</bold>
</td>
<td align="center">
<bold>0.040</bold>
</td>
<td align="center">
<bold>0.056</bold>
</td>
<td align="center">
<bold>0.078</bold>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<p>*Note that
<italic>h</italic>
<sub>
<italic>i</italic>
</sub>
<inline-formula id="IEq7">
<inline-graphic xlink:href="12879_2009_Article_1086_IEq6_HTML.gif"></inline-graphic>
</inline-formula>
and
<inline-formula id="IEq8">
<inline-graphic xlink:href="12879_2009_Article_1086_IEq4_HTML.gif"></inline-graphic>
</inline-formula>
<italic>δ</italic>
<sub>
<italic>i</italic>
</sub>
.</p>
<p>The last four rows (in bold) were obtained by least-squared curve-fitting with data using MATLAB software.</p>
</table-wrap-foot>
</table-wrap>
</p>
<p>(1 )Exposed individuals are infective during the incubation period. It is commonly known (e.g., [
<xref ref-type="bibr" rid="CR18">18</xref>
]) that the pre-symptomatic (exposed) individuals cannot transmit the disease in the noninfectious latent period, during which the viral titres gradually increase to detectable and transmissible levels when they became infective for only a short period (0.25 days in [
<xref ref-type="bibr" rid="CR19">19</xref>
]) before the onset of symptoms. To avoid adding an extra compartment to account for the (short) period of infectivity after the end of the latent period and before the end of incubation period (see e.g., [
<xref ref-type="bibr" rid="CR20">20</xref>
]), we assume that the individuals are infective during the incubation period with the infectivity averaged out over the whole incubation period. This simplification is reasonable since the incubation period for influenza is typically very short, e.g., 1.48 days in [
<xref ref-type="bibr" rid="CR21">21</xref>
].</p>
<p>(2) Influenza vaccine is efficacious in preventing influenza infection and effective against influenza-like illness, albeit at different levels of efficacy and effectiveness for different age groups [
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
]. Moreover, the vaccinated individuals are less infectious, once they become infected, when compared to those who had not been vaccinated.</p>
<p>(3) The quarantined individuals will be hospitalized directly following the onset of symptoms (see [
<xref ref-type="bibr" rid="CR22">22</xref>
,
<xref ref-type="bibr" rid="CR23">23</xref>
] for modeling of quarantine for 2003 SARS outbreak).</p>
<p>(4) A fraction of the infectives has no symptoms or only subclinical symptoms, and is classified as asymptomatic infectives with reduced infectivity [
<xref ref-type="bibr" rid="CR14">14</xref>
].</p>
<p>(5) A hospitalized person is removed from isolation either by death or discharged due to recovery from illness.</p>
<p>(6) Homogeneous mixing within subpopulations is assumed.</p>
<p>(7) Negligible births and deaths (excluding disease deaths) during the course of the disease outbreak are assumed.</p>
</sec>
<sec id="Sec4">
<title>Reproduction Numbers</title>
<p>The basic reproduction number
<italic>R</italic>
<sub>
<italic>0</italic>
</sub>
, the average number of infections by an infective in an immunologically naive population (see, e.g., Diekmann et al. [
<xref ref-type="bibr" rid="CR24">24</xref>
] or van den Driessche and Watmough [
<xref ref-type="bibr" rid="CR25">25</xref>
]), is an important epidemiological quantity which gives indication to the potential severity of an epidemic. More precisely, the epidemic cannot be eradicated without interventions if R
<sub>0</sub>
exceeds unity. Denoting
<italic>S</italic>
<sub>0
<italic>i</italic>
</sub>
=
<italic>S</italic>
<sub>
<italic>i</italic>
</sub>
(0), we have
<disp-formula id="Equ1">
<label>1</label>
<graphic xlink:href="12879_2009_Article_1086_Equ1_HTML.gif" position="anchor"></graphic>
</disp-formula>
</p>
<p>where
<italic>R</italic>
<sub>
<italic>11</italic>
</sub>
, the average number of infections in group
<italic>j</italic>
caused by an infective from group
<italic>i</italic>
in an immunologically naive population, is given by
<disp-formula id="Equ2">
<label>2</label>
<graphic xlink:href="12879_2009_Article_1086_Equ2_HTML.gif" position="anchor"></graphic>
</disp-formula>
</p>
<p>For illustration, the case n = 2 is described graphically in Fig.
<xref rid="Fig2" ref-type="fig">2</xref>
, where
<fig id="Fig2">
<label>Figure 2</label>
<caption>
<p>
<bold>Graphical illustration of the basic reproduction number for n = 2</bold>
. The two blue arrows denotes within-group infections (
<italic>R</italic>
<sub>11</sub>
and
<italic>R</italic>
<sub>22</sub>
) and the black arrows denote the inter-group infection cycle (
<italic>R</italic>
<sub>12</sub>
<italic>R</italic>
<sub>21</sub>
). The term
<italic>R</italic>
<sub>11</sub>
<italic>R</italic>
<sub>22</sub>
subtracted in (3) accounts the redundancy due to adding both
<italic>R</italic>
<sub>11</sub>
and
<italic>R</italic>
<sub>22</sub>
.</p>
</caption>
<graphic xlink:href="12879_2009_Article_1086_Fig2_HTML" id="d29e1789"></graphic>
</fig>
</p>
<p>
<disp-formula id="Equ3">
<label>3</label>
<graphic xlink:href="12879_2009_Article_1086_Equ3_HTML.gif" position="anchor"></graphic>
</disp-formula>
</p>
<p>The two blue arrows denotes within-group infections (
<italic>R</italic>
<sub>
<italic>11</italic>
</sub>
and
<italic>R</italic>
<sub>
<italic>22</italic>
</sub>
) and the black arrows denote inter-group infection cycle (
<italic>R</italic>
<sub>
<italic>12</italic>
</sub>
<italic>R</italic>
<sub>
<italic>21</italic>
</sub>
). The term
<italic>R</italic>
<sub>
<italic>11</italic>
</sub>
<italic>R</italic>
<sub>
<italic>22</italic>
</sub>
subtracted in (3) accounts for the redundancy that resulted when adding
<italic>R</italic>
<sub>
<italic>11</italic>
</sub>
and
<italic>R</italic>
<sub>
<italic>22</italic>
</sub>
. Similar results for the basic reproduction number of a multi-group model were also obtained in [
<xref ref-type="bibr" rid="CR26">26</xref>
,
<xref ref-type="bibr" rid="CR27">27</xref>
].</p>
<p>Moreover, we have the following effective reproduction numbers due to interventions:</p>
<p>(i) The effective reproduction number with interventions excluding vaccination
<italic>R</italic>
<sub>
<italic>E</italic>
</sub>
is
<disp-formula id="Equ4">
<label>4</label>
<graphic xlink:href="12879_2009_Article_1086_Equ4_HTML.gif" position="anchor"></graphic>
</disp-formula>
