Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Hidden Geometry of Complex, Network-Driven Contagion Phenomena

Identifieur interne : 000033 ( PascalFrancis/Corpus ); précédent : 000032; suivant : 000034

The Hidden Geometry of Complex, Network-Driven Contagion Phenomena

Auteurs : Dirk Brockmann ; Dirk Helbing

Source :

RBID : Pascal:14-0241810

Descripteurs français

English descriptors

Abstract

The global spread of epidemics, rumors, opinions, and innovations are complex, network-driven dynamic processes. The combined multiscale nature and intrinsic heterogeneity of the underlying networks make it difficult to develop an intuitive understanding of these processes, to distinguish relevant from peripheral factors, to predict their time course, and to locate their origin. However, we show that complex spatiotemporal patterns can be reduced to surprisingly simple, homogeneous wave propagation patterns, if conventional geographic distance is replaced by a probabilistically motivated effective distance. In the context of global, air-traffic-mediated epidemics, we show that effective distance reliably predicts disease arrival times. Even if epidemiological parameters are unknown, the method can still deliver relative arrival times. The approach can also identify the spatial origin of spreading processes and successfully be applied to data of the worldwide 2009 H1N1 influenza pandemic and 2003 SARS epidemic.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0036-8075
A02 01      @0 SCIEAS
A03   1    @0 Science : (Wash. D.C.)
A05       @2 342
A06       @2 6164
A08 01  1  ENG  @1 The Hidden Geometry of Complex, Network-Driven Contagion Phenomena
A11 01  1    @1 BROCKMANN (Dirk)
A11 02  1    @1 HELBING (Dirk)
A14 01      @1 Robert-Koch-Institute, Seestrasse 10 @2 13353 Berlin @3 DEU @Z 1 aut.
A14 02      @1 Institute for Theoretical Biology, Humboldt-University Berlin, Invalidenstrasse 42 @2 10115 Berlin @3 DEU @Z 1 aut.
A14 03      @1 Department of Engineering Sciences and Applied Mathematics and Northwestern Institute on Complex Systems, Northwestern University @2 Evanston, IL 60208 @3 USA @Z 1 aut.
A14 04      @1 ETH Zurich, Swiss Federal Institute of Technology, CLU E1, Clausiusstrasse 50 @2 8092 Zurich @3 CHE @Z 2 aut.
A14 05      @1 Risk Center, ETH Zurich, Scheuchzerstrasse 7 @2 8092 Zurich @3 CHE @Z 2 aut.
A20       @1 1337-1342
A21       @1 2013
A23 01      @0 ENG
A43 01      @1 INIST @2 6040 @5 354000500700450200
A44       @0 0000 @1 © 2014 INIST-CNRS. All rights reserved.
A45       @0 39 ref.
A47 01  1    @0 14-0241810
A60       @1 P
A61       @0 A
A64 01  1    @0 Science : (Washington, D.C.)
A66 01      @0 USA
C01 01    ENG  @0 The global spread of epidemics, rumors, opinions, and innovations are complex, network-driven dynamic processes. The combined multiscale nature and intrinsic heterogeneity of the underlying networks make it difficult to develop an intuitive understanding of these processes, to distinguish relevant from peripheral factors, to predict their time course, and to locate their origin. However, we show that complex spatiotemporal patterns can be reduced to surprisingly simple, homogeneous wave propagation patterns, if conventional geographic distance is replaced by a probabilistically motivated effective distance. In the context of global, air-traffic-mediated epidemics, we show that effective distance reliably predicts disease arrival times. Even if epidemiological parameters are unknown, the method can still deliver relative arrival times. The approach can also identify the spatial origin of spreading processes and successfully be applied to data of the worldwide 2009 H1N1 influenza pandemic and 2003 SARS epidemic.
C02 01  X    @0 002B28B
C02 02  X    @0 002B05A03
C02 03  X    @0 002B05C02C
C03 01  X  FRE  @0 Grippe @5 01
C03 01  X  ENG  @0 Influenza @5 01
C03 01  X  SPA  @0 Gripe @5 01
C03 02  X  FRE  @0 Syndrome respiratoire aigu sévère @2 NM @5 02
C03 02  X  ENG  @0 Severe acute respiratory syndrome @2 NM @5 02
C03 02  X  SPA  @0 Síndrome respiratorio agudo severo @2 NM @5 02
C03 03  X  FRE  @0 Maladie émergente @2 NM @5 03
C03 03  X  ENG  @0 Emerging disease @2 NM @5 03
C03 03  X  SPA  @0 Enfermedad emergente @2 NM @5 03
C03 04  X  FRE  @0 Epidémie @5 07
C03 04  X  ENG  @0 Epidemic @5 07
C03 04  X  SPA  @0 Epidemia @5 07
C03 05  X  FRE  @0 Contagion @5 08
C03 05  X  ENG  @0 Contagion @5 08
C03 05  X  SPA  @0 Contagio @5 08
C03 06  X  FRE  @0 Modélisation @5 09
C03 06  X  ENG  @0 Modeling @5 09
C03 06  X  SPA  @0 Modelización @5 09
C03 07  X  FRE  @0 Homme @5 13
C03 07  X  ENG  @0 Human @5 13
C03 07  X  SPA  @0 Hombre @5 13
C03 08  X  FRE  @0 Statistique @5 14
C03 08  X  ENG  @0 Statistics @5 14
C03 08  X  SPA  @0 Estadística @5 14
C03 09  X  FRE  @0 Maladie contagieuse @5 15
C03 09  X  ENG  @0 Communicable disease @5 15
C03 09  X  SPA  @0 Enfermedad contagiosa @5 15
C03 10  X  FRE  @0 Pandémie @4 INC @5 86
C07 01  X  FRE  @0 Virose
C07 01  X  ENG  @0 Viral disease
C07 01  X  SPA  @0 Virosis
C07 02  X  FRE  @0 Infection
C07 02  X  ENG  @0 Infection
C07 02  X  SPA  @0 Infección
C07 03  X  FRE  @0 Pathologie de l'appareil respiratoire @5 37
C07 03  X  ENG  @0 Respiratory disease @5 37
C07 03  X  SPA  @0 Aparato respiratorio patología @5 37
C07 04  X  FRE  @0 Pathologie des poumons @5 38
C07 04  X  ENG  @0 Lung disease @5 38
C07 04  X  SPA  @0 Pulmón patología @5 38
N21       @1 293

