Serveur d'exploration sur les pandémies grippales

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction

Identifieur interne : 001852 ( Istex/Corpus ); précédent : 001851; suivant : 001853

Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction

Auteurs : A. E. Firth ; B. W. Jagger ; H. M. Wise ; C. C. Nelson ; K. Parsawar ; N. M. Wills ; S. Napthine ; J. K. Taubenberger ; P. Digard ; J. F. Atkins

Source :

RBID : ISTEX:012F5221B39722B8C7E668A533DD5BBAC0CEFFA1

Abstract

Programmed ribosomal frameshifting is used in the expression of many virus genes and some cellular genes. In eukaryotic systems, the most well-characterized mechanism involves –1 tandem tRNA slippage on an X_XXY_YYZ motif. By contrast, the mechanisms involved in programmed +1 (or −2) slippage are more varied and often poorly characterized. Recently, a novel gene, PA-X, was discovered in influenza A virus and found to be expressed via a shift to the +1 reading frame. Here, we identify, by mass spectrometric analysis, both the site (UCC_UUU_CGU) and direction (+1) of the frameshifting that is involved in PA-X expression. Related sites are identified in other virus genes that have previously been proposed to be expressed via +1 frameshifting. As these viruses infect insects (chronic bee paralysis virus), plants (fijiviruses and amalgamaviruses) and vertebrates (influenza A virus), such motifs may form a new class of +1 frameshift-inducing sequences that are active in diverse eukaryotes.

Url:
DOI: 10.1098/rsob.120109

Links to Exploration step

ISTEX:012F5221B39722B8C7E668A533DD5BBAC0CEFFA1

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction</title>
<author>
<name sortKey="Firth, A E" sort="Firth, A E" uniqKey="Firth A" first="A. E." last="Firth">A. E. Firth</name>
<affiliation>
<mods:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>These authors contributed equally to this study.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jagger, B W" sort="Jagger, B W" uniqKey="Jagger B" first="B. W." last="Jagger">B. W. Jagger</name>
<affiliation>
<mods:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>These authors contributed equally to this study.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wise, H M" sort="Wise, H M" uniqKey="Wise H" first="H. M." last="Wise">H. M. Wise</name>
<affiliation>
<mods:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nelson, C C" sort="Nelson, C C" uniqKey="Nelson C" first="C. C." last="Nelson">C. C. Nelson</name>
<affiliation>
<mods:affiliation>Mass Spectrometry and Proteomics Core Facility, University of Utah, Salt Lake City, UT 84112, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Parsawar, K" sort="Parsawar, K" uniqKey="Parsawar K" first="K." last="Parsawar">K. Parsawar</name>
<affiliation>
<mods:affiliation>Mass Spectrometry and Proteomics Core Facility, University of Utah, Salt Lake City, UT 84112, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wills, N M" sort="Wills, N M" uniqKey="Wills N" first="N. M." last="Wills">N. M. Wills</name>
<affiliation>
<mods:affiliation>Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Napthine, S" sort="Napthine, S" uniqKey="Napthine S" first="S." last="Napthine">S. Napthine</name>
<affiliation>
<mods:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taubenberger, J K" sort="Taubenberger, J K" uniqKey="Taubenberger J" first="J. K." last="Taubenberger">J. K. Taubenberger</name>
<affiliation>
<mods:affiliation>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Digard, P" sort="Digard, P" uniqKey="Digard P" first="P." last="Digard">P. Digard</name>
<affiliation>
<mods:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Atkins, J F" sort="Atkins, J F" uniqKey="Atkins J" first="J. F." last="Atkins">J. F. Atkins</name>
<affiliation>
<mods:affiliation>BioSciences Institute, University College Cork, Cork, Republic of Ireland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: j.atkins@ucc.ie</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:012F5221B39722B8C7E668A533DD5BBAC0CEFFA1</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1098/rsob.120109</idno>
<idno type="url">https://api.istex.fr/ark:/67375/V84-6MH98309-R/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001852</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001852</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction</title>
<author>
<name sortKey="Firth, A E" sort="Firth, A E" uniqKey="Firth A" first="A. E." last="Firth">A. E. Firth</name>
<affiliation>
<mods:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>These authors contributed equally to this study.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jagger, B W" sort="Jagger, B W" uniqKey="Jagger B" first="B. W." last="Jagger">B. W. Jagger</name>
<affiliation>
<mods:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>These authors contributed equally to this study.</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wise, H M" sort="Wise, H M" uniqKey="Wise H" first="H. M." last="Wise">H. M. Wise</name>
<affiliation>
<mods:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Nelson, C C" sort="Nelson, C C" uniqKey="Nelson C" first="C. C." last="Nelson">C. C. Nelson</name>
<affiliation>
<mods:affiliation>Mass Spectrometry and Proteomics Core Facility, University of Utah, Salt Lake City, UT 84112, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Parsawar, K" sort="Parsawar, K" uniqKey="Parsawar K" first="K." last="Parsawar">K. Parsawar</name>
<affiliation>
<mods:affiliation>Mass Spectrometry and Proteomics Core Facility, University of Utah, Salt Lake City, UT 84112, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wills, N M" sort="Wills, N M" uniqKey="Wills N" first="N. M." last="Wills">N. M. Wills</name>
<affiliation>
<mods:affiliation>Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Napthine, S" sort="Napthine, S" uniqKey="Napthine S" first="S." last="Napthine">S. Napthine</name>
<affiliation>
<mods:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Taubenberger, J K" sort="Taubenberger, J K" uniqKey="Taubenberger J" first="J. K." last="Taubenberger">J. K. Taubenberger</name>
<affiliation>
<mods:affiliation>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Digard, P" sort="Digard, P" uniqKey="Digard P" first="P." last="Digard">P. Digard</name>
<affiliation>
<mods:affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Atkins, J F" sort="Atkins, J F" uniqKey="Atkins J" first="J. F." last="Atkins">J. F. Atkins</name>
<affiliation>
<mods:affiliation>BioSciences Institute, University College Cork, Cork, Republic of Ireland</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>E-mail: j.atkins@ucc.ie</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Royal Society Open Biology</title>
<title level="j" type="abbrev">Open Biology</title>
<idno type="eISSN">2046-2441</idno>
<imprint>
<publisher>The Royal Society</publisher>
<date type="published">2012</date>
<biblScope unit="vol">2</biblScope>
<biblScope unit="issue">10</biblScope>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">Programmed ribosomal frameshifting is used in the expression of many virus genes and some cellular genes. In eukaryotic systems, the most well-characterized mechanism involves –1 tandem tRNA slippage on an X_XXY_YYZ motif. By contrast, the mechanisms involved in programmed +1 (or −2) slippage are more varied and often poorly characterized. Recently, a novel gene, PA-X, was discovered in influenza A virus and found to be expressed via a shift to the +1 reading frame. Here, we identify, by mass spectrometric analysis, both the site (UCC_UUU_CGU) and direction (+1) of the frameshifting that is involved in PA-X expression. Related sites are identified in other virus genes that have previously been proposed to be expressed via +1 frameshifting. As these viruses infect insects (chronic bee paralysis virus), plants (fijiviruses and amalgamaviruses) and vertebrates (influenza A virus), such motifs may form a new class of +1 frameshift-inducing sequences that are active in diverse eukaryotes.</div>
</front>
</TEI>
<istex>
<corpusName>rsl</corpusName>
<author>
<json:item>
<name>A. E. Firth</name>
<affiliations>
<json:string>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</json:string>
<json:string>These authors contributed equally to this study.</json:string>
</affiliations>
</json:item>
<json:item>
<name>B. W. Jagger</name>
<affiliations>
<json:string>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</json:string>
<json:string>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA</json:string>
<json:string>These authors contributed equally to this study.</json:string>
</affiliations>
</json:item>
<json:item>
<name>H. M. Wise</name>
<affiliations>
<json:string>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</json:string>
<json:string>The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>C. C. Nelson</name>
<affiliations>
<json:string>Mass Spectrometry and Proteomics Core Facility, University of Utah, Salt Lake City, UT 84112, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>K. Parsawar</name>
<affiliations>
<json:string>Mass Spectrometry and Proteomics Core Facility, University of Utah, Salt Lake City, UT 84112, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>N. M. Wills</name>
<affiliations>
<json:string>Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>S. Napthine</name>
<affiliations>
<json:string>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. K. Taubenberger</name>
<affiliations>
<json:string>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA</json:string>
</affiliations>
</json:item>
<json:item>
<name>P. Digard</name>
<affiliations>
<json:string>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</json:string>
<json:string>The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK</json:string>
</affiliations>
</json:item>
<json:item>
<name>J. F. Atkins</name>
<affiliations>
<json:string>BioSciences Institute, University College Cork, Cork, Republic of Ireland</json:string>
<json:string>E-mail: j.atkins@ucc.ie</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>genetic recoding</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>ribosomal frameshifting</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>mass spectrometry</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>influenza virus</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>PA-X</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>translation</value>
</json:item>
</subject>
<articleId>
<json:string>rsob120109</json:string>
</articleId>
<arkIstex>ark:/67375/V84-6MH98309-R</arkIstex>
<language>
<json:string>eng</json:string>
</language>
<originalGenre>
<json:string>research-article</json:string>
</originalGenre>
<abstract>Programmed ribosomal frameshifting is used in the expression of many virus genes and some cellular genes. In eukaryotic systems, the most well-characterized mechanism involves –1 tandem tRNA slippage on an X_XXY_YYZ motif. By contrast, the mechanisms involved in programmed +1 (or −2) slippage are more varied and often poorly characterized. Recently, a novel gene, PA-X, was discovered in influenza A virus and found to be expressed via a shift to the +1 reading frame. Here, we identify, by mass spectrometric analysis, both the site (UCC_UUU_CGU) and direction (+1) of the frameshifting that is involved in PA-X expression. Related sites are identified in other virus genes that have previously been proposed to be expressed via +1 frameshifting. As these viruses infect insects (chronic bee paralysis virus), plants (fijiviruses and amalgamaviruses) and vertebrates (influenza A virus), such motifs may form a new class of +1 frameshift-inducing sequences that are active in diverse eukaryotes.</abstract>
<qualityIndicators>
<score>7.213</score>
<pdfWordCount>4734</pdfWordCount>
<pdfCharCount>31689</pdfCharCount>
<pdfVersion>1.4</pdfVersion>