</p>
<p>
<italic>i</italic>
,
<italic>j</italic>
= 1, 2, ...,
<italic>n</italic>
.</p>
<p>(ii) The effective reproduction number with vaccination only over a time period of immunization [0, T],
<italic>R</italic>
<sub>
<italic>V</italic>
</sub>
, is:
<disp-formula id="Equ5">
<label>5</label>
<graphic xlink:href="12879_2009_Article_1086_Equ5_HTML.gif" position="anchor"></graphic>
</disp-formula>
</p>
<p>where
<disp-formula id="Equ6">
<label>6</label>
<graphic xlink:href="12879_2009_Article_1086_Equ6_HTML.gif" position="anchor"></graphic>
</disp-formula>
</p>
<p>and
<disp-formula id="Equ7">
<graphic xlink:href="12879_2009_Article_1086_Equa_HTML.gif" position="anchor"></graphic>
</disp-formula>
</p>
<p>
<italic>i</italic>
,
<italic>j</italic>
= 1, 2, ...,
<italic>n</italic>
, is the average vaccine coverage of age group
<italic>i</italic>
over the time period [0, T], and
<disp-formula id="Equ8">
<label>7</label>
<graphic xlink:href="12879_2009_Article_1086_Equ7_HTML.gif" position="anchor"></graphic>
</disp-formula>
</p>
<p>(iii) The effective reproduction number with interventions including vaccination
<italic>R</italic>
<sub>
<italic>VE</italic>
</sub>
over the time period [0, T], is
<disp-formula id="Equ9">
<label>8</label>
<graphic xlink:href="12879_2009_Article_1086_Equ8_HTML.gif" position="anchor"></graphic>
</disp-formula>
</p>
<p>Detailed derivations of the reproduction numbers are also given in [Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
]. Model fit using 2005-2006 Taiwan winter seasonal influenza data and age-specific vaccination data as it was implemented during that flu season, as well as simulation studies of hypothetical scenarios, will be carried out.</p>
</sec>
<sec id="Sec5">
<title>Simulations with Taiwan Seasonal Influenza</title>
<p>With the issue of morbidity-based vs. mortality-based vaccine strategy for pandemic influenza still open to debate, the Taiwan Centers for Disease Control (TCDC) launched a new program of free flu vaccination for 1st and 2nd grades elementary school students (age 6-7) prior to the 2007-2008 winter flu season which was expanded further to include grades 1-4 in the fall of 2008. The aim of this vaccine program is hopefully to lower the seasonal influenza incidence across all age groups of the population. In anticipation of future investigation on public health impact of this program, we carry out model simulations by dividing the Taiwan population into 7 age groups (see Table
<xref rid="Tab2" ref-type="table">2</xref>
), and by making use of the weekly Taiwan influenza vaccination data for young children of age 2 or less (age group 1, with free flu vaccination since 2004) and the elderly of 65 or older (age group 7, with free flu vaccination since 2001) during the 2004-2005 winter flu season. The average vaccine coverages of age groups 1 and 7 during the 2004-2005 winter season in Taiwan are 63.4% and 58.2%, respectively.</p>
<p>There were no other nonpharmaceutical intervention measures during this winter flu season. That is, all parameters pertaining to quarantine and home withdrawal in the model are set to be 0 in Table
<xref rid="Tab1" ref-type="table">1</xref>
. Moreover, for the sake of simplicity, we assume no noticeable level of migration and no waning of immunity during the flu season. The rest of the parameter values used are given in Tables
<xref rid="Tab1" ref-type="table">1</xref>
-
<xref rid="Tab2" ref-type="table">2</xref>
. We also assume a conservative 20% pre-epidemic immunity in our simulation based on a recent sero-epidemiological survey conducted during 2005-2006 winter flu season in Taiwan [
<xref ref-type="bibr" rid="CR28">28</xref>
].</p>
<p>For the contact rates between different age groups, we make use of the age-specific contact matrix obtained by Wallinga et al. [
<xref ref-type="bibr" rid="CR29">29</xref>
] for Utrecht, the Netherlands, 1986. We adjust for the discrepancy in the population age distributions of Taiwan in 2005 and the Netherlands in 1986, by considering the ratios of demographic age structures of Netherlands in 1987 (Appendix Table
<xref rid="Tab1" ref-type="table">1</xref>
in [
<xref ref-type="bibr" rid="CR29">29</xref>
]) and of Taiwan in 2005 [Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table A1]. The resulting contact matrix, of the average daily number of contacts for each individual in a certain age group with individuals in another age group, is given in [Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table A2].</p>
</sec>
<sec id="Sec6">
<title>Fitting with Seasonal Influenza Data</title>
<p>The age-dependent hospitalization rates and per contact transmission probability in the last four rows (in bold) in Table
<xref rid="Tab2" ref-type="table">2</xref>
were obtained by least-squared curve-fitting with the 2004-2005 Taiwan winter P&I (Pneumonia and Influenza) mortality data from October 9, 2004 to March 5, 2005 for age groups 6 (age 22-64) and 7 (>64) using MATLAB software.
<italic>ν</italic>
<sub>7</sub>
(
<italic>τ</italic>
) and
<italic>ν</italic>
<sub>1</sub>
(
<italic>τ</italic>
) are piecewise linear (by week) approximations of the respective weekly vaccination data for elderly (>64) and young children in Taiwan during this time period. To simply our data fitting, we first fitted the data by assuming the per contact transmission probability of the infectees in i
<sup>th</sup>
group are averaged, i.e.,
<italic>β</italic>
<sub>
<italic>ij</italic>
</sub>
<italic>β</italic>
<sub>
<italic>i</italic>
</sub>
(see next to the last row in bold in Table
<xref rid="Tab2" ref-type="table">2</xref>
).</p>
</sec>
</sec>
<sec id="Sec7">
<title>Results</title>
<p>The result of data fit is given in Fig.
<xref rid="Fig3" ref-type="fig">3</xref>
. The reason for using only groups 6 and 7 for data fit is that the P&I mortality data during that winter season consists mostly of older people. More precisely, 5038 (88.5%) of the 5694 individuals who died of P&I are of age 65 or older (age group 7), 607 (10.7%) are between age 22-64 (age group 6), followed by 17 between age 0-2 (age group 1) and 14 between age 15-21 (age group 5). Each of other age groups has only a handful of cases. Therefore, to avoid large errors due to fitting data with small data size, we only use the data from the two largest groups for our model fit.