Format Inist (serveur)

NO : PASCAL 14-0241810 INIST
ET : The Hidden Geometry of Complex, Network-Driven Contagion Phenomena
AU : BROCKMANN (Dirk); HELBING (Dirk)
AF : Robert-Koch-Institute, Seestrasse 10/13353 Berlin/Allemagne (1 aut.); Institute for Theoretical Biology, Humboldt-University Berlin, Invalidenstrasse 42/10115 Berlin/Allemagne (1 aut.); Department of Engineering Sciences and Applied Mathematics and Northwestern Institute on Complex Systems, Northwestern University/Evanston, IL 60208/Etats-Unis (1 aut.); ETH Zurich, Swiss Federal Institute of Technology, CLU E1, Clausiusstrasse 50/8092 Zurich/Suisse (2 aut.); Risk Center, ETH Zurich, Scheuchzerstrasse 7/8092 Zurich/Suisse (2 aut.)
DT : Publication en série; Niveau analytique
SO : Science : (Washington, D.C.); ISSN 0036-8075; Coden SCIEAS; Etats-Unis; Da. 2013; Vol. 342; No. 6164; Pp. 1337-1342; Bibl. 39 ref.
LA : Anglais
EA : The global spread of epidemics, rumors, opinions, and innovations are complex, network-driven dynamic processes. The combined multiscale nature and intrinsic heterogeneity of the underlying networks make it difficult to develop an intuitive understanding of these processes, to distinguish relevant from peripheral factors, to predict their time course, and to locate their origin. However, we show that complex spatiotemporal patterns can be reduced to surprisingly simple, homogeneous wave propagation patterns, if conventional geographic distance is replaced by a probabilistically motivated effective distance. In the context of global, air-traffic-mediated epidemics, we show that effective distance reliably predicts disease arrival times. Even if epidemiological parameters are unknown, the method can still deliver relative arrival times. The approach can also identify the spatial origin of spreading processes and successfully be applied to data of the worldwide 2009 H1N1 influenza pandemic and 2003 SARS epidemic.
CC : 002B28B; 002B05A03; 002B05C02C
FD : Grippe; Syndrome respiratoire aigu sévère; Maladie émergente; Epidémie; Contagion; Modélisation; Homme; Statistique; Maladie contagieuse; Pandémie
FG : Virose; Infection; Pathologie de l'appareil respiratoire; Pathologie des poumons
ED : Influenza; Severe acute respiratory syndrome; Emerging disease; Epidemic; Contagion; Modeling; Human; Statistics; Communicable disease
EG : Viral disease; Infection; Respiratory disease; Lung disease
SD : Gripe; Síndrome respiratorio agudo severo; Enfermedad emergente; Epidemia; Contagio; Modelización; Hombre; Estadística; Enfermedad contagiosa
LO : INIST-6040.354000500700450200
ID : 14-0241810