<pdfPageCount>7</pdfPageCount>
<pdfPageSize>595.276 x 841.89 pts (A4)</pdfPageSize>
<pdfWordsPerPage>676</pdfWordsPerPage>
<pdfText>true</pdfText>
<refBibsNative>true</refBibsNative>
<abstractWordCount>151</abstractWordCount>
<abstractCharCount>998</abstractCharCount>
<keywordCount>6</keywordCount>
</qualityIndicators>
<title>Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<title>Royal Society Open Biology</title>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>2046-2441</json:string>
</eissn>
<publisherId>
<json:string>RSOB</json:string>
</publisherId>
<volume>2</volume>
<issue>10</issue>
<genre>
<json:string>journal</json:string>
</genre>
<subject>
<json:item>
<value>1001</value>
</json:item>
<json:item>
<value>129</value>
</json:item>
<json:item>
<value>200</value>
</json:item>
<json:item>
<value>Research article</value>
</json:item>
</subject>
</host>
<ark>
<json:string>ark:/67375/V84-6MH98309-R</json:string>
</ark>
<categories>
<inist>
<json:string>1 - sciences appliquees, technologies et medecines</json:string>
<json:string>2 - sciences biologiques et medicales</json:string>
<json:string>3 - sciences biologiques fondamentales et appliquees. psychologie</json:string>
<json:string>4 - vertebres: systeme cardiovasculaire</json:string>
</inist>
</categories>
<publicationDate>2012</publicationDate>
<copyrightDate>2012</copyrightDate>
<doi>
<json:string>10.1098/rsob.120109</json:string>
</doi>
<id>012F5221B39722B8C7E668A533DD5BBAC0CEFFA1</id>
<score>1</score>
<fulltext>
<json:item>
<extension>pdf</extension>
<original>true</original>
<mimetype>application/pdf</mimetype>
<uri>https://api.istex.fr/ark:/67375/V84-6MH98309-R/fulltext.pdf</uri>
</json:item>
<json:item>
<extension>zip</extension>
<original>false</original>
<mimetype>application/zip</mimetype>
<uri>https://api.istex.fr/ark:/67375/V84-6MH98309-R/bundle.zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/ark:/67375/V84-6MH98309-R/fulltext.tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main">Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>The Royal Society</publisher>
<availability status="free" source="http://creativecommons.org/licenses/by/3.0/">
<p>© 2012 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License
<ref type="uri">http://creativecommons.org/licenses/by/3.0/</ref>
, which permits unrestricted use, provided the original author and source are credited.</p>
</availability>
<date type="published">2012</date>
<date type="Copyright" when="2012">2012</date>
</publicationStmt>
<notesStmt>
<note type="content-type" source="research-article" scheme="https://content-type.data.istex.fr/ark:/67375/XTP-1JC4F85T-7">research-article</note>
<note type="publication-type" scheme="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</note>
</notesStmt>
<sourceDesc>
<biblStruct type="article">
<analytic>
<title level="a" type="main">Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction</title>
<title level="a" type="short">+1 frameshifting in influenza A virus</title>
<author xml:id="author-0000">
<persName>
<surname>Firth</surname>
<forename type="first">A. E.</forename>
</persName>
<affiliation>
<orgName type="institution">University of Cambridge</orgName>
<address>
<addrLine>Division of Virology, Department of Pathology</addrLine>
<addrLine>Cambridge CB2 1QP</addrLine>
<country key="GB" xml:lang="en">UNITED KINGDOM</country>
</address>
</affiliation>
<note place="foot" n="AN1">
<ref></ref>
<p>These authors contributed equally to this study.</p>
</note>
</author>
<author xml:id="author-0001">
<persName>
<surname>Jagger</surname>
<forename type="first">B. W.</forename>
</persName>
<affiliation>
<orgName type="institution">University of Cambridge</orgName>
<address>
<addrLine>Division of Virology, Department of Pathology</addrLine>
<addrLine>Cambridge CB2 1QP</addrLine>
<country key="GB" xml:lang="en">UNITED KINGDOM</country>
</address>
</affiliation>
<affiliation>
<orgName type="institution">National Institute of Allergy and Infectious Diseases, National Institutes of Health</orgName>
<address>
<addrLine>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases</addrLine>
<addrLine>Bethesda, MD 20892</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
<note place="foot" n="AN1">
<ref></ref>
<p>These authors contributed equally to this study.</p>
</note>
</author>
<author xml:id="author-0002">
<persName>
<surname>Wise</surname>
<forename type="first">H. M.</forename>
</persName>
<affiliation>
<orgName type="institution">University of Cambridge</orgName>
<address>
<addrLine>Division of Virology, Department of Pathology</addrLine>
<addrLine>Cambridge CB2 1QP</addrLine>
<country key="GB" xml:lang="en">UNITED KINGDOM</country>
</address>
</affiliation>
<affiliation>
<orgName type="institution">University of Edinburgh</orgName>
<address>
<addrLine>The Roslin Institute</addrLine>
<addrLine>Easter Bush, Midlothian EH25 9RG</addrLine>
<country key="GB" xml:lang="en">UNITED KINGDOM</country>
</address>
</affiliation>
</author>
<author xml:id="author-0003">
<persName>
<surname>Nelson</surname>
<forename type="first">C. C.</forename>
</persName>
<affiliation>
<orgName type="institution">University of Utah</orgName>
<address>
<addrLine>Mass Spectrometry and Proteomics Core Facility</addrLine>
<addrLine>Salt Lake City, UT 84112</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<author xml:id="author-0004">
<persName>
<surname>Parsawar</surname>
<forename type="first">K.</forename>
</persName>
<affiliation>
<orgName type="institution">University of Utah</orgName>
<address>
<addrLine>Mass Spectrometry and Proteomics Core Facility</addrLine>
<addrLine>Salt Lake City, UT 84112</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<author xml:id="author-0005">
<persName>
<surname>Wills</surname>
<forename type="first">N. M.</forename>
</persName>
<affiliation>
<orgName type="institution">University of Utah</orgName>
<address>
<addrLine>Department of Human Genetics</addrLine>
<addrLine>Salt Lake City, UT 84112</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<author xml:id="author-0006">
<persName>
<surname>Napthine</surname>
<forename type="first">S.</forename>
</persName>
<affiliation>
<orgName type="institution">University of Cambridge</orgName>
<address>
<addrLine>Division of Virology, Department of Pathology</addrLine>
<addrLine>Cambridge CB2 1QP</addrLine>
<country key="GB" xml:lang="en">UNITED KINGDOM</country>
</address>
</affiliation>
</author>
<author xml:id="author-0007">
<persName>
<surname>Taubenberger</surname>
<forename type="first">J. K.</forename>
</persName>
<affiliation>
<orgName type="institution">National Institute of Allergy and Infectious Diseases, National Institutes of Health</orgName>
<address>
<addrLine>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases</addrLine>
<addrLine>Bethesda, MD 20892</addrLine>
<country key="US" xml:lang="en">UNITED STATES</country>
</address>
</affiliation>
</author>
<author xml:id="author-0008">
<persName>
<surname>Digard</surname>
<forename type="first">P.</forename>
</persName>
<affiliation>
<orgName type="institution">University of Cambridge</orgName>
<address>
<addrLine>Division of Virology, Department of Pathology</addrLine>
<addrLine>Cambridge CB2 1QP</addrLine>
<country key="GB" xml:lang="en">UNITED KINGDOM</country>
</address>
</affiliation>
<affiliation>
<orgName type="institution">University of Edinburgh</orgName>
<address>
<addrLine>The Roslin Institute</addrLine>
<addrLine>Easter Bush, Midlothian EH25 9RG</addrLine>
<country key="GB" xml:lang="en">UNITED KINGDOM</country>
</address>
</affiliation>
</author>
<author xml:id="author-0009">
<persName>
<surname>Atkins</surname>
<forename type="first">J. F.</forename>
</persName>
<affiliation>
<orgName type="institution">University College Cork</orgName>
<address>
<addrLine>BioSciences Institute</addrLine>
<addrLine>Cork</addrLine>
<country key="" xml:lang="en"></country>
</address>
</affiliation>
</author>
<idno type="istex">012F5221B39722B8C7E668A533DD5BBAC0CEFFA1</idno>
<idno type="ark">ark:/67375/V84-6MH98309-R</idno>
<idno type="DOI">10.1098/rsob.120109</idno>
<idno type="publisher-id">rsob120109</idno>
</analytic>
<monogr>
<title level="j" type="main">Royal Society Open Biology</title>
<title level="j" type="abbrev">Open Biology</title>
<idno type="publisher-id">RSOB</idno>
<idno type="nlm-ta">Open Biol</idno>
<idno type="hwp">royopenbio</idno>
<idno type="eISSN">2046-2441</idno>
<imprint>
<publisher>The Royal Society</publisher>
<date type="published">2012</date>
<biblScope unit="vol">2</biblScope>
<biblScope unit="issue">10</biblScope>
</imprint>
</monogr>
</biblStruct>
</sourceDesc>
</fileDesc>
<encodingDesc>
<schemaRef type="ODD" url="https://xml-schema.delivery.istex.fr/tei-istex.odd"></schemaRef>
<appInfo>
<application ident="pub2tei" version="1.0.41" when="2020-04-06">
<label>pub2TEI-ISTEX</label>
<desc>A set of style sheets for converting XML documents encoded in various scientific publisher formats into a common TEI format.
<ref target="http://www.tei-c.org/">We use TEI</ref>
</desc>
</application>
</appInfo>
</encodingDesc>
<profileDesc>
<abstract>
<p>Programmed ribosomal frameshifting is used in the expression of many virus genes and some cellular genes. In eukaryotic systems, the most well-characterized mechanism involves –1 tandem tRNA slippage on an X_XXY_YYZ motif. By contrast, the mechanisms involved in programmed +1 (or −2) slippage are more varied and often poorly characterized. Recently, a novel gene, PA-X, was discovered in influenza A virus and found to be expressed via a shift to the +1 reading frame. Here, we identify, by mass spectrometric analysis, both the site (UCC_UUU_CGU) and direction (+1) of the frameshifting that is involved in PA-X expression. Related sites are identified in other virus genes that have previously been proposed to be expressed via +1 frameshifting. As these viruses infect insects (chronic bee paralysis virus), plants (fijiviruses and amalgamaviruses) and vertebrates (influenza A virus), such motifs may form a new class of +1 frameshift-inducing sequences that are active in diverse eukaryotes.</p>
</abstract>
<textClass ana="subject">
<keywords scheme="hwp-journal-coll">
<term>1001</term>
<term>129</term>
<term>200</term>
</keywords>
<keywords scheme="heading">
<term>Research</term>
</keywords>
<keywords scheme="leader">
<term>Research article</term>
</keywords>
</textClass>
<textClass ana="keyword">
<keywords>
<term>genetic recoding</term>
<term>ribosomal frameshifting</term>
<term>mass spectrometry</term>
<term>influenza virus</term>
<term>PA-X</term>
<term>translation</term>
</keywords>
</textClass>
<langUsage>
<language ident="EN"></language>
</langUsage>
</profileDesc>
<revisionDesc>
<change when="2020-04-06" who="#istex" xml:id="pub2tei">formatting</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<extension>txt</extension>
<original>false</original>
<mimetype>text/plain</mimetype>
<uri>https://api.istex.fr/ark:/67375/V84-6MH98309-R/fulltext.txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="corpus rsl not found" wicri:toSee="no header">
<istex:xmlDeclaration>version="1.0" encoding="utf-8"</istex:xmlDeclaration>
<istex:docType PUBLIC="-//NLM//DTD Journal Publishing DTD v2.3 20070202//EN" URI="journalpublishing.dtd" name="istex:docType"></istex:docType>
<istex:document>
<article article-type="research-article">
<front>
<journal-meta>
<journal-id journal-id-type="publisher-id">RSOB</journal-id>
<journal-id journal-id-type="nlm-ta">Open Biol</journal-id>
<journal-id journal-id-type="hwp">royopenbio</journal-id>
<journal-title>Royal Society Open Biology</journal-title>
<abbrev-journal-title>Open Biology</abbrev-journal-title>
<issn pub-type="epub">2046-2441</issn>
<publisher>
<publisher-name>The Royal Society</publisher-name>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="doi">10.1098/rsob.120109</article-id>