<fig id="Fig3">
<label>Figure 3</label>
<caption>
<p>
<bold>Model fit for the 2004-2005 (10/9/04-3/5/05) winter cumulative P&I mortality data in Taiwan for age groups 6 (age 22-64) and 7 (>64), with</bold>
<bold>
<italic>β</italic>
</bold>
<sub>
<bold>
<italic>ij</italic>
</bold>
</sub>
<bold>=</bold>
<bold>
<italic>β</italic>
</bold>
<sub>
<bold>
<italic>i</italic>
</bold>
</sub>
. The black dots are the real data; the solid curves are simulated
<italic>D</italic>
<sub>6</sub>
(
<italic>t</italic>
) and
<italic>D</italic>
<sub>7</sub>
(
<italic>t</italic>
) from the model, where R
<sup>2</sup>
are 0.97222 and 0.99123 for fitting
<italic>D</italic>
<sub>6</sub>
(
<italic>t</italic>
) and
<italic>D</italic>
<sub>7</sub>
(
<italic>t</italic>
), respectively.</p>
</caption>
<graphic xlink:href="12879_2009_Article_1086_Fig3_HTML" id="d29e2129"></graphic>
</fig>
</p>
<p>We also fitted the data by assuming the per contact transmission probability of the infectors in i
<sup>th</sup>
group are averaged, i.e.,
<italic>β</italic>
<sub>
<italic>ij</italic>
</sub>
<italic>β</italic>
<sub>
<italic>j</italic>
</sub>
(see the last row in bold in Table
<xref rid="Tab2" ref-type="table">2</xref>
and Fig.
<xref rid="Fig4" ref-type="fig">4</xref>
). We will compare these results to ascertain the difference in age groups on per contact transmission probabilities to and from particular age groups. To give more insight to the data used and the goodness of fit, we also provide the daily observed and predicated mortality corresponding to the case
<italic>β</italic>
<sub>
<italic>ij</italic>
</sub>
<italic>β</italic>
<sub>
<italic>j</italic>
</sub>
in [Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Figs. S1-S2].
<fig id="Fig4">
<label>Figure 4</label>
<caption>
<p>
<bold>Model fit for the 2004-2005 (10/9/04-3/5/05) winter cumulative P&I mortality data in Taiwan for age groups 6 (age 22-64) and 7 (>64), with</bold>
<bold>
<italic>β</italic>
</bold>
<sub>
<bold>
<italic>ij</italic>
</bold>
</sub>
<bold>=</bold>
<bold>
<italic>β</italic>
</bold>
<sub>
<bold>
<italic>j</italic>
</bold>
</sub>
. The black dots are the real data; the red curves are simulated
<italic>D</italic>
<sub>6</sub>
(
<italic>t</italic>
) and
<italic>D</italic>
<sub>7</sub>
(
<italic>t</italic>
) from the model, where R
<sup>2</sup>
are 0.99403 and 0.96763 for fitting
<italic>D</italic>
<sub>6</sub>
(
<italic>t</italic>
) and
<italic>D</italic>
<sub>7</sub>
(
<italic>t</italic>
), respectively.</p>
</caption>
<graphic xlink:href="12879_2009_Article_1086_Fig4_HTML" id="d29e2245"></graphic>
</fig>
</p>
</sec>
<sec id="Sec8">
<title>Discussion and Conclusion</title>
<sec id="Sec9">
<title>Age-specific Transmission</title>
<p>By fitting only the hospitalization rates and the per contact transmission probabilities to the 2004-2005 Taiwan winter season P&I mortality for age groups 6 (age 22-64) and 7 (>64), we are able to obtain satisfactory model fit (see Fig.
<xref rid="Fig3" ref-type="fig">3</xref>
), although we note that fitting P&I deaths might conceivably lead to an overestimate of hospitalizations rates. However, simulation studies showed that the model fit is less sensitive to the hospitalization rates than to the transmission probabilities, and intuitively, most sensitive to changes in these rates for the elderly group.</p>
<p>It is interesting to note that comparatively significant errors in both theoretical curves occur in late January roughly after day 110. We note that day 105 was January 22, 2005, when all schools in Taiwan closed for the winter vacation which lasted until after the traditional lunar New Year holiday, in mid-February of that year. The school closure, and subsequent shutdown of all non-essential venues during the week-long New Year holiday, surely had a significant impact on the contact rates which was not reflected in our
<italic>constant</italic>
contact matrix that implicitly assumes that inter-age group contact patterns remain the same during the whole season. More precisely, the P&I deaths for the elderly exhibits a slight increase for about 3 weeks after the closing of schools (shortly after the New Year) when compared to the model predicted values, while the P&I deaths for the adults of age 22-64 dropped substantially below the theoretical curve. These results indicate that the school closure and the subsequent New Year holiday led to more frequent contacts by the elderly in the households with family members who spent more time at home during the holidays At the same time, there were less contacts for the adults at the workplace (especially for those working in the educational facilities who had longer holidays) during this time period. Since most individuals in the elder group (and the very young) are not directly affected by the school closings and the holidays, one may speculate that the difference in the actual mortality and the theoretical mortality of the elderly, as averaged over the whole time period, is due at least in parts to the impact of interaction between the elderly and younger children with the school-age children and adults, when the activity levels (in terms of frequency as well as whom to make contact with) of the latter groups were significantly changed by the holidays.</p>
<p>Furthermore, the elderly had a higher per contact transmission probability (Table
<xref rid="Tab2" ref-type="table">2</xref>
) but lower contact frequency [Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table A2]. This study showed that, with the combination of these two factors, morbidity-based vaccination strategy still could be effective for the prevention of elderly mortality. Although a recent study to quantify the effect of school closures during the 2008 winter influenza season in Hong Kong did not find the school closures as having a substantial effect on the community transmission [
<xref ref-type="bibr" rid="CR30">30</xref>
], our results indicate the need for further studies on this topic. We also note that, normally, one would like to use averaged excess winter season P&I mortality data over other seasons for the data fitting of seasonal influenza. However, Taiwan often experiences summer influenza epidemics which would offset any attempt to obtain a reasonable "excess" P&I mortality for the winter season.</p>
</sec>
<sec id="Sec10">
<title>The Reproduction Number</title>
<p>Using Equations (
<xref rid="Equ2" ref-type="">2</xref>
-3) we obtain R
<sub>0</sub>
= 1.0001, just above unity. However, we note that it is more appropriately the
<italic>reproduction number R</italic>
of the winter flu epidemic, given the effect of pre-epidemic immunity that must exist. Chowell et al. [
<xref ref-type="bibr" rid="CR31">31</xref>
] used several weekly seasonal flu mortality data, derived from P&I excess deaths and influenza-specific deaths from US, France, and Australia during 1972-1997 (1972-2002 for US), to estimate the (mean) reproduction number R
<sub>p</sub>
over 3 decades of seasonal flu. They found that the mean of R
<sub>p</sub>
to be around 1.3, with year-to-year variability of 0.9-2.1. Our estimate is lower, but within their range.</p>
</sec>
<sec id="Sec11">
<title>Vaccination</title>
<p>It is also interesting to note that for our set of parameter values used in Figs.