Links to Exploration step

Pascal:14-0241810

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The Hidden Geometry of Complex, Network-Driven Contagion Phenomena</title>
<author>
<name sortKey="Brockmann, Dirk" sort="Brockmann, Dirk" uniqKey="Brockmann D" first="Dirk" last="Brockmann">Dirk Brockmann</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Robert-Koch-Institute, Seestrasse 10</s1>
<s2>13353 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute for Theoretical Biology, Humboldt-University Berlin, Invalidenstrasse 42</s1>
<s2>10115 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Engineering Sciences and Applied Mathematics and Northwestern Institute on Complex Systems, Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Helbing, Dirk" sort="Helbing, Dirk" uniqKey="Helbing D" first="Dirk" last="Helbing">Dirk Helbing</name>
<affiliation>
<inist:fA14 i1="04">
<s1>ETH Zurich, Swiss Federal Institute of Technology, CLU E1, Clausiusstrasse 50</s1>
<s2>8092 Zurich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Risk Center, ETH Zurich, Scheuchzerstrasse 7</s1>
<s2>8092 Zurich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0241810</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0241810 INIST</idno>
<idno type="RBID">Pascal:14-0241810</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000033</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">The Hidden Geometry of Complex, Network-Driven Contagion Phenomena</title>
<author>
<name sortKey="Brockmann, Dirk" sort="Brockmann, Dirk" uniqKey="Brockmann D" first="Dirk" last="Brockmann">Dirk Brockmann</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Robert-Koch-Institute, Seestrasse 10</s1>
<s2>13353 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Institute for Theoretical Biology, Humboldt-University Berlin, Invalidenstrasse 42</s1>
<s2>10115 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Engineering Sciences and Applied Mathematics and Northwestern Institute on Complex Systems, Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Helbing, Dirk" sort="Helbing, Dirk" uniqKey="Helbing D" first="Dirk" last="Helbing">Dirk Helbing</name>
<affiliation>
<inist:fA14 i1="04">
<s1>ETH Zurich, Swiss Federal Institute of Technology, CLU E1, Clausiusstrasse 50</s1>
<s2>8092 Zurich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="05">
<s1>Risk Center, ETH Zurich, Scheuchzerstrasse 7</s1>
<s2>8092 Zurich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Science : (Washington, D.C.)</title>
<title level="j" type="abbreviated">Science : (Wash. D.C.)</title>
<idno type="ISSN">0036-8075</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Science : (Washington, D.C.)</title>
<title level="j" type="abbreviated">Science : (Wash. D.C.)</title>
<idno type="ISSN">0036-8075</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Communicable disease</term>
<term>Contagion</term>
<term>Emerging disease</term>
<term>Epidemic</term>
<term>Human</term>
<term>Influenza</term>
<term>Modeling</term>
<term>Severe acute respiratory syndrome</term>
<term>Statistics</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Grippe</term>
<term>Syndrome respiratoire aigu sévère</term>
<term>Maladie émergente</term>
<term>Epidémie</term>
<term>Contagion</term>
<term>Modélisation</term>
<term>Homme</term>
<term>Statistique</term>
<term>Maladie contagieuse</term>
<term>Pandémie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The global spread of epidemics, rumors, opinions, and innovations are complex, network-driven dynamic processes. The combined multiscale nature and intrinsic heterogeneity of the underlying networks make it difficult to develop an intuitive understanding of these processes, to distinguish relevant from peripheral factors, to predict their time course, and to locate their origin. However, we show that complex spatiotemporal patterns can be reduced to surprisingly simple, homogeneous wave propagation patterns, if conventional geographic distance is replaced by a probabilistically motivated effective distance. In the context of global, air-traffic-mediated epidemics, we show that effective distance reliably predicts disease arrival times. Even if epidemiological parameters are unknown, the method can still deliver relative arrival times. The approach can also identify the spatial origin of spreading processes and successfully be applied to data of the worldwide 2009 H1N1 influenza pandemic and 2003 SARS epidemic.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0036-8075</s0>