<article-id pub-id-type="publisher-id">rsob120109</article-id>
<article-categories>
<subj-group subj-group-type="hwp-journal-coll">
<subject>1001</subject>
<subject>129</subject>
<subject>200</subject>
</subj-group>
<subj-group subj-group-type="heading">
<subject>Research</subject>
</subj-group>
<subj-group subj-group-type="leader">
<subject>Research article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction</article-title>
<alt-title alt-title-type="short">+1 frameshifting in influenza A virus</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Firth</surname>
<given-names>A. E.</given-names>
</name>
<xref ref-type="aff" rid="af1">1</xref>
<xref ref-type="fn" rid="AN1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Jagger</surname>
<given-names>B. W.</given-names>
</name>
<xref ref-type="aff" rid="af1">1</xref>
<xref ref-type="aff" rid="af2">2</xref>
<xref ref-type="fn" rid="AN1"></xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wise</surname>
<given-names>H. M.</given-names>
</name>
<xref ref-type="aff" rid="af1">1</xref>
<xref ref-type="aff" rid="af3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Nelson</surname>
<given-names>C. C.</given-names>
</name>
<xref ref-type="aff" rid="af4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Parsawar</surname>
<given-names>K.</given-names>
</name>
<xref ref-type="aff" rid="af4">4</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wills</surname>
<given-names>N. M.</given-names>
</name>
<xref ref-type="aff" rid="af5">5</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Napthine</surname>
<given-names>S.</given-names>
</name>
<xref ref-type="aff" rid="af1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Taubenberger</surname>
<given-names>J. K.</given-names>
</name>
<xref ref-type="aff" rid="af2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Digard</surname>
<given-names>P.</given-names>
</name>
<xref ref-type="aff" rid="af1">1</xref>
<xref ref-type="aff" rid="af3">3</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Atkins</surname>
<given-names>J. F.</given-names>
</name>
<xref ref-type="aff" rid="af6">6</xref>
<xref ref-type="corresp" rid="cor1"></xref>
</contrib>
</contrib-group>
<aff id="af1">
<label>1</label>
<addr-line>Division of Virology, Department of Pathology</addr-line>
,
<institution>University of Cambridge</institution>
,
<addr-line>Cambridge CB2 1QP</addr-line>
,
<country>UK</country>
</aff>
<aff id="af2">
<label>2</label>
<addr-line>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases</addr-line>
,
<institution>National Institute of Allergy and Infectious Diseases, National Institutes of Health</institution>
,
<addr-line>Bethesda, MD 20892</addr-line>
,
<country>USA</country>
</aff>
<aff id="af3">
<label>3</label>
<addr-line>The Roslin Institute</addr-line>
,
<institution>University of Edinburgh</institution>
,
<addr-line>Easter Bush, Midlothian EH25 9RG</addr-line>
,
<country>UK</country>
</aff>
<aff id="af4">
<label>4</label>
<addr-line>Mass Spectrometry and Proteomics Core Facility</addr-line>
,
<institution>University of Utah</institution>
,
<addr-line>Salt Lake City, UT 84112</addr-line>
,
<country>USA</country>
</aff>
<aff id="af5">
<label>5</label>
<addr-line>Department of Human Genetics</addr-line>
,
<institution>University of Utah</institution>
,
<addr-line>Salt Lake City, UT 84112</addr-line>
,
<country>USA</country>
</aff>
<aff id="af6">
<label>6</label>
<addr-line>BioSciences Institute</addr-line>
,
<institution>University College Cork</institution>
,
<addr-line>Cork</addr-line>
,
<country>Republic of Ireland</country>
</aff>
<author-notes>
<corresp id="cor1">e-mail:
<email>j.atkins@ucc.ie</email>
</corresp>
<fn fn-type="con" id="AN1">
<label></label>
<p>These authors contributed equally to this study.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<month>10</month>
<year>2012</year>
</pub-date>
<volume>2</volume>
<issue>10</issue>
<elocation-id>120109</elocation-id>
<history>
<date date-type="received">
<day>13</day>
<month>7</month>
<year>2012</year>
</date>
<date date-type="accepted">
<day>4</day>
<month>10</month>
<year>2012</year>
</date>
</history>
<permissions>
<copyright-statement></copyright-statement>
<copyright-year>2012</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/3.0/">
<p>© 2012 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/3.0/">http://creativecommons.org/licenses/by/3.0/</ext-link>
, which permits unrestricted use, provided the original author and source are credited.</p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:href="rsob120109.pdf"></self-uri>
<abstract>
<p>Programmed ribosomal frameshifting is used in the expression of many virus genes and some cellular genes. In eukaryotic systems, the most well-characterized mechanism involves –1 tandem tRNA slippage on an X_XXY_YYZ motif. By contrast, the mechanisms involved in programmed +1 (or −2) slippage are more varied and often poorly characterized. Recently, a novel gene, PA-X, was discovered in influenza A virus and found to be expressed via a shift to the +1 reading frame. Here, we identify, by mass spectrometric analysis, both the site (UCC_UUU_CGU) and direction (+1) of the frameshifting that is involved in PA-X expression. Related sites are identified in other virus genes that have previously been proposed to be expressed via +1 frameshifting. As these viruses infect insects (chronic bee paralysis virus), plants (fijiviruses and amalgamaviruses) and vertebrates (influenza A virus), such motifs may form a new class of +1 frameshift-inducing sequences that are active in diverse eukaryotes.</p>
</abstract>
<kwd-group>
<kwd>genetic recoding</kwd>
<kwd>ribosomal frameshifting</kwd>
<kwd>mass spectrometry</kwd>
<kwd>influenza virus</kwd>
<kwd>PA-X</kwd>
<kwd>translation</kwd>
</kwd-group>
<custom-meta-wrap>
<custom-meta>
<meta-name>cover-date</meta-name>
<meta-value>October 2012</meta-value>
</custom-meta>
</custom-meta-wrap>
</article-meta>
</front>
<body>
<sec id="s1" sec-type="intro">
<label>2.</label>
<title>Introduction</title>
<p>During translation, shifts in reading register can occur to either alternative frame. The most widely known frameshifting mechanism involves shifting to the –1 frame. In part, this is because of the relatively well-defined nature of the most commonly used shift site motif that allows two adjacent tRNAs to re-pair to mRNA in the –1 frame, and in part due to the prominence of the viruses and other mobile elements that use this type of frameshift. The other reading frame can be accessed by either a –2 or a +1 frameshift event, with the product of the former having an extra amino acid encoded by the shift site sequence relative to the latter.</p>
<p>In the majority of bacteria, frameshifting to the +1 frame is used as a sensor and effector of an autoregulatory circuit for the expression of release factor 2 [
<xref ref-type="bibr" rid="RSOB120109C1">1</xref>
,
<xref ref-type="bibr" rid="RSOB120109C2">2</xref>
]. In animals and fungi, such frameshifting is widely used to regulate expression of antizyme, the negative regulator of cellular polyamine levels [
<xref ref-type="bibr" rid="RSOB120109C3">3</xref>
,
<xref ref-type="bibr" rid="RSOB120109C4">4</xref>
]. In both cases, protein sequencing has shown that the shift is +1. Interestingly, however, although the mammalian antizyme 1 frameshifting signals exclusively drive +1 frameshifting in mammalian cells, they induce both +1 and –2 frameshifting when a cassette containing them is expressed in
<italic>Schizosaccharomyces pombe</italic>
, and –2 frameshifting when expressed in
<italic>Saccharomyces cerevisiae</italic>
[
<xref ref-type="bibr" rid="RSOB120109C5">5</xref>
]. In this system, the ratio of –2 to +1 is alterable depending on the distance of a 3′-adjacent stimulatory pseudoknot structure from the shift site [
<xref ref-type="bibr" rid="RSOB120109C6">6</xref>
]. Similarly, frameshifting on the HIV shift site U_UUU_UUA, which is normally –1, can be altered to –2 by varying the distance to the 3′ stimulatory element [
<xref ref-type="bibr" rid="RSOB120109C7">7</xref>
]. The only known natural case of programmed –2 frameshifting occurs during the expression of the gpGT tail assembly protein of phage Mu, where the efficiency of frameshifting is estimated to be about 2.2 per cent [
<xref ref-type="bibr" rid="RSOB120109C8">8</xref>
,
<xref ref-type="bibr" rid="RSOB120109C9">9</xref>
]. Protein sequencing has also been used to determine that +1 frameshifting is used in the expression of the
<italic>Tsh</italic>
gene of several
<italic>Listeria</italic>
phages and
<italic>Bacillus subtilis</italic>
SPP1 phage, besides
<italic>Escherichia coli yepP</italic>
, and the
<italic>pol</italic>
gene of the
<italic>S. cerevisiae</italic>
retrotransposons Ty1 and Ty3 [
<xref ref-type="bibr" rid="RSOB120109C10">10</xref>
<xref ref-type="bibr" rid="RSOB120109C14">14</xref>
]. Given similar sequences as in Ty1, the frameshifting used in decoding the mRNAs for actin filament binding protein ABP140 and telomere component EST3 is also expected to be +1 [
<xref ref-type="bibr" rid="RSOB120109C15">15</xref>
<xref ref-type="bibr" rid="RSOB120109C18">18</xref>
].</p>
<p>Frameshifting, probably in the +1 direction, has also been reported in mitochondria from several diverse species, although functionally different cases of frameshifting used in human mitochondria are –1 [
<xref ref-type="bibr" rid="RSOB120109C19">19</xref>
<xref ref-type="bibr" rid="RSOB120109C22">22</xref>
]. Peptide analysis has confirmed shifting to the +1 frame in one of the significant number of
<italic>Euplotes</italic>
genes that use such frameshifting, but the transframe-encoded peptide that would demonstrate the nature of the shift remains elusive [
<xref ref-type="bibr" rid="RSOB120109C23">23</xref>
,
<xref ref-type="bibr" rid="RSOB120109C24">24</xref>
]. Further work is also required on the early identified case involving the RNA phage MS2 coat lysis hybrid [
<xref ref-type="bibr" rid="RSOB120109C25">25</xref>
]. Low-efficiency cases are especially challenging—for instance, that of the clinically relevant shifting to the +1 frame that is seen in some cases of drug-resistant herpes simplex virus [
<xref ref-type="bibr" rid="RSOB120109C26">26</xref>
<xref ref-type="bibr" rid="RSOB120109C28">28</xref>
]. As a test case, even very low levels of the resulting frameshift product were shown to be able to function as an epitope for stimulation of CD8+ T cells [
<xref ref-type="bibr" rid="RSOB120109C29">29</xref>
].</p>
<p>Recently, Jagger
<italic>et al</italic>
. identified a novel coding ORF (X) in influenza A virus [
<xref ref-type="bibr" rid="RSOB120109C30">30</xref>
]. The X ORF is translated as a transframe fusion (PA-X) with the N-terminal domain of the PA protein (
<xref ref-type="fig" rid="RSOB120109F1">figure 1</xref>
<italic>a</italic>
). PA is a component of the viral polymerase, and the N-terminal domain carries an endonuclease activity that, as part of PA, cleaves capped RNA fragments from cellular pre-mRNAs to act as primers for viral transcription [
<xref ref-type="bibr" rid="RSOB120109C31">31</xref>
]. As PA-X, however, the N-terminal domain appears to play a role in host cell shut-off, presumably by cleaving host mRNAs. PA-X expression depends on ribosomal frameshifting into the +1 frame, and comparative sequence analysis suggests that the frameshifting occurs within a highly conserved UCC_UUU_CGU sequence at the 5′ end of the X ORF (underscores separate zero-frame, i.e. PA, codons) [
<xref ref-type="bibr" rid="RSOB120109C30">30</xref>
]. However, the exact site and direction of frameshifting was not determined. Here, we identify the nature of the shift to the +1 frame in PA-X expression. The results highlight the coding versatility of the sequence UCC_UUU_CGU, with expression relevance for genomes (both viral and cellular) less well studied than influenza A virus.