<xref rid="Fig4" ref-type="fig">4</xref>
,
<xref rid="Fig5" ref-type="fig">5</xref>
, the effective reproduction number with vaccine only (see Equations
<xref rid="Equ5" ref-type="">5</xref>
-6) has almost the same value as R
<sub>0</sub>
, to the fourth decimal digit. One explanation for this apparent lack of impact of vaccination during the 2004-2005 flu season, as indicated by the value of R
<sub>V</sub>
, is that the vaccination data we used is only for groups 1 (age 0-2) and 7 (age >64). In the formula for R
<sub>V</sub>
, or more precisely for
<inline-formula id="IEq9">
<inline-graphic xlink:href="12879_2009_Article_1086_IEq7_HTML.gif"></inline-graphic>
</inline-formula>
in Equation (
<xref rid="Equ7" ref-type="">7</xref>
), c
<sub>ij</sub>
<sup>2</sup>
is the daily contact frequency between groups i and j. The contact frequencies of groups 1 and 7 [Additional file
<xref rid="MOESM1" ref-type="media">1</xref>
: Table A2] are substantially smaller than the contact frequencies of the other groups, with the exception of within-group contacts and contact between groups 1 and 2 (age 3-5) in daycare facilities. Therefore, the relative impact of targeting these two groups for vaccination was weakened by their relative inactivity, thus giving further evidence of the lack of impact of vaccinating the very young and the very old on the overall transmissibility of the disease in the community. However, simulation with the same parameter values as in Fig.
<xref rid="Fig3" ref-type="fig">3</xref>
except assuming no vaccination in the young children and elderly age groups, i.e.,
<italic>υ</italic>
<sub>1</sub>
(
<italic>t</italic>
) =
<italic>υ</italic>
<sub>7</sub>
(
<italic>t</italic>
) = 0, and everything else the same produces Fig.
<xref rid="Fig5" ref-type="fig">5</xref>
, where the result indicates that the impact of no vaccination (red curves) would still be significant, resulting in nearly 4-fold increase in mortality of elderly and 2-fold increase in mortality of adults. Therefore, the impact of vaccination on the disease incidence sometimes might not be fully revealed in the change (or the lack thereof) in the effective reproduction number with intervention but could still be substantial, since it is a simple mathematical property that distinctly different (next generation) matrices may have similar eigenvalues.
<fig id="Fig5">
<label>Figure 5</label>
<caption>
<p>
<bold>Simulation with the same model parameters as in Fig. 3, except</bold>
<bold>
<italic>υ</italic>
</bold>
<sub>
<bold>1</bold>
</sub>
<bold>(</bold>
<bold>
<italic>t</italic>
</bold>
<bold>) =</bold>
<bold>
<italic>υ</italic>
</bold>
<sub>
<bold>7</bold>
</sub>
<bold>(</bold>
<bold>
<italic>t</italic>
</bold>
<bold>) = 0</bold>
. The black dots are real data, the red curves are model fits in Fig. 3, and the blue curves denote simulation without vaccination.</p>
</caption>
<graphic xlink:href="12879_2009_Article_1086_Fig5_HTML" id="d29e2408"></graphic>
</fig>
</p>
<p>Furthermore, in our simulations we had assumed vaccine efficacy (proportion of infection prevented) of 40% for elderly and 70% for young children, to be in line with current literature [
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
]. However, efficacy depends very much on matching of the circulating strains with vaccine strains each year, where mismatch often causes low efficacy and might have affected our resulting data fit. We also assumed vaccine effectiveness (proportion of reduction in symptomatic cases) to be 60% for elderly and 40% for young children (also see [
<xref ref-type="bibr" rid="CR8">8</xref>
,
<xref ref-type="bibr" rid="CR9">9</xref>
]).</p>
<p>The per contact transmission probability for the susceptible elderly (>64)
<italic>infectees</italic>
(see next to the last row in Table
<xref rid="Tab2" ref-type="table">2</xref>
) is estimated to be 0.155, more than three-fold of any other age group (with the young children of 0-2 being the next highest), which may be due to the common need for very close contact while the elderly (or younger children of age <3) are being cared for, typically by individuals from adults of ages 22-64 in age group 6, even though the
<italic>frequency</italic>
of contact might be less than that of with other age groups. This further highlights the high vulnerability of the elderly (or the younger children) to exposure from other age groups, and demonstrates the need for morbidity-based strategy to prevent the elderly (or younger children) influenza mortality. On the other hand, the estimated per contact transmission probabilities for the younger (<3) and the elderly (>64)
<italic>infectors</italic>
are also both higher than those of the other groups (see the last row in Table
<xref rid="Tab2" ref-type="table">2</xref>
), but not significantly so except when compared with those between ages 8-14. The higher transmission probabilities of young children and elderly infectives could reflect, again, the fact that contacts with these individuals are usually of a more intimate nature, although these probabilities are not as drastically different as their vulnerability to be infected. The less likelihood of schoolchildren of 8-14 to infect others might also be attributable to signs of their less intimate contacts with others as they grow into adolescence.</p>
<p>To further explore this situation, we note that from Equation (
<xref rid="Equ6" ref-type="">6</xref>
), the partial derivatives of
<inline-formula id="IEq10">
<inline-graphic xlink:href="12879_2009_Article_1086_IEq8_HTML.gif"></inline-graphic>
</inline-formula>
with respect to
<italic>ν</italic>
<sub>
<italic>i</italic>
</sub>
π
<sub>
<italic>i</italic>
</sub>
are:
<disp-formula id="Equ10">
<graphic xlink:href="12879_2009_Article_1086_Equb_HTML.gif" position="anchor"></graphic>
</disp-formula>
</p>
<p>We know
<inline-formula id="IEq11">
<inline-graphic xlink:href="12879_2009_Article_1086_IEq9_HTML.gif"></inline-graphic>
</inline-formula>
from Equations (
<xref rid="Equ2" ref-type="">2</xref>
) and (
<xref rid="Equ7" ref-type="">7</xref>
). We also know that
<italic>κ</italic>
∈ [0, 1] and
<italic>ν</italic>
<sub>
<italic>i</italic>
</sub>
π
<sub>
<italic>i</italic>
</sub>
for all
