Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Advances in antiviral vaccine development

Identifieur interne : 001667 ( Main/Curation ); précédent : 001666; suivant : 001668

Advances in antiviral vaccine development

Auteurs : Barney S. Graham [États-Unis]

Source :

RBID : ISTEX:AFF81076D41EA356D6871788897F4E6DC774115E

English descriptors

Abstract

Antiviral vaccines have been the most successful biomedical intervention for preventing epidemic viral disease. Vaccination for smallpox in humans and rinderpest in cattle was the basis for disease eradication, and recent progress in polio eradication is promising. Although early vaccines were developed empirically by passage in live animals or eggs, more recent vaccines have been developed because of the advent of new technologies, particularly cell culture and molecular biology. Recent technological advances in gene delivery and expression, nanoparticles, protein manufacturing, and adjuvants have created the potential for new vaccine platforms that may provide solutions for vaccines against viral pathogens for which no interventions currently exist. In addition, the technological convergence of human monoclonal antibody isolation, structural biology, and high‐throughput sequencing is providing new opportunities for atomic‐level immunogen design. Selection of human monoclonal antibodies can identify immunodominant antigenic sites associated with neutralization and provide reagents for stabilizing and solving the structure of viral surface proteins. Understanding the structural basis for neutralization can guide selection of vaccine targets. Deep sequencing of the antibody repertoire and defining the ontogeny of the desired antibody responses can reveal the junctional recombination and somatic mutation requirements for B‐cell recognition and affinity maturation. Collectively, this information will provide new strategic approaches for selecting vaccine antigens, formulations, and regimens. Moreover, it creates the potential for rational vaccine design and establishing a catalogue of vaccine technology platforms that would be effective against any given family or class of viral pathogens and improve our readiness to address new emerging viral threats.

Url:
DOI: 10.1111/imr.12098

Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:AFF81076D41EA356D6871788897F4E6DC774115E