<fig id="RSOB120109F1">
<label>Figure 1.</label>
<caption>
<p>Mass spectrometric analysis of the PA-X-GFP frameshift fusion protein. (
<italic>a</italic>
) Translation map of influenza A virus segment 3 showing full-length PA and the transframe fusion PA-X that comprises the N-terminal domain of PA fused to a C-terminal tail encoded by the +1 reading frame. (
<italic>b</italic>
) Map of the construct used to purify the product of frameshifting on the PA-X frameshift cassette. (
<italic>c</italic>
) Complete amino acid sequence of PA-X-GFP. Amino acids encoded by the zero-frame are highlighted in mauve; amino acids encoded by the +1 frame are highlighted in pale yellow (X) or cyan (GFP). The eight peptides identified by mass spectrometry are indicated in red (note that the sequence GES…EGR corresponds to three detected peptides GES…LLK, HRF…EGR and FEI…EGR). The peptide spanning the frameshift site is underlined in green. (
<italic>d</italic>
) MS/MS fragmentation spectrum of the shift site peptide GLWD
<underline>SFV</underline>
SPR. The inset shows the peptide sequence with ‘b-’ and ‘y’-type fragment ions that strongly support the shift site peptide identified in the nano-LC/MS/MS analysis. Several additional fragment ions, corresponding to H
<sub>2</sub>
O losses from b and y series ions and doubly charged fragment ions, are also present in the spectrum to further support the sequence (assignments not labelled in the figure). (
<italic>e</italic>
) Nucleotide sequence in the vicinity of the frameshift site UCC_UUU_CGU, with conceptual amino acid translations in all three reading frames. The product of +1 frameshifting is indicated in red. The green-underlined peptide, which spans the shift site, is compatible with +1, but not –2, frameshifting.</p>
</caption>
<graphic xlink:href="rsob120109f01"></graphic>
</fig>
</p>
</sec>
<sec id="s2">
<label>3.</label>
<title>Results and discussion</title>
<p>The efficiency of frameshifting at the PA-X shift site was previously estimated by translating reporter constructs in rabbit reticulocyte lysates and found to be around 1.3 per cent [
<xref ref-type="bibr" rid="RSOB120109C30">30</xref>
]. When the frameshift cassette was fused into a dual luciferase reporter construct and expressed in tissue culture cells (see §4), comparably low frameshifting efficiencies (namely 0.74 ± 0.13%) were measured. Owing to the low levels involved and the lack of a suitably sensitive antibody to the common N-terminal domain of PA and PA-X, we have not been able to directly measure the frameshifting efficiency in the context of viral infection. Because PA-X is expressed at very low levels during virus infection, we were not able to isolate sufficient quantities from virus-infected cells for mass spectrometric analysis despite multiple attempts. Thus, in order to determine the precise site and direction of frameshifting, we used a construct in which an ORF-encoding green fluorescent protein (GFP) was fused in-frame to the 3′ end of the X ORF (
<xref ref-type="fig" rid="RSOB120109F1">figure 1</xref>
<italic>b</italic>
). Frameshift expression of the construct would result in the transframe fusion PA-X-GFP, which could be affinity-purified on GFP-TRAP beads, while non-frameshift expression would result in a product that does not contain GFP. The construct was expressed in 293T cells, and PA-X-GFP was affinity-purified from cell lysates and resolved by SDS-PAGE. An in-frame control, in which the predicted shift site UCC_UUU_CGU_C was mutated to UCC_UUU_GUC to force expression of PA-X-GFP, was also prepared to show the approximate size at which the frameshift protein should migrate in gels. The wild-type construct produced a specific band migrating at the expected size for PA-X-GFP. A gel slice containing this protein was excised, digested with trypsin, and the resulting peptides were analysed by nano-liquid chromatography tandem mass spectrometry (nano-LC/MS/MS).</p>
<p>Eight separate PA-X-GFP tryptic peptides were identified, including peptides encoded both upstream and downstream of the shift site (
<xref ref-type="fig" rid="RSOB120109F1">figure 1</xref>
<italic>c</italic>
; two of the peptides have overlapping sequence). Importantly, a peptide spanning the shift site itself was identified (
<xref ref-type="fig" rid="RSOB120109F1">figure 1</xref>
<italic>d</italic>
). This peptide, GLWDSFVSPR, defines the shift site (UCC_UUU_CGU) and direction (+1) of frameshifting (
<xref ref-type="fig" rid="RSOB120109F1">figure 1</xref>
<italic>e</italic>
). Molecular ions for GLWDSFVSPR were identified both with and without oxidation at the tryptophan, providing further support for the sequence assignment. No peptide compatible with –2 frameshifting was detected. Formally, the peptide GLWDSFVSPR is compatible with three different models for frameshifting: (i) +1 slippage with UUU in the P-site and an empty A-site; (ii) +1 slippage with UCC in the P-site and an empty A-site; and (iii) tandem +1 slippage with UCC in the P-site and UUU in the A-site. However, consideration of the potential for codon : anticodon re-pairings favours model (i). Both UUU and UUC are translated by a single tRNA isoacceptor whose anticodon, 3′-AAG-5′, has a higher affinity for UUC in the +1 frame than for the zero-frame UUU [
<xref ref-type="bibr" rid="RSOB120109C32">32</xref>
]. By contrast, UCC is expected to be generally decoded by the serine tRNA with anticodon 3′-AGI-5′ (I, inosine), but whether it is decoded by 3′-AGI-5′ or a different serine tRNA when frameshifting occurs, re-pairing to CCU in the +1 frame would involve a mismatch at the first nucleotide position. Moreover, previous experiments showed that mutating UCC to AGC, GGG, CCC or AAA reduced but did not abolish frameshifting, while mutating UUU_CGU to UUC_AGA (with an appropriately positioned 3′ stop codon to prevent non-specific frameshifting elsewhere within the overlap region) knocked out frameshifting [
<xref ref-type="bibr" rid="RSOB120109C30">30</xref>
]. These results are consistent with P-site slippage on UUU_C but argue against P-site slippage on UCC_U, although a low level of slippage on UCC_U cannot be ruled out. Interestingly, a UCC_U tetranucleotide is the site of +1 frameshifting in antizyme expression, although here frameshifting is stimulated, in part, by the presence of a stop codon in the A-site (a role that is unlikely to be substituted by a UUU codon in the A-site) [
<xref ref-type="bibr" rid="RSOB120109C3">3</xref>
].</p>
<p>In other cases of +1 frameshifting, such as in bacteria and yeast, frameshifting is stimulated in part by a slowly decoded A-site codon such as a stop codon or codon whose cognate tRNA is limiting [
<xref ref-type="bibr" rid="RSOB120109C1">1</xref>
,
<xref ref-type="bibr" rid="RSOB120109C33">33</xref>
,
<xref ref-type="bibr" rid="RSOB120109C34">34</xref>
]. At the influenza PA-X shift site, P-site slippage on the UUU_C tetranucleotide may be stimulated by the rare CGU codon in the A-site (CGU is one of the most seldom-used codons in the genomes of mammals and birds—the host species of influenza A virus;
<xref ref-type="table" rid="RSOB120109TB1">table 1</xref>
[
<xref ref-type="bibr" rid="RSOB120109C35">35</xref>
]). In support of this, mutating the CGU to the more commonly used arginine codon, CGG, reduced frameshifting by 50 per cent [
<xref ref-type="bibr" rid="RSOB120109C30">30</xref>
]. However, CGU and the more abundantly used codon CGC are expected to be decoded by the same tRNA isoacceptor with anticodon 3′-GCI-5′, and this tRNA species is not obviously limiting in mammals and birds [
<xref ref-type="bibr" rid="RSOB120109C36">36</xref>
,
<xref ref-type="bibr" rid="RSOB120109C37">37</xref>
]. Thus, the role and mode of action of the A-site codon remains uncertain, and conservation of CGU may in part be driven by constraints on the encoded amino acid sequence in the overlapping +1 reading frame.
<table-wrap id="RSOB120109TB1" position="float">
<label>Table 1.</label>
<caption>
<p>Arginine codon usage frequencies (per 1000 codons) in selected organisms.</p>
</caption>
<table frame="hsides" rules="groups">
<colgroup>
<col align="left"></col>
<col align="char" char="."></col>
<col align="char" char="."></col>
<col align="char" char="."></col>
<col align="char" char="."></col>
<col align="char" char="."></col>
<col align="char" char="."></col>
</colgroup>
<thead valign="top">
<tr>
<th></th>
<th align="left">
<italic>Escherichia coli</italic>
</th>
<th align="left">human</th>
<th align="left">chicken</th>
<th align="left">bee</th>
<th align="left">rice</th>
<th align="left">
<italic>Arabidopsis</italic>
</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGA</td>
<td>2.9</td>
<td>12.2</td>
<td>12.2</td>
<td>22.0</td>
<td>10.5</td>
<td>19.0</td>
</tr>
<tr>
<td>AGG</td>
<td>1.8</td>
<td>12.0</td>
<td>11.7</td>
<td>9.1</td>
<td>16.0</td>
<td>11.0</td>
</tr>
<tr>
<td>CGU</td>
<td>20.2</td>
<td>4.5</td>
<td>5.4</td>
<td>10.5</td>
<td>7.2</td>
<td>9.0</td>
</tr>
<tr>
<td>CGC</td>
<td>20.8</td>
<td>10.4</td>
<td>10.4</td>
<td>5.1</td>
<td>16.1</td>
<td>3.8</td>
</tr>
<tr>
<td>CGA</td>
<td>3.8</td>
<td>6.2</td>
<td>5.3</td>
<td>11.4</td>
<td>6.4</td>
<td>6.3</td>
</tr>
<tr>
<td>CGG</td>
<td>6.2</td>
<td>11.4</td>
<td>9.7</td>
<td>4.1</td>
<td>13.4</td>
<td>4.9</td>
</tr>
</tbody>
</table>
</table-wrap>
</p>
<p>The role of UCC in the E-site also remains uncertain. In analyses of codon usage in PA, it was observed that the motif UCC_UUU_CGU is extremely highly conserved at the 5′ end of the influenza A virus X ORF, despite the fact that five other codons could potentially be used to encode the serine [
<xref ref-type="bibr" rid="RSOB120109C30">30</xref>
,
<xref ref-type="bibr" rid="RSOB120109C38">38</xref>
]. Moreover, mutating the UCC codon to AGC (serine) or to GGG, CCC or AAA resulted in a 40 to 70 per cent reduction in the frameshifting efficiency [
<xref ref-type="bibr" rid="RSOB120109C30">30</xref>
]. This suggests that UCC plays an important stimulatory role in the E-site. Earlier
<italic>in vivo</italic>
work on E-site influence (independent of amino acid identity) on stop codon readthrough implies that interactions at that site influence competition for A-site acceptance, but whether this influence acts via the P-site merits investigation [
<xref ref-type="bibr" rid="RSOB120109C39">39</xref>
,
<xref ref-type="bibr" rid="RSOB120109C40">40</xref>
]. Notwithstanding complications due to an interaction with rRNA during bacterial release factor 2 +1 frameshifting, there is evidence in that case for the identity of the E-site codon having an effect on +1 frameshifting. This has been proposed to relate to the speed at which the E-site tRNA is released, with weaker codon : anticodon duplexes being associated with higher levels of frameshifting [
<xref ref-type="bibr" rid="RSOB120109C41">41</xref>
<xref ref-type="bibr" rid="RSOB120109C44">44</xref>
]. In an
<italic>E. coli</italic>
cell-free system, even partially mismatched P-site codon : anticodon interactions, which can be augmented by E-site mismatches, trigger retrospective editing and so influence events in the A-site [
<xref ref-type="bibr" rid="RSOB120109C45">45</xref>
]. A counterpart post-peptide bond effect has not been detected in
<italic>S. cerevisiae</italic>
, but may exist and involve currently unidentified factors [
<xref ref-type="bibr" rid="RSOB120109C46">46</xref>
,
<xref ref-type="bibr" rid="RSOB120109C47">47</xref>
]. An E-site effect on +1 frameshifting could potentially be influenced by the E-site tRNAs in a proportion of translating ribosomes being near-cognate rather than the standard cognate tRNA. The proposal of an allosteric relationship between release of deacylated tRNA from the E-site being coupled to aminoacyl-tRNA acceptance in the A-site [
<xref ref-type="bibr" rid="RSOB120109C44">44</xref>
] has drawn much criticism [
<xref ref-type="bibr" rid="RSOB120109C48">48</xref>
<xref ref-type="bibr" rid="RSOB120109C51">51</xref>
]. On its own, the observed E-site influence on +1 frameshifting could be interpreted as it acting via an effect on the length of the A-site pause that affects the probability of P-site realignment, but a direct effect on P-site codon : anticodon interaction, or rather on the translocating complex, seems more likely.</p>
<p>More generally, one might predict a class of +1 frameshift stimulators that comprise a UUU_C P-site slippery sequence and a restricted choice of A- and E-site codons. In eukaryote-infecting viruses, frameshifting by +1 nt has been predicted as the expression mechanism for non-5′-proximal ORFs in the closteroviruses (RdRp), leishmania RNA virus 1 (RdRp), chronic bee paralysis virus and the related Lake Sinai viruses 1 and 2 (RdRp), plant-infecting fijiviruses (Family Reoviridae; P5-2) and members of the proposed family
<italic>Amalgamaviridae</italic>
of plant viruses (RdRp) (reviewed in [
<xref ref-type="bibr" rid="RSOB120109C52">52</xref>
]). However, in most of these species, the site of frameshifting remained elusive. Characterization of the influenza virus frameshift site now suggests the site of +1 frameshifting in several of these viruses (
<xref ref-type="fig" rid="RSOB120109F2">figure 2</xref>
). Several of these shift sites are also well supported by comparative genomic analysis [
<xref ref-type="bibr" rid="RSOB120109C53">53</xref>
]. Interestingly, these putative shift sites all seem to show a preference for A-site CGN codons, as opposed to other CNN codons. As in PA-X expression, it is likely that the efficiency of frameshifting at such sites is low. However, these levels may be completely compatible with the expression level requirements of some viruses (cf. –1 frameshifting for polymerase expression in
<italic>S. cerevisiae</italic>
totivirus L-A, where the ratio of Gag-Pol to Gag in the virion is of order 1–2% and, correspondingly, the frameshifting efficiency is around 1.8%) [
<xref ref-type="bibr" rid="RSOB120109C54">54</xref>
]. Whether similar motifs are functionally used for cellular gene expression remains to be seen.