<italic>i</italic>
,
<italic>j</italic>
. Subsequently,
<inline-formula id="IEq12">
<inline-graphic xlink:href="12879_2009_Article_1086_IEq10_HTML.gif"></inline-graphic>
</inline-formula>
is a nonincreasing function of
<italic>ν</italic>
<sub>
<italic>i</italic>
</sub>
π
<sub>
<italic>i</italic>
</sub>
for all
<italic>i, j</italic>
. However, since
<italic>R</italic>
<sub>
<italic>V</italic>
</sub>
= (-1)
<sup>
<italic>n</italic>
+1 </sup>
det
<italic>R</italic>
<sup>
<italic>V</italic>
</sup>
+ 1, where
<inline-formula id="IEq13">
<inline-graphic xlink:href="12879_2009_Article_1086_IEq11_HTML.gif"></inline-graphic>
</inline-formula>
is the matrix with
<inline-formula id="IEq14">
<inline-graphic xlink:href="12879_2009_Article_1086_IEq12_HTML.gif"></inline-graphic>
</inline-formula>
its
<italic>ij</italic>
th element, the effective reproduction number with vaccination only,
<italic>R</italic>
<sub>
<italic>V</italic>
</sub>
, does not necessarily decrease as the effective vaccination rate
<italic>ν</italic>
<sub>
<italic>i</italic>
</sub>
π
<sub>
<italic>i</italic>
</sub>
increases. In other words, vaccination is not always beneficial in reducing incidence and the design of an effective vaccination program in multi-group model is highly nontrivial, unlike in simple epidemic models where there is a simple formula for the critical vaccination coverage level necessary for eradication (p
<sub>c</sub>
) [
<xref ref-type="bibr" rid="CR20">20</xref>
]. In fact, it has been shown mathematically by Hadeler and Castillo-Chavez [
<xref ref-type="bibr" rid="CR32">32</xref>
], using a model with a core group, that partially effective vaccination program may actually increase the total number of cases. Explicit quantification of an optimal vaccination policy ([
<xref ref-type="bibr" rid="CR33">33</xref>
]) in a multi-group population scenario remains to be a challenge for mathematical modelers and is beyond the scope of this work. Moreover, the model fit was carried out with vaccination (of the elderly and small children of age 2 or less) as the only intervention since vaccination was the only intervention that was implemented during the flu seasonal for which the fitted P&I data was collected. Further simulations with quarantine and home withdrawal also can be easily carried out.</p>
</sec>
<sec id="Sec12">
<title>Pre-epidemic Immunity</title>
<p>A related issue is that of pre-epidemic immunity. Further sensitivity analysis using pre-immunity in the range of 10%-30% has shown that the results of curve-fittings are not sensitive to small changes in the pre-epidemic immunity. One would expect that pre-epidemic immunity does impact the outbreak, but nonetheless it is not reflected, at least not in the reproduction numbers.</p>
<p>Pre-symptomatic infection and asymptomatic infection by asymptomatic infectives were incorporated into the proposed model. To gauge the roles these two features of influenza might play in a seasonal influenza epidemic, we performed the following simulations. Again using Fig.
<xref rid="Fig3" ref-type="fig">3</xref>
as a benchmark, we first assume no pre-symptomatic infection (
<italic>τ</italic>
= 0) with all other parameter values unchanged (Fig.
<xref rid="Fig6" ref-type="fig">6</xref>
). Next we assume no asymptomatic infection by asymptomatic infectives (
<italic>α</italic>
<sub>
<italic>i</italic>
</sub>
=
<italic>α</italic>
<sub>
<italic>i</italic>
</sub>
<sup>
<italic>V</italic>
</sup>
= 0) (Fig.
<xref rid="Fig7" ref-type="fig">7</xref>
). The results indicate that pre-symptomatic infection seemed to have little effect on the model fits and the fitted parameters; while asymptomatic infection by asymptomatic infectives has a more pronounced impact on the model fit for the elderly, perhaps indicating the comparatively larger role asymptomatic infection plays in disease transmission.
<fig id="Fig6">
<label>Figure 6</label>
<caption>
<p>
<bold>Model fit with same model parameters as Fig. 3 except no asymptomatic infection by asymptomatic infectives (</bold>
<bold>
<italic>τ</italic>
</bold>
<bold>= 0)</bold>
. The black dots are the real data; the red curves are the model fit, where R
<sup>2</sup>
are 0.97346 and 0.99259, respectively.</p>
</caption>
<graphic xlink:href="12879_2009_Article_1086_Fig6_HTML" id="d29e2639"></graphic>
</fig>
<fig id="Fig7">
<label>Figure 7</label>
<caption>
<p>
<bold>Model fit with same model parameters as Fig. 3 except no asymptomatic infection by asymptomatic infectives (</bold>
<bold>
<italic>αi</italic>
</bold>
<bold>= 0)</bold>
. The black dots are the real data; the red curves are the model fit, where R
<sup>2</sup>
are 0.99472 and 0.94446, respectively.</p>
</caption>
<graphic xlink:href="12879_2009_Article_1086_Fig7_HTML" id="d29e2661"></graphic>
</fig>
</p>
<p>Finally, as the WHO Strategic Advisory Group of Experts (SAGE) recently made its recommendations for priorities in vaccination for the H1N1 pandemic in terms of the social groups (e.g., healthcare workers those with chronic medical conditions), health groups (pregnant women), and age groups [
<xref ref-type="bibr" rid="CR34">34</xref>
], the model also can be used to divide population into social/health groups. For example, to study vaccine policy for the elderly, we could divide the elderly into those living in households and those living in old age homes, since they mix differently in these two distinct settings. The model is also useful for simulations of the cost-effectiveness of vaccine and other intervention measures, such as prophylaxis treatment, perhaps in future work.</p>
</sec>
</sec>
<sec sec-type="supplementary-material">
<title>Electronic supplementary material</title>
<sec id="Sec13">
<p>
<supplementary-material content-type="local-data" id="MOESM1">
<media xlink:href="12879_2009_1086_MOESM1_ESM.DOC">
<caption>
<p>Additional file 1: Electronic Supplementary Material. SVEQIAHR Model Details and Supplementary Data. (DOC 358 KB)</p>
</caption>
</media>
</supplementary-material>
</p>
</sec>
</sec>
</body>
<back>
<app-group>
<app id="App1">
<sec id="Sec14">
<title>Authors’ original submitted files for images</title>
<p>Below are the links to the authors’ original submitted files for images.