</fA01>
<fA02 i1="01">
<s0>SCIEAS</s0>
</fA02>
<fA03 i2="1">
<s0>Science : (Wash. D.C.)</s0>
</fA03>
<fA05>
<s2>342</s2>
</fA05>
<fA06>
<s2>6164</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The Hidden Geometry of Complex, Network-Driven Contagion Phenomena</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>BROCKMANN (Dirk)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>HELBING (Dirk)</s1>
</fA11>
<fA14 i1="01">
<s1>Robert-Koch-Institute, Seestrasse 10</s1>
<s2>13353 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute for Theoretical Biology, Humboldt-University Berlin, Invalidenstrasse 42</s1>
<s2>10115 Berlin</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Engineering Sciences and Applied Mathematics and Northwestern Institute on Complex Systems, Northwestern University</s1>
<s2>Evanston, IL 60208</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>ETH Zurich, Swiss Federal Institute of Technology, CLU E1, Clausiusstrasse 50</s1>
<s2>8092 Zurich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Risk Center, ETH Zurich, Scheuchzerstrasse 7</s1>
<s2>8092 Zurich</s2>
<s3>CHE</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>1337-1342</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>6040</s2>
<s5>354000500700450200</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>39 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0241810</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Science : (Washington, D.C.)</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The global spread of epidemics, rumors, opinions, and innovations are complex, network-driven dynamic processes. The combined multiscale nature and intrinsic heterogeneity of the underlying networks make it difficult to develop an intuitive understanding of these processes, to distinguish relevant from peripheral factors, to predict their time course, and to locate their origin. However, we show that complex spatiotemporal patterns can be reduced to surprisingly simple, homogeneous wave propagation patterns, if conventional geographic distance is replaced by a probabilistically motivated effective distance. In the context of global, air-traffic-mediated epidemics, we show that effective distance reliably predicts disease arrival times. Even if epidemiological parameters are unknown, the method can still deliver relative arrival times. The approach can also identify the spatial origin of spreading processes and successfully be applied to data of the worldwide 2009 H1N1 influenza pandemic and 2003 SARS epidemic.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B28B</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B05A03</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002B05C02C</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Grippe</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Influenza</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Gripe</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Syndrome respiratoire aigu sévère</s0>
<s2>NM</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Severe acute respiratory syndrome</s0>
<s2>NM</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Síndrome respiratorio agudo severo</s0>
<s2>NM</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Maladie émergente</s0>
<s2>NM</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Emerging disease</s0>
<s2>NM</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Enfermedad emergente</s0>
<s2>NM</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Epidémie</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Epidemic</s0>
<s5>07</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Epidemia</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Contagion</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Contagion</s0>