<fig id="RSOB120109F2">
<label>Figure 2.</label>
<caption>
<p>Predicted sites of ‘PAX-like’ +1 frameshifting in (
<italic>a</italic>
) fijiviruses, (
<italic>b</italic>
) chronic bee paralysis and Lake Sinai viruses, and (
<italic>c</italic>
) amalgamaviruses. FDV, Fiji disease virus; MRCV, mal de Rio Cuarto virus; RBSDV, rice black-streaked dwarf virus; SRBSDV, southern rice black-streaked dwarf virus; CBPV, chronic bee paralysis virus; LSV, Lake Sinai virus; BBLV, blueberry latent virus; RhVA, rhododendron virus A; VCVM,
<italic>Vicia</italic>
cryptic virus M. In all cases, the predicted shift site occurs near the 5′ end of the overlap region between the zero-frame and +1 frame ORFs. Predicted shift sites are highlighted in blue. Dashes in CBPV indicate alignment gaps. Spaces separate zero-frame codons. Note that, downstream of the shift site, the sequences are predicted to be coding in both the zero and +1 frames, and this generally corresponds to enhanced conservation at the nucleotide level. The amalgamavirus sequences are highly divergent, and the precise alignment between BBLV and RhVA+VCVM is ambiguous in this region. GenBank accession numbers, and sequence coordinates of 5′ terminal nucleotides, are indicated at left.</p>
</caption>
<graphic xlink:href="rsob120109f02"></graphic>
</fig>
</p>
</sec>
<sec id="s3" sec-type="methods">
<label>4.</label>
<title>Methods</title>
<sec id="s3a">
<label>4.1.</label>
<title>Dual luciferase reporter constructs and assays</title>
<p>Sequences encompassing the frameshift site (97 nt 5′+UCC_UUU_CGU+100 nt 3′) were generated using overlapping synthetic oligonucleotides and cloned into pDluc, a derivative of the dual luciferase reporter p2luc vector [
<xref ref-type="bibr" rid="RSOB120109C55">55</xref>
,
<xref ref-type="bibr" rid="RSOB120109C56">56</xref>
]. The 3′ firefly luciferase ORF is in the +1 frame relative to the 5′ renilla luciferase ORF, so that frameshifting within the inserted sequence results in a fusion of both ORFs. An in-frame control, which was identical except that the UCC_UUU_CGU_C shift site was mutated to UCC_UUC_GUC, was also constructed. All constructs were verified by DNA sequencing. Frameshift assays were performed as described previously [
<xref ref-type="bibr" rid="RSOB120109C55">55</xref>
,
<xref ref-type="bibr" rid="RSOB120109C57">57</xref>
]. Frameshift efficiencies were calculated as (firefly activity/renilla activity) for the frameshift sequence normalized by (firefly activity/renilla activity) for the in-frame control sequence. Means and standard errors were calculated based on four to six independent transfections. Owing to the low frameshifting efficiencies involved, a low level of background firefly activity (e.g. owing to cryptic splice sites, cryptic promoters, degraded transcripts or non-specific IRES activity) was a potential issue. To control for this, firefly and renilla activities were also measured for a corresponding shift-site mutant sequence (UUU_CGU mutated to UUC_AGA), and the ratio was subtracted from the ratio measured for the WT sequence. (It should be noted that independent initiation of the downstream reporter is not an issue for the previous frameshift efficiency measurements in rabbit reticulocyte lysates, where radiolabelled translation products could be visualized via SDS-PAGE.)</p>
</sec>
<sec id="s3b">
<label>4.2.</label>
<title>Protein purification</title>
<p>To create the PA-X-GFP expression construct, the nucleotide sequence corresponding to the coding region of PA-X, minus the X-ORF stop codon, was amplified from a A/Brevig Mission/1/1918 (H1N1) segment 3 reverse genetics plasmid [
<xref ref-type="bibr" rid="RSOB120109C58">58</xref>
] and cloned into pEGFP-N1 using standard techniques (forward primer 5′-GCCACCGGTACCATGGAAGACTTTGTGCGACAATG-3′; reverse primer 5′-GCCACCACCGGTCTTCTTTGGACATTTGAGAAAGC-3′). To avoid PA-X auto-repressing its own synthesis, the PA endonuclease active site was inactivated via the mutation D108A [
<xref ref-type="bibr" rid="RSOB120109C30">30</xref>
]. The GFP-initiating ATG was also mutagenized (ATG to TG) to bring the downstream GFP ORF in-frame with the +1-frameshifted X-ORF and to prevent downstream GFP initiation (forward primer 5′-CCGGTCGCCACCTGGTGAGCAAGG-3′; reverse primer 5′-CCTTGCTCACCAGGTGGCGACCGG-3′). For the in-frame control construct, site-directed mutagenesis was used to delete the cytosine that is skipped during frameshifting, using standard techniques. Constructs were transfected into 293T cells using Lipofectamine 2000 (Invitrogen), according to the manufacturer's instructions. After incubation for 48 h, cells were lysed and GFP-TRAP-A purification (Chromotek) was performed, as previously described [
<xref ref-type="bibr" rid="RSOB120109C59">59</xref>
]. The GFP-TRAP bound fraction was resolved by SDS-PAGE, and polypeptides were visualized by silver staining.</p>
</sec>
<sec id="s3c">
<label>4.3.</label>
<title>Mass spectrometric analysis</title>
<p>Gel slices containing proteins of interest were excised, digested with trypsin, and analysed by nano-LC/MS/MS. All mass spectra were acquired with an LTQ-FT instrument (ThermoElectron). nano-LC with nano-electrospray was used with a 75 μm ID column (C18) and an acetonitrile gradient (0.1% formic acid). Primary mass spectra of peptide molecular ions, primarily observed at +2 charge states, were obtained in the FT-ICR (Fourier transform ion cyclotron resonance) part of the instrument. All peptide masses assigned were better than 2 ppm mass error compared with theoretical values. Both oxidized (i.e. addition of O, occurring at methionine, tryptophan or histidine) and non-oxidized forms were identified for many peptides. Oxidation of peptides is a common occurrence observed during ionization with electrospray, but oxidation can also be present as a post-translational event. Peptide sequence information was acquired using MS/MS with the ion-trap part of the LTQ-FT instrument using collision-induced dissociation fragmentation of selected peptide masses. Peptides were assigned based on combined evidence of the molecular ions and MS/MS sequence. Searches of custom sequence databases were performed with M
<sc>ascot</sc>
[
<xref ref-type="bibr" rid="RSOB120109C60">60</xref>
], using strict parameters to generate high-confidence assignments, and, in addition, all primary and MS/MS data were reviewed manually for accuracy.</p>
</sec>
</sec>
<sec id="s4">
<label>5.</label>
<title>Acknowledgements</title>
<p>A.E.F. is supported by the Wellcome Trust (088789). J.F.A. is supported by Science Foundation Ireland (08/IN.1/B1889). P.D. is supported by Institute Strategic Grant Funding from the UK Biotechnology and Biological Sciences Research Council and the U.K. Medical Research Council (G0700815). B.W.J., P.D. and J.K.T. are also thankful for the support of the NIH-Oxford-Cambridge Research Scholars programme.</p>
</sec>
</body>
<back>
<ref-list>
<title>References</title>
<ref id="RSOB120109C1">
<label>1</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Craigen</surname>
<given-names>WJ</given-names>
</name>
<name>
<surname>Caskey</surname>
<given-names>CT</given-names>
</name>
</person-group>
.
<year>1986</year>
<article-title>Expression of peptide chain release factor 2 requires high efficiency frameshift</article-title>
.
<source>Nature</source>
<volume>322</volume>
,
<fpage>273</fpage>
<lpage>275</lpage>
.
<pub-id pub-id-type="doi">10.1038/322273a0</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/322273a0">doi:10.1038/322273a0</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C2">
<label>2</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bekaert</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Baranov</surname>
<given-names>PV</given-names>
</name>
</person-group>
.
<year>2006</year>
<article-title>ARFA: a program for annotating bacterial release factor genes, including prediction of programmed ribosomal frameshifting</article-title>
.
<source>Bioinformatics</source>
<volume>22</volume>
,
<fpage>2463</fpage>
<lpage>2465</lpage>
.
<pub-id pub-id-type="doi">10.1093/bioinformatics/btl430</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/bioinformatics/btl430">doi:10.1093/bioinformatics/btl430</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C3">
<label>3</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ivanov</surname>
<given-names>IP</given-names>
</name>
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
</person-group>
.
<year>2007</year>
<article-title>Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>35</volume>
,
<fpage>1842</fpage>
<lpage>1858</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gkm035</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/nar/gkm035">doi:10.1093/nar/gkm035</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C4">
<label>4</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kurian</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Palanimurugan</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Gödderz</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Dohmen</surname>
<given-names>RJ</given-names>
</name>
</person-group>
.
<year>2011</year>
<article-title>Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA</article-title>
.
<source>Nature</source>
<volume>477</volume>
,
<fpage>490</fpage>
<lpage>494</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature10393</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/nature10393">doi:10.1038/nature10393</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C5">
<label>5</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ivanov</surname>
<given-names>IP</given-names>
</name>
<name>
<surname>Gesteland</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Matsufuji</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
</person-group>
.
<year>1998</year>
<article-title>Programmed frameshifting in the synthesis of mammalian antizyme is +1 in mammals, predominantly +1 in fission yeast, but –2 in budding yeast</article-title>
.
<source>RNA</source>
<volume>4</volume>
,
<fpage>1230</fpage>
<lpage>1238</lpage>
.
<pub-id pub-id-type="doi">10.1017/S1355838298980864</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1017/S1355838298980864">doi:10.1017/S1355838298980864</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C6">
<label>6</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Matsufuji</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Matsufuji</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wills</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Gesteland</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
</person-group>
.
<year>1996</year>
<article-title>Reading two bases twice: mammalian antizyme frameshifting in yeast</article-title>
.
<source>EMBO J.</source>
<volume>15</volume>
,
<fpage>1360</fpage>
<lpage>1370</lpage>
.
<pub-id pub-id-type="doi">10.1006/geno.1996.0601</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1006/geno.1996.0601">doi:10.1006/geno.1996.0601</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C7">
<label>7</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lin</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Gilbert</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Brierley</surname>
<given-names>I</given-names>
</name>
</person-group>
.
<year>2012</year>
<article-title>Spacer-length dependence of programmed –1 or –2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>40</volume>
,
<fpage>8674</fpage>
<lpage>8689</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gks629</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/nar/gks629">doi:10.1093/nar/gks629</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C8">
<label>8</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Xu</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Hendrix</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Duda</surname>
<given-names>RL</given-names>
</name>
</person-group>
.
<year>2004</year>
<article-title>Conserved translational frameshift in dsDNA bacteriophage tail assembly genes</article-title>
.
<source>Mol. Cell</source>
<volume>16</volume>
,
<fpage>11</fpage>
<lpage>21</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.molcel.2004.09.006</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.molcel.2004.09.006">doi:10.1016/j.molcel.2004.09.006</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C9">
<label>9</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baranov</surname>
<given-names>PV</given-names>
</name>
<name>
<surname>Fayet</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Hendrix</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
</person-group>
.
<year>2006</year>
<article-title>Recoding in bacteriophages and bacterial IS elements</article-title>
.