<media position="anchor" xlink:href="12879_2009_1086_MOESM2_ESM.pdf" id="MOESM2">
<caption>
<p>Authors’ original file for figure 1</p>
</caption>
</media>
<media position="anchor" xlink:href="12879_2009_1086_MOESM3_ESM.pdf" id="MOESM3">
<caption>
<p>Authors’ original file for figure 2</p>
</caption>
</media>
<media position="anchor" xlink:href="12879_2009_1086_MOESM4_ESM.pdf" id="MOESM4">
<caption>
<p>Authors’ original file for figure 3</p>
</caption>
</media>
<media position="anchor" xlink:href="12879_2009_1086_MOESM5_ESM.pdf" id="MOESM5">
<caption>
<p>Authors’ original file for figure 4</p>
</caption>
</media>
<media position="anchor" xlink:href="12879_2009_1086_MOESM6_ESM.pdf" id="MOESM6">
<caption>
<p>Authors’ original file for figure 5</p>
</caption>
</media>
<media position="anchor" xlink:href="12879_2009_1086_MOESM7_ESM.pdf" id="MOESM7">
<caption>
<p>Authors’ original file for figure 6</p>
</caption>
</media>
<media position="anchor" xlink:href="12879_2009_1086_MOESM8_ESM.pdf" id="MOESM8">
<caption>
<p>Authors’ original file for figure 7</p>
</caption>
</media>
</p>
</sec>
</app>
</app-group>
<fn-group>
<fn>
<p>
<bold>Competing interests</bold>
</p>
<p>The authors declare that they have no competing interests.</p>
</fn>
</fn-group>
<ack>
<title>Acknowledgements</title>
<p>YHH was supported by Taiwan CDC Pandemic Influenza Vaccine Research and Development Program (DOH95-DC-1407), National Science Council of Taiwan (NSC 97-2118-M-039-004), and China Medical University (CMU 97 323). The author is grateful to Leng Leng Lim and Yun-Shih Wang for their help with the numerical simulations, and to Jen-Hsiang Chuang for providing Taiwan age-specific P&I mortality data. The author is grateful to two reviewers for their constructive and insightful comments which significantly improved this paper.</p>
</ack>
<ref-list id="Bib1">
<title>References</title>
<ref id="CR1">
<label>1.</label>
<mixed-citation publication-type="other">World Health Organization: World now at the start of 2009 influenza pandemic, WHO, Director-General statement to the press. Accessed September 18, 2009, [
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/en/index.html">http://www.who.int/mediacentre/news/statements/2009/h1n1_pandemic_phase6_20090611/en/index.html</ext-link>
]</mixed-citation>
</ref>
<ref id="CR2">
<label>2.</label>
<mixed-citation publication-type="other">World Health Organization: Preparing for the second wave: lessons from current outbreaks. Pandemic (H1N1) 2009 briefing note 9. accessed August 31, 2009, [
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/disease/swineflu/notes/h1n1_second_wave_20090828/en/index.html">http://www.who.int/csr/disease/swineflu/notes/h1n1_second_wave_20090828/en/index.html</ext-link>
]</mixed-citation>
</ref>
<ref id="CR3">
<label>3.</label>
<mixed-citation publication-type="other">World Health Organization: Pandemic (H1N1). accessed November 17, 2009, [
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/don/2009_11_13/en/index.html">http://www.who.int/csr/don/2009_11_13/en/index.html</ext-link>
]</mixed-citation>
</ref>
<ref id="CR4">
<label>4.</label>
<mixed-citation publication-type="other">World Health Organization: Safety of pandemic vaccines. Accessed September 18, 2009, [
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/disease/swineflu/notes/h1n1_safety_vaccines_20090805/en/index.html">http://www.who.int/csr/disease/swineflu/notes/h1n1_safety_vaccines_20090805/en/index.html</ext-link>
]</mixed-citation>
</ref>
<ref id="CR5">
<label>5.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yamada</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Dautry</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Walport</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Ready for avian flu?</article-title>
<source>Nature</source>
<year>2008</year>
<volume>454</volume>
<fpage>162</fpage>
<pub-id pub-id-type="doi">10.1038/454162a</pub-id>
<pub-id pub-id-type="pmid">18615064</pub-id>
</element-citation>
</ref>
<ref id="CR6">
<label>6.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taubenberger</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Morens</surname>
<given-names>DM</given-names>
</name>
</person-group>
<article-title>1918 influenza: the mother of all pandemics</article-title>
<source>Emerg Infect Dis</source>
<year>2006</year>
<volume>12</volume>
<fpage>15</fpage>
<lpage>22</lpage>
<pub-id pub-id-type="doi">10.3201/eid1209.05-0979</pub-id>
<pub-id pub-id-type="pmid">16494711</pub-id>
</element-citation>
</ref>
<ref id="CR7">
<label>7.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nicholson</surname>
<given-names>KG</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Zambon</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Influenza</article-title>
<source>Lancet</source>
<year>2003</year>
<volume>362</volume>
<fpage>1733</fpage>
<lpage>1745</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(03)14854-4</pub-id>
<pub-id pub-id-type="pmid">14643124</pub-id>
</element-citation>
</ref>
<ref id="CR8">
<label>8.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jefferson</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Smith</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Demicheli</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Harnden</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rivetti</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Di Pietrantonj</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Assessment of the efficacy and effectiveness of influenza vaccines in healthy children: systematic review</article-title>
<source>Lancet</source>
<year>2005</year>
<volume>365</volume>
<fpage>773</fpage>
<lpage>780</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(05)71000-X</pub-id>
<pub-id pub-id-type="pmid">15733718</pub-id>
</element-citation>
</ref>
<ref id="CR9">
<label>9.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jefferson</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Rivetti</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Rivetti</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rudin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Di Pietrantonj</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Demicheli</surname>
<given-names>V</given-names>
</name>
</person-group>
<article-title>Efficacy and effectiveness of influenza vaccines in elderly people: a systematic review</article-title>
<source>Lancet</source>
<year>2005</year>
<volume>366</volume>
<fpage>1165</fpage>
<lpage>1174</lpage>
<pub-id pub-id-type="doi">10.1016/S0140-6736(05)67339-4</pub-id>
<pub-id pub-id-type="pmid">16198765</pub-id>
</element-citation>
</ref>
<ref id="CR10">
<label>10.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lloyd-Smith</surname>
<given-names>JO</given-names>
</name>
<name>
<surname>Schreiber</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Kopp</surname>
<given-names>PE</given-names>
</name>
<name>
<surname>Getz</surname>
<given-names>WM</given-names>
</name>
</person-group>
<article-title>Superspreading and the effect of individual variation on disease emergence</article-title>
<source>Nature</source>
<year>2005</year>
<volume>438</volume>
<fpage>355</fpage>
<lpage>359</lpage>
<pub-id pub-id-type="doi">10.1038/nature04153</pub-id>
<pub-id pub-id-type="pmid">16292310</pub-id>
</element-citation>
</ref>
<ref id="CR11">
<label>11.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reichert</surname>
<given-names>TA</given-names>
</name>
<name>
<surname>Sugaya</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Fedson</surname>
<given-names>DS</given-names>
</name>
<name>
<surname>Glezen</surname>
<given-names>WP</given-names>
</name>
<name>
<surname>Simonsen</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Tashiro</surname>
