Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

H5 N-terminal β sheet promotes oligomerization of H7-HA1 that induces better antibody affinity maturation and enhanced protection against H7N7 and H7N9 viruses compared to inactivated influenza vaccine

Identifieur interne : 001090 ( Main/Curation ); précédent : 001089; suivant : 001091

H5 N-terminal β sheet promotes oligomerization of H7-HA1 that induces better antibody affinity maturation and enhanced protection against H7N7 and H7N9 viruses compared to inactivated influenza vaccine

Auteurs : Surender Khurana [États-Unis] ; Elizabeth M. Coyle [États-Unis] ; Swati Verma [États-Unis] ; Lisa R. King [États-Unis] ; Jody Manischewitz [États-Unis] ; Corey J. Crevar [États-Unis] ; Donald M. Carter [États-Unis] ; Ted M. Ross [États-Unis] ; Hana Golding [États-Unis]

Source :

RBID : Pascal:14-0276937

Descripteurs français

English descriptors

Abstract

Initiation of mass vaccination is critical in response to influenza pandemic. There is an urgent need of a simple, rapid method for production of influenza vaccine that is more effective than current traditional influenza vaccines. Recent H7N9 transmissions to humans in China with high morbidity/mortality initiated extensive vaccine evaluation. We produced the HA1 domains (amino acids 1-320) from H7N9 and H7N7 strains in E. coli. Both were found to contain primarily monomers/trimers with low oligomeric content. However, when residues from the N-terminal β sheet (first 8 amino acid) of H7 HA1 domains were swapped with the corresponding amino acids from H5N1, functional oligomeric H7 HA1 were produced (HA1-DS), demonstrating strong receptor binding and hemagglutination. In rabbits, the HA1-DS from either H7N9 or H7N7 generated high neutralization titers against both homologous and heterologous H7 strains, superior to the unmodified H7 HA1 proteins. In ferrets, HA1-DS from H7N7 elicited higher (and faster) HI titers, better protected ferrets from lethality, weight loss, and reduced viral loads following challenge with wild-type highly pathogenic H7N7 virus compared with inactivated H7N7 subunit vaccine. HA1-DS vaccinated ferrets were also better protected from weight loss after challenge with the heterologous H7N9 virus compared with inactivated H7N7 subunit vaccine. Importantly, the H7N7 HA1-DS vaccine induced antibody affinity maturation far superior to the inactivated H7N7 subunit vaccine, which strongly correlated with control of viral loads in the nasal washes after challenge with either H7N7 or H7N9 strains. We conclude that N-terminus β sheet domain-swap can be used to produce stable functional oligomeric forms of better recombinant HA1 vaccines in simple, inexpensive bacterial system for rapid response to emerging pandemic threat for the global population.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0276937