<source>Trends Genet.</source>
<volume>22</volume>
,
<fpage>174</fpage>
<lpage>181</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.tig.2006.01.005</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.tig.2006.01.005">doi:10.1016/j.tig.2006.01.005</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C10">
<label>10</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dorscht</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Klumpp</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bielmann</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Schmelcher</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Born</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Zimmer</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Calendar</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Loessner</surname>
<given-names>MJ</given-names>
</name>
</person-group>
.
<year>2009</year>
<article-title>Comparative genome analysis of
<italic>Listeria</italic>
bacteriophages reveals extensive mosaicism, programmed translational frameshifting, and a novel prophage insertion site</article-title>
.
<source>J. Bacteriol.</source>
<volume>191</volume>
,
<fpage>7206</fpage>
<lpage>7215</lpage>
.
<pub-id pub-id-type="doi">10.1128/JB.01041-09</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1128/JB.01041-09">doi:10.1128/JB.01041-09</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C11">
<label>11</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Auzat</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Dröge</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Weise</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Lurz</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Tavares</surname>
<given-names>P</given-names>
</name>
</person-group>
.
<year>2008</year>
<article-title>Origin and function of the two major tail proteins of bacteriophage SPP1</article-title>
.
<source>Mol. Microbiol.</source>
<volume>70</volume>
,
<fpage>557</fpage>
<lpage>569</lpage>
.
<pub-id pub-id-type="doi">10.1111/j.1365-2958.2008.06435.x</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1365-2958.2008.06435.x">doi:10.1111/j.1365-2958.2008.06435.x</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C12">
<label>12</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liao</surname>
<given-names>PY</given-names>
</name>
<name>
<surname>Choi</surname>
<given-names>YS</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>KH</given-names>
</name>
</person-group>
.
<year>2009</year>
<article-title>FSscan: a mechanism-based program to identify +1 ribosomal frameshift hotspots</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>37</volume>
,
<fpage>7302</fpage>
<lpage>7311</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gkp796</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/nar/gkp796">doi:10.1093/nar/gkp796</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C13">
<label>13</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Belcourt</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Farabaugh</surname>
<given-names>PJ</given-names>
</name>
</person-group>
.
<year>1990</year>
<article-title>Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site</article-title>
.
<source>Cell</source>
<volume>62</volume>
,
<fpage>339</fpage>
<lpage>352</lpage>
.
<pub-id pub-id-type="doi">10.1016/0092-8674(90)90371-K</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/0092-8674(90)90371-K">doi:10.1016/0092-8674(90)90371-K</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C14">
<label>14</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farabaugh</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Zhao</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Vimaladithan</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<year>1993</year>
<article-title>A novel programed frameshift expresses the POL3 gene of retrotransposon Ty3 of yeast: frameshifting without tRNA slippage</article-title>
.
<source>Cell</source>
<volume>74</volume>
,
<fpage>93</fpage>
<lpage>103</lpage>
.
<pub-id pub-id-type="doi">10.1016/0092-8674(93)90297-4</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/0092-8674(93)90297-4">doi:10.1016/0092-8674(93)90297-4</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C15">
<label>15</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Asakura</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<year>1998</year>
<article-title>Isolation and characterization of a novel actin filament-binding protein from
<italic>Saccharomyces cerevisiae</italic>
</article-title>
.
<source>Oncogene</source>
<volume>16</volume>
,
<fpage>121</fpage>
<lpage>130</lpage>
.
<pub-id pub-id-type="doi">10.1038/sj.onc.1201487</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/sj.onc.1201487">doi:10.1038/sj.onc.1201487</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C16">
<label>16</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Farabaugh</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Kramer</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Vallabhaneni</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Raman</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<year>2006</year>
<article-title>Evolution of +1 programmed frameshifting signals and frameshift-regulating tRNAs in the order
<italic>Saccharomycetales</italic>
</article-title>
.
<source>J. Mol. Evol.</source>
<volume>63</volume>
,
<fpage>545</fpage>
<lpage>561</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00239-005-0311-0</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s00239-005-0311-0">doi:10.1007/s00239-005-0311-0</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C17">
<label>17</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morris</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Lundblad</surname>
<given-names>V</given-names>
</name>
</person-group>
.
<year>1997</year>
<article-title>Programmed translational frameshifting in a gene required for yeast telomere replication</article-title>
.
<source>Curr. Biol.</source>
<volume>7</volume>
,
<fpage>969</fpage>
<lpage>976</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0960-9822(06)00416-7</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S0960-9822(06)00416-7">doi:10.1016/S0960-9822(06)00416-7</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C18">
<label>18</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taliaferro</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Farabaugh</surname>
<given-names>PJ</given-names>
</name>
</person-group>
.
<year>2007</year>
<article-title>An mRNA sequence derived from the yeast EST3 gene stimulates programmed +1 translational frameshifting</article-title>
.
<source>RNA</source>
<volume>13</volume>
,
<fpage>606</fpage>
<lpage>613</lpage>
.
<pub-id pub-id-type="doi">10.1261/rna.412707</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1261/rna.412707">doi:10.1261/rna.412707</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C19">
<label>19</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Russell</surname>
<given-names>RD</given-names>
</name>
<name>
<surname>Beckenbach</surname>
<given-names>AT</given-names>
</name>
</person-group>
.
<year>2008</year>
<article-title>Recoding of translation in turtle mitochondrial genomes: programmed frameshift mutations and evidence of a modified genetic code</article-title>
.
<source>J. Mol. Evol.</source>
<volume>67</volume>
,
<fpage>682</fpage>
<lpage>695</lpage>
.
<pub-id pub-id-type="doi">10.1007/s00239-008-9179-0</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1007/s00239-008-9179-0">doi:10.1007/s00239-008-9179-0</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C20">
<label>20</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Masuda</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Matsuzaki</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kita</surname>
<given-names>K</given-names>
</name>
</person-group>
.
<year>2010</year>
<article-title>Extensive frameshift at all AGG and CCC codons in the mitochondrial cytochrome c oxidase subunit 1 gene of
<italic>Perkinsus marinus</italic>
(Alveolata; Dinoflagellata)</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>38</volume>
,
<fpage>6186</fpage>
<lpage>6194</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gkq449</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/nar/gkq449">doi:10.1093/nar/gkq449</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C21">
<label>21</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Oudot-Le Secq</surname>
<given-names>MP</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>BR</given-names>
</name>
</person-group>
.
<year>2011</year>
<article-title>Complex repeat structures and novel features in the mitochondrial genomes of the diatoms
<italic>Phaeodactylum tricornutum</italic>
and
<italic>Thalassiosira pseudonana</italic>
</article-title>
.
<source>Gene</source>
<volume>476</volume>
,
<fpage>20</fpage>
<lpage>26</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.gene.2011.02.001</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.gene.2011.02.001">doi:10.1016/j.gene.2011.02.001</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C22">
<label>22</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Temperley</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Richter</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dennerlein</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lightowlers</surname>
<given-names>RN</given-names>
</name>
<name>
<surname>Chrzanowska-Lightowlers</surname>
<given-names>ZM</given-names>
</name>
</person-group>
.
<year>2010</year>
<article-title>Hungry codons promote frameshifting in human mitochondrial ribosomes</article-title>
.
<source>Science</source>
<volume>327</volume>
,
<fpage>301</fpage>
.
<pub-id pub-id-type="doi">10.1126/science.1180674</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1126/science.1180674">doi:10.1126/science.1180674</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C23">
<label>23</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aigner</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Lingner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Goodrich</surname>
<given-names>KJ</given-names>
</name>
<name>
<surname>Grosshans</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Shevchenko</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mann</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cech</surname>
<given-names>TR</given-names>
</name>
</person-group>
.
<year>2000</year>
<article-title>Euplotes telomerase contains an La motif protein produced by apparent translational frameshifting</article-title>
.
<source>EMBO J.</source>
<volume>19</volume>
,
<fpage>6230</fpage>
<lpage>6239</lpage>
.
<pub-id pub-id-type="doi">10.1093/emboj/19.22.6230</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/emboj/19.22.6230">doi:10.1093/emboj/19.22.6230</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C24">
<label>24</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vallabhaneni</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Fan-Minogue</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Bedwell</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Farabaugh</surname>
<given-names>PJ</given-names>
</name>
</person-group>
.
<year>2009</year>
<article-title>Connection between stop codon reassignment and frequent use of shifty stop frameshifting</article-title>
.
<source>RNA</source>
<volume>15</volume>
,
<fpage>889</fpage>
<lpage>897</lpage>
.
<pub-id pub-id-type="doi">10.1261/rna.1508109</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1261/rna.1508109">doi:10.1261/rna.1508109</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C25">
<label>25</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Gesteland</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Reid</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>CW</given-names>
</name>
</person-group>
.
<year>1979</year>
<article-title>Normal tRNAs promote frameshifting</article-title>
.
<source>Cell</source>
<volume>18</volume>
,
<fpage>1119</fpage>
<lpage>1131</lpage>
.
<pub-id pub-id-type="doi">10.1016/0092-8674(79)90225-3</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/0092-8674(79)90225-3">doi:10.1016/0092-8674(79)90225-3</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C26">
<label>26</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hwang</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Horsburgh</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Pelosi</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Roberts</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Digard</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Coen</surname>
<given-names>DM</given-names>
</name>
</person-group>
.
<year>1994</year>
<article-title>A net +1 frameshift permits synthesis of thymidine kinase from a drug-resistant herpes simplex virus mutant</article-title>
.
<source>Proc. Natl Acad. Sci. USA</source>
<volume>91</volume>
,
<fpage>5461</fpage>
<lpage>5465</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.91.12.5461</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1073/pnas.91.12.5461">doi:10.1073/pnas.91.12.5461</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C27">
<label>27</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Griffiths</surname>
<given-names>A</given-names>
</name>
</person-group>
.
<year>2011</year>
<article-title>Slipping and sliding: frameshift mutations in herpes simplex virus thymidine kinase and drug-resistance</article-title>
.
<source>Drug Resist. Updat.</source>
<volume>14</volume>
,
<fpage>251</fpage>
<lpage>259</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.drup.2011.08.003</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.drup.2011.08.003">doi:10.1016/j.drup.2011.08.003</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C28">
<label>28</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pan</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Coen</surname>
<given-names>DM</given-names>
</name>
</person-group>
.
<year>2012</year>
<article-title>Quantification and analysis of thymidine kinase expression from acyclovir-resistant G-string insertion and deletion mutants in herpes simplex virus-infected cells</article-title>
.
<source>J. Virol.</source>
<volume>86</volume>
,
<fpage>4518</fpage>
<lpage>4526</lpage>
.
<pub-id pub-id-type="doi">10.1128/JVI.06995-11</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1128/JVI.06995-11">doi:10.1128/JVI.06995-11</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C29">
<label>29</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zook</surname>
<given-names>MB</given-names>
</name>
<name>
<surname>Howard</surname>
<given-names>MT</given-names>
</name>
<name>
<surname>Sinnathamby</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Eisenlohr</surname>
<given-names>LC</given-names>
</name>
</person-group>
.
<year>2006</year>
<article-title>Epitopes derived by incidental translational frameshifting give rise to a protective CTL response</article-title>
.
<source>
<italic>J. Immunol</italic>
.</source>
<volume>176</volume>
,
<fpage>6928</fpage>
<lpage>6934</lpage>
.</citation>
</ref>
<ref id="RSOB120109C30">
<label>30</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jagger</surname>
<given-names>BW</given-names>
</name>
<etal></etal>
</person-group>
<year>2012</year>
<article-title>An overlapping protein-coding region in influenza A virus segment 3 modulates the host response</article-title>
.
<source>Science</source>
<volume>337</volume>
,
<fpage>199</fpage>
<lpage>204</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1222213</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1126/science.1222213">doi:10.1126/science.1222213</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C31">
<label>31</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boivin</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Cusack</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Ruigrok</surname>
<given-names>RW</given-names>
</name>
<name>
<surname>Hart</surname>
<given-names>DJ</given-names>
</name>
</person-group>
.
<year>2010</year>
<article-title>Influenza A virus polymerase: structural insights into replication and host adaptation mechanisms</article-title>
.