<given-names>T</given-names>
</name>
</person-group>
<article-title>The Japanese experience with vaccinating schoolchildren against influenza</article-title>
<source>N Engl J Med</source>
<year>2001</year>
<volume>44</volume>
<fpage>889</fpage>
<lpage>896</lpage>
<pub-id pub-id-type="doi">10.1056/NEJM200103223441204</pub-id>
</element-citation>
</ref>
<ref id="CR12">
<label>12.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Glezen</surname>
<given-names>WP</given-names>
</name>
</person-group>
<article-title>Emerging infections: pandemic influenza</article-title>
<source>Epidemiol Rev</source>
<year>1996</year>
<volume>18</volume>
<fpage>64</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="doi">10.1093/oxfordjournals.epirev.a017917</pub-id>
<pub-id pub-id-type="pmid">8877331</pub-id>
</element-citation>
</ref>
<ref id="CR13">
<label>13.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bansal</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Pourbohloul</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Meyers</surname>
<given-names>LA</given-names>
</name>
</person-group>
<article-title>A Comparative Analysis of Influenza Vaccination Programs</article-title>
<source>PLoS Med</source>
<year>2006</year>
<volume>3</volume>
<issue>10</issue>
<fpage>e387</fpage>
<pub-id pub-id-type="doi">10.1371/journal.pmed.0030387</pub-id>
<pub-id pub-id-type="pmid">17020406</pub-id>
</element-citation>
</ref>
<ref id="CR14">
<label>14.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsu</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Hsieh</surname>
<given-names>YH</given-names>
</name>
</person-group>
<article-title>On the Role of Asymptomatic Infection in Transmission Dynamics of Infectious Diseases</article-title>
<source>Bull Math Biology</source>
<year>2008</year>
<volume>70</volume>
<fpage>134</fpage>
<lpage>155</lpage>
<pub-id pub-id-type="doi">10.1007/s11538-007-9245-6</pub-id>
</element-citation>
</ref>
<ref id="CR15">
<label>15.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Longini</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Halloran</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Nizam</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>Y</given-names>
</name>
</person-group>
<article-title>Containing pandemic influenza with antiviral agents</article-title>
<source>Am J Epidemiol</source>
<year>2004</year>
<volume>159</volume>
<fpage>623</fpage>
<lpage>633</lpage>
<pub-id pub-id-type="doi">10.1093/aje/kwh092</pub-id>
<pub-id pub-id-type="pmid">15033640</pub-id>
</element-citation>
</ref>
<ref id="CR16">
<label>16.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Longini</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Nizam</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Xu</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ungchusak</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Hanshaoworakul</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Cummings</surname>
<given-names>DA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Containing pandemic influenza at the source</article-title>
<source>Science</source>
<year>2005</year>
<volume>309</volume>
<fpage>1083</fpage>
<lpage>1087</lpage>
<pub-id pub-id-type="doi">10.1126/science.1115717</pub-id>
<pub-id pub-id-type="pmid">16079251</pub-id>
</element-citation>
</ref>
<ref id="CR17">
<label>17.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Germann</surname>
<given-names>TC</given-names>
</name>
<name>
<surname>Kadau</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Longini</surname>
<given-names>IM</given-names>
</name>
<name>
<surname>Macken</surname>
<given-names>CA</given-names>
</name>
</person-group>
<article-title>Mitigation strategies for pandemic influenza in the United States</article-title>
<source>PNAS</source>
<year>2006</year>
<volume>103</volume>
<issue>15</issue>
<fpage>5935</fpage>
<lpage>5940</lpage>
<pub-id pub-id-type="doi">10.1073/pnas.0601266103</pub-id>
<pub-id pub-id-type="pmid">16585506</pub-id>
</element-citation>
</ref>
<ref id="CR18">
<label>18.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baccam</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Beauchemin</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Macken</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Hayden</surname>
<given-names>FG</given-names>
</name>
<name>
<surname>Perelson</surname>
<given-names>AS</given-names>
</name>
</person-group>
<article-title>Kinetics of influenza A virus infection in humans</article-title>
<source>J Virol</source>
<year>2006</year>
<volume>80</volume>
<fpage>7590</fpage>
<lpage>7599</lpage>
<pub-id pub-id-type="doi">10.1128/JVI.01623-05</pub-id>
<pub-id pub-id-type="pmid">16840338</pub-id>
</element-citation>
</ref>
<ref id="CR19">
<label>19.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alexander</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Bowman</surname>
<given-names>CS</given-names>
</name>
<name>
<surname>Feng</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gardam</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Moghadas</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Röst</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Yan</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Emergence of drug resistance: implications for antiviral control of pandemic influenza</article-title>
<source>Proc Biol Sci</source>
<year>2007</year>
<volume>274</volume>
<issue>1619</issue>
<fpage>1675</fpage>
<lpage>1684</lpage>
<pub-id pub-id-type="doi">10.1098/rspb.2007.0422</pub-id>
<pub-id pub-id-type="pmid">17507331</pub-id>
</element-citation>
</ref>
<ref id="CR20">
<label>20.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Anderson</surname>
<given-names>R</given-names>
</name>
<name>
<surname>May</surname>
<given-names>R</given-names>
</name>
</person-group>
<source>Dynamics and Control</source>
<year>1991</year>
<publisher-loc>Oxford</publisher-loc>
<publisher-name>Oxford University Press</publisher-name>
</element-citation>
</ref>
<ref id="CR21">
<label>21.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferguson</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Cummings</surname>
<given-names>DAT</given-names>
</name>
<name>
<surname>Cauchemez</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Fraser</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Riley</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Meeyai</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lamsirithaworn</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Burke</surname>
<given-names>DS</given-names>
</name>
</person-group>
<article-title>Strategies for containing an emerging influenza pandemic in southeast Asia</article-title>
<source>Nature</source>
<year>2005</year>
<volume>437</volume>
<fpage>209</fpage>
<lpage>214</lpage>
<pub-id pub-id-type="doi">10.1038/nature04017</pub-id>
<pub-id pub-id-type="pmid">16079797</pub-id>
</element-citation>
</ref>
<ref id="CR22">
<label>22.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsieh</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>King</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>CWS</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>JY</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>FC</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>YC</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>JSJ</given-names>
</name>
</person-group>
<article-title>Quarantine for SARS, Taiwan</article-title>
<source>Emerg Infect Dis</source>
<year>2005</year>
<volume>11</volume>
<issue>2</issue>
<fpage>278</fpage>
<lpage>282</lpage>
<pub-id pub-id-type="doi">10.3201/eid1102.040190</pub-id>
<pub-id pub-id-type="pmid">15752447</pub-id>
</element-citation>
</ref>
<ref id="CR23">