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">H5 N-terminal β sheet promotes oligomerization of H7-HA1 that induces better antibody affinity maturation and enhanced protection against H7N7 and H7N9 viruses compared to inactivated influenza vaccine</title>
<author>
<name sortKey="Khurana, Surender" sort="Khurana, Surender" uniqKey="Khurana S" first="Surender" last="Khurana">Surender Khurana</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration</s1>
<s2>Silver Spring, MD 20903</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coyle, Elizabeth M" sort="Coyle, Elizabeth M" uniqKey="Coyle E" first="Elizabeth M." last="Coyle">Elizabeth M. Coyle</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration</s1>
<s2>Silver Spring, MD 20903</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Verma, Swati" sort="Verma, Swati" uniqKey="Verma S" first="Swati" last="Verma">Swati Verma</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration</s1>
<s2>Silver Spring, MD 20903</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="King, Lisa R" sort="King, Lisa R" uniqKey="King L" first="Lisa R." last="King">Lisa R. King</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration</s1>
<s2>Silver Spring, MD 20903</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Manischewitz, Jody" sort="Manischewitz, Jody" uniqKey="Manischewitz J" first="Jody" last="Manischewitz">Jody Manischewitz</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration</s1>
<s2>Silver Spring, MD 20903</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Crevar, Corey J" sort="Crevar, Corey J" uniqKey="Crevar C" first="Corey J." last="Crevar">Corey J. Crevar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Vaccine and Gene Therapy Institute of Florida</s1>
<s2>Miami</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Vaccine and Gene Therapy Institute of Florida</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carter, Donald M" sort="Carter, Donald M" uniqKey="Carter D" first="Donald M." last="Carter">Donald M. Carter</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Vaccine and Gene Therapy Institute of Florida</s1>
<s2>Miami</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Vaccine and Gene Therapy Institute of Florida</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ross, Ted M" sort="Ross, Ted M" uniqKey="Ross T" first="Ted M." last="Ross">Ted M. Ross</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Vaccine and Gene Therapy Institute of Florida</s1>
<s2>Miami</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Vaccine and Gene Therapy Institute of Florida</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Golding, Hana" sort="Golding, Hana" uniqKey="Golding H" first="Hana" last="Golding">Hana Golding</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration</s1>
<s2>Silver Spring, MD 20903</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">14-0276937</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0276937 INIST</idno>
<idno type="RBID">Pascal:14-0276937</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000022</idno>
<idno type="wicri:Area/PascalFrancis/Curation">001D97</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000099</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000099</idno>
<idno type="wicri:doubleKey">0264-410X:2014:Khurana S:h:n:terminal</idno>
<idno type="wicri:Area/Main/Merge">001100</idno>
<idno type="wicri:Area/Main/Curation">001090</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">H5 N-terminal β sheet promotes oligomerization of H7-HA1 that induces better antibody affinity maturation and enhanced protection against H7N7 and H7N9 viruses compared to inactivated influenza vaccine</title>
<author>
<name sortKey="Khurana, Surender" sort="Khurana, Surender" uniqKey="Khurana S" first="Surender" last="Khurana">Surender Khurana</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration</s1>
<s2>Silver Spring, MD 20903</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Coyle, Elizabeth M" sort="Coyle, Elizabeth M" uniqKey="Coyle E" first="Elizabeth M." last="Coyle">Elizabeth M. Coyle</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration</s1>
<s2>Silver Spring, MD 20903</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Verma, Swati" sort="Verma, Swati" uniqKey="Verma S" first="Swati" last="Verma">Swati Verma</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration</s1>
<s2>Silver Spring, MD 20903</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="King, Lisa R" sort="King, Lisa R" uniqKey="King L" first="Lisa R." last="King">Lisa R. King</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration</s1>
<s2>Silver Spring, MD 20903</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Manischewitz, Jody" sort="Manischewitz, Jody" uniqKey="Manischewitz J" first="Jody" last="Manischewitz">Jody Manischewitz</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration</s1>
<s2>Silver Spring, MD 20903</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Crevar, Corey J" sort="Crevar, Corey J" uniqKey="Crevar C" first="Corey J." last="Crevar">Corey J. Crevar</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Vaccine and Gene Therapy Institute of Florida</s1>
<s2>Miami</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Vaccine and Gene Therapy Institute of Florida</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carter, Donald M" sort="Carter, Donald M" uniqKey="Carter D" first="Donald M." last="Carter">Donald M. Carter</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Vaccine and Gene Therapy Institute of Florida</s1>
<s2>Miami</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Vaccine and Gene Therapy Institute of Florida</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ross, Ted M" sort="Ross, Ted M" uniqKey="Ross T" first="Ted M." last="Ross">Ted M. Ross</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Vaccine and Gene Therapy Institute of Florida</s1>
<s2>Miami</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Vaccine and Gene Therapy Institute of Florida</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Golding, Hana" sort="Golding, Hana" uniqKey="Golding H" first="Hana" last="Golding">Hana Golding</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Division of Viral Products, Center for Biologics Evaluation and Research (CBER), Food and Drug Administration</s1>
<s2>Silver Spring, MD 20903</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Vaccine</title>
<title level="j" type="abbreviated">Vaccine</title>
<idno type="ISSN">0264-410X</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Vaccine</title>
<title level="j" type="abbreviated">Vaccine</title>
<idno type="ISSN">0264-410X</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Affinity maturation</term>
<term>Antibody</term>
<term>Bacteria</term>
<term>Ferret</term>
<term>Hemagglutinin</term>
<term>Immune response</term>
<term>Inactivated strain</term>
<term>Influenza</term>
<term>Oligomerization</term>
<term>Protein</term>
<term>Secondary structure</term>
<term>Vaccine</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Bactérie</term>
<term>Structure secondaire</term>
<term>Oligomérisation</term>
<term>Anticorps</term>
<term>Immunomaturation</term>
<term>Souche inactivée</term>
<term>Vaccin</term>
<term>Hémagglutinine</term>
<term>Réponse immune</term>
<term>Grippe</term>
<term>Furet</term>
<term>Protéine</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Vaccin</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Initiation of mass vaccination is critical in response to influenza pandemic. There is an urgent need of a simple, rapid method for production of influenza vaccine that is more effective than current traditional influenza vaccines. Recent H7N9 transmissions to humans in China with high morbidity/mortality initiated extensive vaccine evaluation. We produced the HA1 domains (amino acids 1-320) from H7N9 and H7N7 strains in E. coli. Both were found to contain primarily monomers/trimers with low oligomeric content. However, when residues from the N-terminal β sheet (first 8 amino acid) of H7 HA1 domains were swapped with the corresponding amino acids from H5N1, functional oligomeric H7 HA1 were produced (HA1-DS), demonstrating strong receptor binding and hemagglutination. In rabbits, the HA1-DS from either H7N9 or H7N7 generated high neutralization titers against both homologous and heterologous H7 strains, superior to the unmodified H7 HA1 proteins. In ferrets, HA1-DS from H7N7 elicited higher (and faster) HI titers, better protected ferrets from lethality, weight loss, and reduced viral loads following challenge with wild-type highly pathogenic H7N7 virus compared with inactivated H7N7 subunit vaccine. HA1-DS vaccinated ferrets were also better protected from weight loss after challenge with the heterologous H7N9 virus compared with inactivated H7N7 subunit vaccine. Importantly, the H7N7 HA1-DS vaccine induced antibody affinity maturation far superior to the inactivated H7N7 subunit vaccine, which strongly correlated with control of viral loads in the nasal washes after challenge with either H7N7 or H7N9 strains. We conclude that N-terminus β sheet domain-swap can be used to produce stable functional oligomeric forms of better recombinant HA1 vaccines in simple, inexpensive bacterial system for rapid response to emerging pandemic threat for the global population.</div>
</front>
</TEI>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/Main/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001090 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Curation/biblio.hfd -nk 001090 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    Main
   |étape=   Curation
   |type=    RBID
   |clé=     Pascal:14-0276937
   |texte=   H5 N-terminal β sheet promotes oligomerization of H7-HA1 that induces better antibody affinity maturation and enhanced protection against H7N7 and H7N9 viruses compared to inactivated influenza vaccine
}}

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021