<source>J. Biol. Chem.</source>
<volume>285</volume>
,
<fpage>28 411</fpage>
<lpage>28 417</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.R110.117531</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1074/jbc.R110.117531">doi:10.1074/jbc.R110.117531</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C32">
<label>32</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eisinger</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Feuer</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Yamane</surname>
<given-names>T</given-names>
</name>
</person-group>
.
<year>1971</year>
<article-title>Codon-anticodon binding in tRNA
<sup>phe</sup>
</article-title>
.
<source>Nat. New Biol.</source>
<volume>231</volume>
,
<fpage>126</fpage>
<lpage>128</lpage>
.
<pub-id pub-id-type="doi">10.1038/231126a0</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/231126a0">doi:10.1038/231126a0</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C33">
<label>33</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Weiss</surname>
<given-names>RB</given-names>
</name>
<name>
<surname>Dunn</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Gesteland</surname>
<given-names>RF</given-names>
</name>
</person-group>
.
<year>1987</year>
<article-title>Slippery runs, shifty stops, backward steps, and forward hops: –2, –1, +1, +2, +5, and +6 ribosomal frameshifting</article-title>
.
<source>Cold Spring Harb. Symp. Quant. Biol.</source>
<volume>52</volume>
,
<fpage>687</fpage>
<lpage>693</lpage>
.
<pub-id pub-id-type="doi">10.1101/SQB.1987.052.01.078</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1101/SQB.1987.052.01.078">doi:10.1101/SQB.1987.052.01.078</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C34">
<label>34</label>
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Farabaugh</surname>
<given-names>PJ</given-names>
</name>
</person-group>
.
<year>2010</year>
<article-title>Programmed frameshifting in budding yeast</article-title>
. In
<source>Recoding: expansion of decoding rules enriches gene expression</source>
(eds
<person-group person-group-type="editor">
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Gesteland</surname>
<given-names>RF</given-names>
</name>
</person-group>
), pp.
<fpage>221</fpage>
<lpage>248</lpage>
.
<publisher-loc>Heidelberg, Germany</publisher-loc>
:
<publisher-name>Springer</publisher-name>
.</citation>
</ref>
<ref id="RSOB120109C35">
<label>35</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nakamura</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Gojobori</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Ikemura</surname>
<given-names>T</given-names>
</name>
</person-group>
.
<year>2000</year>
<article-title>Codon usage tabulated from the international DNA sequence databases: status for the year 2000</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>28</volume>
,
<fpage>292</fpage>
.
<pub-id pub-id-type="doi">10.1093/nar/28.1.292</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/nar/28.1.292">doi:10.1093/nar/28.1.292</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C36">
<label>36</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grosjean</surname>
<given-names>H</given-names>
</name>
<name>
<surname>de Crécy-Lagard</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Marck</surname>
<given-names>C</given-names>
</name>
</person-group>
.
<year>2010</year>
<article-title>Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes</article-title>
.
<source>FEBS Lett.</source>
<volume>584</volume>
,
<fpage>252</fpage>
<lpage>264</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.febslet.2009.11.052</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.febslet.2009.11.052">doi:10.1016/j.febslet.2009.11.052</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C37">
<label>37</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chan</surname>
<given-names>PP</given-names>
</name>
<name>
<surname>Lowe</surname>
<given-names>TM</given-names>
</name>
</person-group>
.
<year>2009</year>
<article-title>GtRNAdb: a database of transfer RNA genes detected in genomic sequence</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>37</volume>
,
<fpage>D93</fpage>
<lpage>D97</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gkn787</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/nar/gkn787">doi:10.1093/nar/gkn787</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C38">
<label>38</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gog</surname>
<given-names>JR</given-names>
</name>
<etal></etal>
</person-group>
<year>2007</year>
<article-title>Codon conservation in the influenza A virus genome defines RNA packaging signals</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>35</volume>
,
<fpage>1897</fpage>
<lpage>1907</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gkm087</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/nar/gkm087">doi:10.1093/nar/gkm087</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C39">
<label>39</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>O'Connor</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wills</surname>
<given-names>NM</given-names>
</name>
<name>
<surname>Bossi</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Gesteland</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
</person-group>
.
<year>1993</year>
<article-title>Functional tRNAs with altered 3′ ends</article-title>
.
<source>EMBO J.</source>
<volume>12</volume>
,
<fpage>2559</fpage>
<lpage>2566</lpage>
.</citation>
</ref>
<ref id="RSOB120109C40">
<label>40</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sergiev</surname>
<given-names>PV</given-names>
</name>
<name>
<surname>Lesnyak</surname>
<given-names>DV</given-names>
</name>
<name>
<surname>Kiparisov</surname>
<given-names>SV</given-names>
</name>
<name>
<surname>Burakovsky</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Leonov</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Bogdanov</surname>
<given-names>AA</given-names>
</name>
<name>
<surname>Brimacombe</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Dontsova</surname>
<given-names>OA</given-names>
</name>
</person-group>
.
<year>2005</year>
<article-title>Function of the ribosomal E-site: a mutagenesis study</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>33</volume>
,
<fpage>6048</fpage>
<lpage>6056</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gki910</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/nar/gki910">doi:10.1093/nar/gki910</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C41">
<label>41</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baranov</surname>
<given-names>PV</given-names>
</name>
<name>
<surname>Gesteland</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
</person-group>
.
<year>2002</year>
<article-title>Recoding: translational bifurcations in gene expression</article-title>
.
<source>Gene</source>
<volume>286</volume>
,
<fpage>187</fpage>
<lpage>201</lpage>
.
<pub-id pub-id-type="doi">10.1016/S0378-1119(02)00423-7</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S0378-1119(02)00423-7">doi:10.1016/S0378-1119(02)00423-7</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C42">
<label>42</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sanders</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Curran</surname>
<given-names>JF</given-names>
</name>
</person-group>
.
<year>2007</year>
<article-title>Genetic analysis of the E-site during RF2 programmed frameshifting</article-title>
.
<source>RNA</source>
<volume>13</volume>
,
<fpage>1483</fpage>
<lpage>1491</lpage>
.
<pub-id pub-id-type="doi">10.1261/rna.638707</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1261/rna.638707">doi:10.1261/rna.638707</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C43">
<label>43</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liao</surname>
<given-names>PY</given-names>
</name>
<name>
<surname>Gupta</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Petrov</surname>
<given-names>AN</given-names>
</name>
<name>
<surname>Dinman</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>KH</given-names>
</name>
</person-group>
.
<year>2008</year>
<article-title>A new kinetic model reveals the synergistic effect of E-, P- and A-sites on +1 ribosomal frameshifting</article-title>
.
<source>Nucleic Acids Res.</source>
<volume>36</volume>
,
<fpage>2619</fpage>
<lpage>2629</lpage>
.
<pub-id pub-id-type="doi">10.1093/nar/gkn100</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1093/nar/gkn100">doi:10.1093/nar/gkn100</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C44">
<label>44</label>
<citation citation-type="book">
<person-group person-group-type="author">
<name>
<surname>Pech</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Vesper</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Yamamoto</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Wilson</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>Nierhaus</surname>
<given-names>KH</given-names>
</name>
</person-group>
.
<year>2010</year>
<article-title>The E site and its importance for improving accuracy and preventing frameshifts</article-title>
. In
<source>Recoding: expansion of decoding rules enriches gene expression</source>
(eds
<person-group person-group-type="editor">
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Gesteland</surname>
<given-names>RF</given-names>
</name>
</person-group>
), pp.
<fpage>345</fpage>
<lpage>364</lpage>
.
<publisher-loc>Heidelberg, Germany</publisher-loc>
:
<publisher-name>Springer</publisher-name>
.</citation>
</ref>
<ref id="RSOB120109C45">
<label>45</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zaher</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>R</given-names>
</name>
</person-group>
.
<year>2009</year>
<article-title>Quality control by the ribosome following peptide bond formation</article-title>
.
<source>Nature</source>
<volume>457</volume>
,
<fpage>161</fpage>
<lpage>166</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature07582</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/nature07582">doi:10.1038/nature07582</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C46">
<label>46</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Eyler</surname>
<given-names>DE</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>R</given-names>
</name>
</person-group>
.
<year>2011</year>
<article-title>Distinct response of yeast ribosomes to a miscoding event during translation</article-title>
.
<source>RNA</source>
<volume>17</volume>
,
<fpage>925</fpage>
<lpage>932</lpage>
.
<pub-id pub-id-type="doi">10.1261/rna.2623711</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1261/rna.2623711">doi:10.1261/rna.2623711</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C47">
<label>47</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zaher</surname>
<given-names>HS</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>R</given-names>
</name>
</person-group>
.
<year>2011</year>
<article-title>A primary role for release factor 3 in quality control during translation elongation in
<italic>Escherichia coli</italic>
</article-title>
.
<source>Cell</source>
<volume>147</volume>
,
<fpage>396</fpage>
<lpage>408</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.cell.2011.08.045</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.cell.2011.08.045">doi:10.1016/j.cell.2011.08.045</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C48">
<label>48</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Semenkov</surname>
<given-names>YP</given-names>
</name>
<name>
<surname>Rodnina</surname>
<given-names>MV</given-names>
</name>
<name>
<surname>Wintermeyer</surname>
<given-names>W</given-names>
</name>
</person-group>
.
<year>1996</year>
<article-title>The ‘allosteric three-site model’ of elongation cannot be confirmed in a well-defined ribosome system from
<italic>Escherichia coli</italic>
</article-title>
.
<source>Proc. Natl Acad. Sci. USA.</source>
<volume>93</volume>
,
<fpage>12 183</fpage>
<lpage>12 188</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.93.22.12183</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1073/pnas.93.22.12183">doi:10.1073/pnas.93.22.12183</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C49">
<label>49</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Uemura</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Aitken</surname>
<given-names>CE</given-names>
</name>
<name>
<surname>Korlach</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Flusberg</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>Turner</surname>
<given-names>SW</given-names>
</name>
<name>
<surname>Puglisi</surname>
<given-names>JD</given-names>
</name>
</person-group>
.
<year>2010</year>
<article-title>Real-time tRNA transit on single translating ribosomes at codon resolution</article-title>
.
<source>Nature</source>
<volume>464</volume>
,
<fpage>1012</fpage>
<lpage>1017</lpage>
.
<pub-id pub-id-type="doi">10.1038/nature08925</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1038/nature08925">doi:10.1038/nature08925</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C50">
<label>50</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Chen</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Stevens</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Kaur</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Smilansky</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Cooperman</surname>
<given-names>BS</given-names>
</name>
<name>
<surname>Goldman</surname>
<given-names>YE</given-names>
</name>
</person-group>
.
<year>2011</year>
<article-title>Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis</article-title>
.
<source>Proc. Natl Acad. Sci. USA</source>
<volume>108</volume>
,
<fpage>16 980</fpage>
<lpage>16 985</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.1106999108</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1073/pnas.1106999108">doi:10.1073/pnas.1106999108</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C51">
<label>51</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Petropoulos</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>R</given-names>
</name>
</person-group>
.
<year>2012</year>
<article-title>Further
<italic>in vitro</italic>
exploration fails to support the allosteric three-site model</article-title>
.
<source>J. Biol. Chem.</source>
<volume>287</volume>
,
<fpage>11 642</fpage>
<lpage>11 648</lpage>
.
<pub-id pub-id-type="doi">10.1074/jbc.C111.330068</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1074/jbc.C111.330068">doi:10.1074/jbc.C111.330068</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C52">
<label>52</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Firth</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Brierley</surname>
<given-names>I</given-names>
</name>
</person-group>
.
<year>2012</year>
<article-title>Non-canonical translation in RNA viruses</article-title>
.
<source>J. Gen. Virol.</source>
<volume>93</volume>
,
<fpage>1385</fpage>
<lpage>1409</lpage>
.
<pub-id pub-id-type="doi">10.1099/vir.0.042499-0</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1099/vir.0.042499-0">doi:10.1099/vir.0.042499-0</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C53">
<label>53</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Firth</surname>
<given-names>AE</given-names>
</name>
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
</person-group>
.
<year>2009</year>
<article-title>Analysis of the coding potential of the partially overlapping 3′ ORF in segment 5 of the plant fijiviruses</article-title>
.