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Advances in antiviral vaccine development</title>
<author>
<name sortKey="Graham, Barney S" sort="Graham, Barney S" uniqKey="Graham B" first="Barney S." last="Graham">Barney S. Graham</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:AFF81076D41EA356D6871788897F4E6DC774115E</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1111/imr.12098</idno>
<idno type="url">https://api.istex.fr/ark:/67375/WNG-W81FMSZG-8/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002216</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002216</idno>
<idno type="wicri:Area/Istex/Curation">002216</idno>
<idno type="wicri:Area/Istex/Checkpoint">000531</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000531</idno>
<idno type="wicri:doubleKey">0105-2896:2013:Graham B:advances:in:antiviral</idno>
<idno type="wicri:Area/Main/Merge">001689</idno>
<idno type="wicri:Area/Main/Curation">001667</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Advances in antiviral vaccine development</title>
<author>
<name sortKey="Graham, Barney S" sort="Graham, Barney S" uniqKey="Graham B" first="Barney S." last="Graham">Barney S. Graham</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>NIAID, NIH, Vaccine Research Center, MD, Bethesda</wicri:regionArea>
<wicri:noRegion>Bethesda</wicri:noRegion>
</affiliation>
<affiliation></affiliation>
<affiliation></affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Immunological Reviews</title>
<title level="j" type="sub">Immunity to Viruses</title>
<title level="j" type="alt">IMMUNOLOGICAL REVIEWS</title>
<idno type="ISSN">0105-2896</idno>
<idno type="eISSN">1600-065X</idno>
<imprint>
<biblScope unit="vol">255</biblScope>
<biblScope unit="issue">1</biblScope>
<biblScope unit="page" from="230">230</biblScope>
<biblScope unit="page" to="242">242</biblScope>
<biblScope unit="page-count">13</biblScope>
<date type="published" when="2013-09">2013-09</date>
</imprint>
<idno type="ISSN">0105-2896</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0105-2896</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Animal culture</term>
<term>Antibody</term>
<term>Antibody maturation</term>
<term>Antibody recognition</term>
<term>Antibody response</term>
<term>Antibody responses</term>
<term>Antigen design</term>
<term>Antigen designs</term>
<term>Antigenic</term>
<term>Antigenic site</term>
<term>Antigenic sites</term>
<term>Antiviral</term>
<term>Antiviral vaccine development</term>
<term>Antiviral vaccines</term>
<term>Available antigen designs</term>
<term>Basic principles</term>
<term>Breakthrough infections</term>
<term>Cell culture</term>
<term>Deep sequencing</term>
<term>Deep sequencing technology</term>
<term>Disease control</term>
<term>Disease progression</term>
<term>Effector mechanisms</term>
<term>Envelope glycoprotein</term>
<term>Envelope protein</term>
<term>Epitope</term>
<term>Epitope scaffolds</term>
<term>Eradication</term>
<term>Functional properties</term>
<term>Fusion protein</term>
<term>Future vaccines</term>
<term>Gene delivery</term>
<term>General population cohort</term>
<term>Glycoprotein</term>
<term>Government work</term>
<term>Graham advances</term>
<term>Herpes zoster</term>
<term>Human disease</term>
<term>Human immunoglobulin</term>
<term>Human virus</term>
<term>Human virus type</term>
<term>Immune</term>
<term>Immune effectors</term>
<term>Immune pressure</term>
<term>Immune responses</term>
<term>Immunization</term>
<term>Immunoglobulin</term>
<term>Immunological</term>
<term>Immunological reviews</term>
<term>Immunological reviews graham advances</term>
<term>Infection</term>
<term>Infectious diseases</term>
<term>Injection drug users</term>
<term>Long cdr3 loops</term>
<term>Major determinant</term>
<term>Membrane fusion</term>
<term>Molecular biology</term>
<term>Monoclonal</term>
<term>Monoclonal antibodies</term>
<term>Monoclonal antibody</term>
<term>Motavizumab epitope</term>
<term>Mucosal infection</term>
<term>National institute</term>
<term>Natural infection</term>
<term>Nature zhou</term>
<term>Neutralization</term>
<term>Neutralizing</term>
<term>Neutralizing activity</term>
<term>Neutralizing antibodies</term>
<term>Neutralizing antibody</term>
<term>Neutralizing antibody responses</term>
<term>Ontogeny</term>
<term>Other viruses</term>
<term>Pathogen</term>
<term>Persistent infection</term>
<term>Phambili studies</term>
<term>Placebo recipients</term>
<term>Polio eradication</term>
<term>Postfusion</term>
<term>Postfusion structure</term>
<term>Postherpetic neuralgia</term>
<term>Potent neutralization</term>
<term>Potent neutralizing antibodies</term>
<term>Prefusion</term>
<term>Prefusion conformation</term>
<term>Prefusion structure</term>
<term>Prenatal care</term>
<term>Proc natl acad</term>
<term>Protein manufacturing</term>
<term>Public domain</term>
<term>Public health</term>
<term>Rad5 vector</term>
<term>Rational design</term>
<term>Recombinant</term>
<term>Recombinant vaccinia</term>
<term>Regulatory proteins</term>
<term>Repertoire</term>
<term>Respiratory syncytial virus</term>
<term>Respiratory syncytial virus infection</term>
<term>Sequencing</term>
<term>Sequencing technology</term>
<term>Severe disease</term>
<term>Sieve analysis</term>
<term>Somatic mutations</term>
<term>Structural analysis</term>
<term>Structural basis</term>
<term>Structural biology</term>
<term>Structural details</term>
<term>Study group</term>
<term>Syncytial</term>
<term>Synthetic production</term>
<term>Target cell</term>
<term>Technological convergence</term>
<term>Trials network</term>
<term>Vaccination</term>
<term>Vaccine</term>
<term>Vaccine antigens</term>
<term>Vaccine approaches</term>
<term>Vaccine design</term>
<term>Vaccine development</term>
<term>Vaccine target</term>
<term>Vaccine targets</term>
<term>Vaccine trials</term>
<term>Vaccines work</term>
<term>Viral</term>
<term>Viral diseases</term>
<term>Viral load</term>
<term>Viral pathogen</term>
<term>Viral pathogens</term>
<term>Viral proteins</term>
<term>Viral surface proteins</term>
<term>Virus</term>
<term>Virus infection</term>
<term>Virus type</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Antiviral vaccines have been the most successful biomedical intervention for preventing epidemic viral disease. Vaccination for smallpox in humans and rinderpest in cattle was the basis for disease eradication, and recent progress in polio eradication is promising. Although early vaccines were developed empirically by passage in live animals or eggs, more recent vaccines have been developed because of the advent of new technologies, particularly cell culture and molecular biology. Recent technological advances in gene delivery and expression, nanoparticles, protein manufacturing, and adjuvants have created the potential for new vaccine platforms that may provide solutions for vaccines against viral pathogens for which no interventions currently exist. In addition, the technological convergence of human monoclonal antibody isolation, structural biology, and high‐throughput sequencing is providing new opportunities for atomic‐level immunogen design. Selection of human monoclonal antibodies can identify immunodominant antigenic sites associated with neutralization and provide reagents for stabilizing and solving the structure of viral surface proteins. Understanding the structural basis for neutralization can guide selection of vaccine targets. Deep sequencing of the antibody repertoire and defining the ontogeny of the desired antibody responses can reveal the junctional recombination and somatic mutation requirements for B‐cell recognition and affinity maturation. Collectively, this information will provide new strategic approaches for selecting vaccine antigens, formulations, and regimens. Moreover, it creates the potential for rational vaccine design and establishing a catalogue of vaccine technology platforms that would be effective against any given family or class of viral pathogens and improve our readiness to address new emerging viral threats.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001667 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001667 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     ISTEX:AFF81076D41EA356D6871788897F4E6DC774115E
   |texte=   Advances in antiviral vaccine development
}}

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021