<s5>08</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Contagio</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>09</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Homme</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Human</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Hombre</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Statistique</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Statistics</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Estadística</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Maladie contagieuse</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Communicable disease</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Enfermedad contagiosa</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Pandémie</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Virose</s0>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Viral disease</s0>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Virosis</s0>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Infection</s0>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Infection</s0>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Infección</s0>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Pathologie de l'appareil respiratoire</s0>
<s5>37</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Respiratory disease</s0>
<s5>37</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Aparato respiratorio patología</s0>
<s5>37</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Pathologie des poumons</s0>
<s5>38</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Lung disease</s0>
<s5>38</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Pulmón patología</s0>
<s5>38</s5>
</fC07>
<fN21>
<s1>293</s1>
</fN21>
</pA>
</standard>
<server>
<NO>PASCAL 14-0241810 INIST</NO>
<ET>The Hidden Geometry of Complex, Network-Driven Contagion Phenomena</ET>
<AU>BROCKMANN (Dirk); HELBING (Dirk)</AU>
<AF>Robert-Koch-Institute, Seestrasse 10/13353 Berlin/Allemagne (1 aut.); Institute for Theoretical Biology, Humboldt-University Berlin, Invalidenstrasse 42/10115 Berlin/Allemagne (1 aut.); Department of Engineering Sciences and Applied Mathematics and Northwestern Institute on Complex Systems, Northwestern University/Evanston, IL 60208/Etats-Unis (1 aut.); ETH Zurich, Swiss Federal Institute of Technology, CLU E1, Clausiusstrasse 50/8092 Zurich/Suisse (2 aut.); Risk Center, ETH Zurich, Scheuchzerstrasse 7/8092 Zurich/Suisse (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Science : (Washington, D.C.); ISSN 0036-8075; Coden SCIEAS; Etats-Unis; Da. 2013; Vol. 342; No. 6164; Pp. 1337-1342; Bibl. 39 ref.</SO>
<LA>Anglais</LA>
<EA>The global spread of epidemics, rumors, opinions, and innovations are complex, network-driven dynamic processes. The combined multiscale nature and intrinsic heterogeneity of the underlying networks make it difficult to develop an intuitive understanding of these processes, to distinguish relevant from peripheral factors, to predict their time course, and to locate their origin. However, we show that complex spatiotemporal patterns can be reduced to surprisingly simple, homogeneous wave propagation patterns, if conventional geographic distance is replaced by a probabilistically motivated effective distance. In the context of global, air-traffic-mediated epidemics, we show that effective distance reliably predicts disease arrival times. Even if epidemiological parameters are unknown, the method can still deliver relative arrival times. The approach can also identify the spatial origin of spreading processes and successfully be applied to data of the worldwide 2009 H1N1 influenza pandemic and 2003 SARS epidemic.</EA>
<CC>002B28B; 002B05A03; 002B05C02C</CC>
<FD>Grippe; Syndrome respiratoire aigu sévère; Maladie émergente; Epidémie; Contagion; Modélisation; Homme; Statistique; Maladie contagieuse; Pandémie</FD>
<FG>Virose; Infection; Pathologie de l'appareil respiratoire; Pathologie des poumons</FG>
<ED>Influenza; Severe acute respiratory syndrome; Emerging disease; Epidemic; Contagion; Modeling; Human; Statistics; Communicable disease</ED>
<EG>Viral disease; Infection; Respiratory disease; Lung disease</EG>
<SD>Gripe; Síndrome respiratorio agudo severo; Enfermedad emergente; Epidemia; Contagio; Modelización; Hombre; Estadística; Enfermedad contagiosa</SD>
<LO>INIST-6040.354000500700450200</LO>
<ID>14-0241810</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000033 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000033 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:14-0241810
   |texte=   The Hidden Geometry of Complex, Network-Driven Contagion Phenomena
}}

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021