<label>23.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsieh</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>King</surname>
<given-names>CC</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>CWS</given-names>
</name>
<name>
<surname>Ho</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Hsu</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>Wu</surname>
<given-names>YC</given-names>
</name>
</person-group>
<article-title>Impact of Quarantine on the 2003 SARS Outbreak: a retrospective modeling study</article-title>
<source>J Theoretical Biology</source>
<year>2007</year>
<volume>244</volume>
<fpage>729</fpage>
<lpage>736</lpage>
<pub-id pub-id-type="doi">10.1016/j.jtbi.2006.09.015</pub-id>
</element-citation>
</ref>
<ref id="CR24">
<label>24.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Diekmann</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Heesterbeek</surname>
<given-names>JAP</given-names>
</name>
<name>
<surname>Metz</surname>
<given-names>JAJ</given-names>
</name>
</person-group>
<article-title>On the definition and the computation of the basic reproduction ratio R
<sub>0</sub>
in models for infectious diseases in heterogeneous populations</article-title>
<source>J Math Biol</source>
<year>1990</year>
<volume>28</volume>
<fpage>365</fpage>
<lpage>382</lpage>
<pub-id pub-id-type="doi">10.1007/BF00178324</pub-id>
<pub-id pub-id-type="pmid">2117040</pub-id>
</element-citation>
</ref>
<ref id="CR25">
<label>25.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Driessche</surname>
<given-names>P van den</given-names>
</name>
<name>
<surname>Watmough</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission</article-title>
<source>Math Biosci</source>
<year>2002</year>
<volume>180</volume>
<fpage>29</fpage>
<lpage>48</lpage>
<pub-id pub-id-type="doi">10.1016/S0025-5564(02)00108-6</pub-id>
<pub-id pub-id-type="pmid">12387915</pub-id>
</element-citation>
</ref>
<ref id="CR26">
<label>26.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsieh</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Chen</surname>
<given-names>CH</given-names>
</name>
</person-group>
<article-title>Modeling the social dynamics of the sex industry in Thailand: Its implications for spread of HIV</article-title>
<source>Bull Math Biol</source>
<year>2004</year>
<volume>66</volume>
<issue>1</issue>
<fpage>143</fpage>
<lpage>166</lpage>
<pub-id pub-id-type="doi">10.1016/j.bulm.2003.08.004</pub-id>
<pub-id pub-id-type="pmid">14670534</pub-id>
</element-citation>
</ref>
<ref id="CR27">
<label>27.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hsieh</surname>
<given-names>YH</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>YS</given-names>
</name>
</person-group>
<article-title>Basic reproduction number HIV model incorporating commercial sex and behavior change</article-title>
<source>Bull Math Biol</source>
<year>2006</year>
<volume>68</volume>
<fpage>551</fpage>
<lpage>575</lpage>
<pub-id pub-id-type="doi">10.1007/s11538-005-9050-z</pub-id>
<pub-id pub-id-type="pmid">16794945</pub-id>
</element-citation>
</ref>
<ref id="CR28">
<label>28.</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>CY</given-names>
</name>
</person-group>
<article-title>Serological surveillance of human influenza viruses among elementary schoolchildren in Taiwan during the 2005-2006 flu season</article-title>
<source>Master thesis</source>
<year>2007</year>
<publisher-loc>Graduate Institute of Epidemiology</publisher-loc>
<publisher-name>National Taiwan University</publisher-name>
</element-citation>
</ref>
<ref id="CR29">
<label>29.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wallinga</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Teunis</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Kretzschmar</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents</article-title>
<source>Am J Epidemiol</source>
<year>2006</year>
<volume>164</volume>
<fpage>936</fpage>
<lpage>944</lpage>
<pub-id pub-id-type="doi">10.1093/aje/kwj317</pub-id>
<pub-id pub-id-type="pmid">16968863</pub-id>
</element-citation>
</ref>
<ref id="CR30">
<label>30.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Cowling</surname>
<given-names>BJ</given-names>
</name>
<name>
<surname>Lau</surname>
<given-names>EHY</given-names>
</name>
<name>
<surname>Lam</surname>
<given-names>CLH</given-names>
</name>
<name>
<surname>Cheng</surname>
<given-names>CKY</given-names>
</name>
<name>
<surname>Kovar</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Chan</surname>
<given-names>KH</given-names>
</name>
<name>
<surname>Peiris</surname>
<given-names>JSM</given-names>
</name>
<name>
<surname>Leung</surname>
<given-names>GM</given-names>
</name>
</person-group>
<article-title>Effects of school closures, 2008 winter influenza season, Hong Kong</article-title>
<source>Emerg Infect Dis</source>
<year>2008</year>
<volume>14</volume>
<issue>10</issue>
<fpage>1660</fpage>
<lpage>1662</lpage>
<pub-id pub-id-type="doi">10.3201/eid1410.080646</pub-id>
<pub-id pub-id-type="pmid">18826841</pub-id>
</element-citation>
</ref>
<ref id="CR31">
<label>31.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chowell</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Viboud</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Seasonal influenza in the United States, France, and Australia: transmission and prospects for control</article-title>
<source>Epidemiol Infect</source>
<year>2008</year>
<volume>136</volume>
<issue>6</issue>
<fpage>852</fpage>
<lpage>864</lpage>
<pub-id pub-id-type="doi">10.1017/S0950268807009144</pub-id>
<pub-id pub-id-type="pmid">17634159</pub-id>
</element-citation>
</ref>
<ref id="CR32">
<label>32.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hadeler</surname>
<given-names>KP</given-names>
</name>
<name>
<surname>Castillo-Chavez</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>A core group model for disease transmission</article-title>
<source>Math Biosci</source>
<year>1995</year>
<volume>128</volume>
<fpage>41</fpage>
<lpage>55</lpage>
<pub-id pub-id-type="doi">10.1016/0025-5564(94)00066-9</pub-id>
<pub-id pub-id-type="pmid">7606144</pub-id>
</element-citation>
</ref>
<ref id="CR33">
<label>33.</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hill</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Longini</surname>
<given-names>IM</given-names>
</name>
</person-group>
<article-title>The critical vaccination fraction for heterogeneous epidemic models</article-title>
<source>Math Biosci</source>
<year>2003</year>
<volume>181</volume>
<issue>1</issue>
<fpage>85</fpage>
<lpage>106</lpage>
<pub-id pub-id-type="doi">10.1016/S0025-5564(02)00129-3</pub-id>
<pub-id pub-id-type="pmid">12421553</pub-id>
</element-citation>
</ref>
<ref id="CR34">
<label>34.</label>
<mixed-citation publication-type="other">World Health Organization: WHO recommendations on pandemic (H1N1) 2009 vaccines. Accessed September 18, 2009, [
<ext-link ext-link-type="uri" xlink:href="http://www.who.int/csr/disease/swineflu/notes/h1n1_vaccine_20090713/en/index.html">http://www.who.int/csr/disease/swineflu/notes/h1n1_vaccine_20090713/en/index.html</ext-link>
]</mixed-citation>
</ref>
<ref-list id="BSec1">
<title>Pre-publication history</title>
<ref id="CR35">
<mixed-citation publication-type="other">The pre-publication history for this paper can be accessed here:
<ext-link ext-link-type="uri" xlink:href="http://www.biomedcentral.com/1471-2334/10/106/prepub">http://www.biomedcentral.com/1471-2334/10/106/prepub</ext-link>
</mixed-citation>
</ref>
</ref-list>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000178  | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000178  | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     
   |texte=   
}}

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021