<source>Virol. J.</source>
<volume>17</volume>
,
<fpage>32</fpage>
.
<pub-id pub-id-type="doi">10.1186/1743-422X-6-32</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1186/1743-422X-6-32">doi:10.1186/1743-422X-6-32</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C54">
<label>54</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dinman</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Icho</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wickner</surname>
<given-names>RB</given-names>
</name>
</person-group>
.
<year>1991</year>
<article-title>A –1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein</article-title>
.
<source>Proc. Natl Acad. Sci. USA</source>
<volume>88</volume>
,
<fpage>174</fpage>
<lpage>178</lpage>
.
<pub-id pub-id-type="doi">10.1073/pnas.88.1.174</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1073/pnas.88.1.174">doi:10.1073/pnas.88.1.174</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C55">
<label>55</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grentzmann</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Ingram</surname>
<given-names>JA</given-names>
</name>
<name>
<surname>Kelly</surname>
<given-names>PJ</given-names>
</name>
<name>
<surname>Gesteland</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
</person-group>
.
<year>1998</year>
<article-title>A dual-luciferase reporter system for studying recoding signals</article-title>
.
<source>RNA</source>
<volume>4</volume>
,
<fpage>479</fpage>
<lpage>486</lpage>
.
<pub-id pub-id-type="doi">10.1017/S1355838298971576</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1017/S1355838298971576">doi:10.1017/S1355838298971576</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C56">
<label>56</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fixsen</surname>
<given-names>SM</given-names>
</name>
<name>
<surname>Howard</surname>
<given-names>MT</given-names>
</name>
</person-group>
.
<year>2010</year>
<article-title>Processive selenocysteine incorporation during synthesis of eukaryotic selenoproteins</article-title>
.
<source>J. Mol. Biol.</source>
<volume>399</volume>
,
<fpage>385</fpage>
<lpage>396</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.jmb.2010.04.033</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.jmb.2010.04.033">doi:10.1016/j.jmb.2010.04.033</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C57">
<label>57</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Baranov</surname>
<given-names>PV</given-names>
</name>
<name>
<surname>Henderson</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Anderson</surname>
<given-names>CB</given-names>
</name>
<name>
<surname>Gesteland</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Atkins</surname>
<given-names>JF</given-names>
</name>
<name>
<surname>Howard</surname>
<given-names>MT</given-names>
</name>
</person-group>
.
<year>2005</year>
<article-title>Programmed ribosomal frameshifting in decoding the SARS-CoV genome</article-title>
.
<source>Virology</source>
<volume>332</volume>
,
<fpage>498</fpage>
<lpage>510</lpage>
.
<pub-id pub-id-type="doi">10.1016/j.virol.2004.11.038</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.virol.2004.11.038">doi:10.1016/j.virol.2004.11.038</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C58">
<label>58</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tumpey</surname>
<given-names>TM</given-names>
</name>
<etal></etal>
</person-group>
<year>2005</year>
<article-title>Characterization of the reconstructed 1918 Spanish influenza pandemic virus</article-title>
.
<source>Science</source>
<volume>310</volume>
,
<fpage>77</fpage>
<lpage>80</lpage>
.
<pub-id pub-id-type="doi">10.1126/science.1119392</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1126/science.1119392">doi:10.1126/science.1119392</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C59">
<label>59</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Amorim</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Bruce</surname>
<given-names>EA</given-names>
</name>
<name>
<surname>Read</surname>
<given-names>EK</given-names>
</name>
<name>
<surname>Foeglein</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Mahen</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Stuart</surname>
<given-names>AD</given-names>
</name>
<name>
<surname>Digard</surname>
<given-names>P</given-names>
</name>
</person-group>
.
<year>2011</year>
<article-title>A Rab11- and microtubule-dependent mechanism for cytoplasmic transport of influenza A virus viral RNA</article-title>
.
<source>J. Virol.</source>
<volume>85</volume>
,
<fpage>4143</fpage>
<lpage>4156</lpage>
.
<pub-id pub-id-type="doi">10.1128/JVI.02606-10</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1128/JVI.02606-10">doi:10.1128/JVI.02606-10</ext-link>
)</citation>
</ref>
<ref id="RSOB120109C60">
<label>60</label>
<citation citation-type="journal">
<person-group person-group-type="author">
<name>
<surname>Perkins</surname>
<given-names>DN</given-names>
</name>
<name>
<surname>Pappin</surname>
<given-names>DJ</given-names>
</name>
<name>
<surname>Creasy</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Cottrell</surname>
<given-names>JS</given-names>
</name>
</person-group>
.
<year>1999</year>
<article-title>Probability-based protein identification by searching sequence databases using mass spectrometry data</article-title>
.
<source>Electrophoresis</source>
<volume>20</volume>
,
<fpage>3551</fpage>
<lpage>3567</lpage>
.
<pub-id pub-id-type="doi">10.1002/(SICI)1522-2683(19991201)20:18%3C3551::AID-ELPS3551%3E3.0.CO;2-2</pub-id>
(
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/(SICI)1522-2683(19991201)20:18%3C3551::AID-ELPS3551%3E3.0.CO;2-2">doi:10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2</ext-link>
)</citation>
</ref>
</ref-list>
</back>
</article>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo>
<title>Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA">
<title>Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction</title>
</titleInfo>
<name type="personal">
<namePart type="given">A. E.</namePart>
<namePart type="family">Firth</namePart>
<affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</affiliation>
<affiliation>These authors contributed equally to this study.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">B. W.</namePart>
<namePart type="family">Jagger</namePart>
<affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</affiliation>
<affiliation>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA</affiliation>
<affiliation>These authors contributed equally to this study.</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H. M.</namePart>
<namePart type="family">Wise</namePart>
<affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</affiliation>
<affiliation>The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">C. C.</namePart>
<namePart type="family">Nelson</namePart>
<affiliation>Mass Spectrometry and Proteomics Core Facility, University of Utah, Salt Lake City, UT 84112, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">K.</namePart>
<namePart type="family">Parsawar</namePart>
<affiliation>Mass Spectrometry and Proteomics Core Facility, University of Utah, Salt Lake City, UT 84112, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">N. M.</namePart>
<namePart type="family">Wills</namePart>
<affiliation>Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S.</namePart>
<namePart type="family">Napthine</namePart>
<affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. K.</namePart>
<namePart type="family">Taubenberger</namePart>
<affiliation>Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">P.</namePart>
<namePart type="family">Digard</namePart>
<affiliation>Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK</affiliation>
<affiliation>The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J. F.</namePart>
<namePart type="family">Atkins</namePart>
<affiliation>BioSciences Institute, University College Cork, Cork, Republic of Ireland</affiliation>
<affiliation>E-mail: j.atkins@ucc.ie</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="research-article" authority="ISTEX" authorityURI="https://content-type.data.istex.fr" valueURI="https://content-type.data.istex.fr/ark:/67375/XTP-6N5SZHKN-D">article</genre>
<originInfo>
<publisher>The Royal Society</publisher>
<dateIssued encoding="w3cdtf">2012-10</dateIssued>
<copyrightDate encoding="w3cdtf">2012</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
</language>
<abstract>Programmed ribosomal frameshifting is used in the expression of many virus genes and some cellular genes. In eukaryotic systems, the most well-characterized mechanism involves –1 tandem tRNA slippage on an X_XXY_YYZ motif. By contrast, the mechanisms involved in programmed +1 (or −2) slippage are more varied and often poorly characterized. Recently, a novel gene, PA-X, was discovered in influenza A virus and found to be expressed via a shift to the +1 reading frame. Here, we identify, by mass spectrometric analysis, both the site (UCC_UUU_CGU) and direction (+1) of the frameshifting that is involved in PA-X expression. Related sites are identified in other virus genes that have previously been proposed to be expressed via +1 frameshifting. As these viruses infect insects (chronic bee paralysis virus), plants (fijiviruses and amalgamaviruses) and vertebrates (influenza A virus), such motifs may form a new class of +1 frameshift-inducing sequences that are active in diverse eukaryotes.</abstract>
<note type="footnotes">These authors contributed equally to this study.</note>
<subject>
<topic>genetic recoding</topic>
<topic>ribosomal frameshifting</topic>
<topic>mass spectrometry</topic>
<topic>influenza virus</topic>
<topic>PA-X</topic>
<topic>translation</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Royal Society Open Biology</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Open Biol</title>
</titleInfo>
<genre type="journal" authority="ISTEX" authorityURI="https://publication-type.data.istex.fr" valueURI="https://publication-type.data.istex.fr/ark:/67375/JMC-0GLKJH51-B">journal</genre>
<subject>
<genre>hwp-journal-coll</genre>
<topic>1001</topic>
<topic>129</topic>
<topic>200</topic>
</subject>
<subject>
<genre>leader</genre>
<topic>Research article</topic>
</subject>
<identifier type="eISSN">2046-2441</identifier>
<identifier type="PublisherID">RSOB</identifier>
<identifier type="PublisherID-hwp">royopenbio</identifier>
<identifier type="PublisherID-nlm-ta">Open Biol</identifier>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>2</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>10</number>
</detail>
</part>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C1">
<titleInfo>
<title>Expression of peptide chain release factor 2 requires high efficiency frameshift</title>
</titleInfo>
<name type="personal">
<namePart type="given">WJ</namePart>
<namePart type="family">Craigen</namePart>
</name>
<name type="personal">
<namePart type="given">CT</namePart>
<namePart type="family">Caskey</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nature</title>
</titleInfo>
<part>
<date>1986</date>
<detail type="volume">
<caption>vol.</caption>
<number>322</number>
</detail>
<extent unit="pages">
<start>273</start>
<end>275</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1038/322273a0</identifier>
<identifier type="doi">10.1038/322273a0</identifier>
<identifier type="doi">10.1038/322273a0</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C2">
<titleInfo>
<title>ARFA: a program for annotating bacterial release factor genes, including prediction of programmed ribosomal frameshifting</title>
</titleInfo>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Bekaert</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<name type="personal">
<namePart type="given">PV</namePart>
<namePart type="family">Baranov</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Bioinformatics</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>22</number>
</detail>
<extent unit="pages">
<start>2463</start>
<end>2465</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1093/bioinformatics/btl430</identifier>
<identifier type="doi">10.1093/bioinformatics/btl430</identifier>
<identifier type="doi">10.1093/bioinformatics/btl430</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C3">
<titleInfo>
<title>Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation</title>
</titleInfo>
<name type="personal">
<namePart type="given">IP</namePart>
<namePart type="family">Ivanov</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>35</number>
</detail>
<extent unit="pages">
<start>1842</start>
<end>1858</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1093/nar/gkm035</identifier>
<identifier type="doi">10.1093/nar/gkm035</identifier>
<identifier type="doi">10.1093/nar/gkm035</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C4">
<titleInfo>
<title>Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA</title>
</titleInfo>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Kurian</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Palanimurugan</namePart>
</name>
<name type="personal">
<namePart type="given">D</namePart>
<namePart type="family">Gödderz</namePart>
</name>
<name type="personal">
<namePart type="given">RJ</namePart>
<namePart type="family">Dohmen</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nature</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>477</number>
</detail>
<extent unit="pages">
<start>490</start>
<end>494</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1038/nature10393</identifier>
<identifier type="doi">10.1038/nature10393</identifier>
<identifier type="doi">10.1038/nature10393</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C5">
<titleInfo>
<title>Programmed frameshifting in the synthesis of mammalian antizyme is +1 in mammals, predominantly +1 in fission yeast, but –2 in budding yeast</title>
</titleInfo>
<name type="personal">
<namePart type="given">IP</namePart>
<namePart type="family">Ivanov</namePart>
</name>
<name type="personal">
<namePart type="given">RF</namePart>
<namePart type="family">Gesteland</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Matsufuji</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>RNA</title>
</titleInfo>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>1230</start>
<end>1238</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1017/S1355838298980864</identifier>
<identifier type="doi">10.1017/S1355838298980864</identifier>
<identifier type="doi">10.1017/S1355838298980864</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C6">
<titleInfo>
<title>Reading two bases twice: mammalian antizyme frameshifting in yeast</title>
</titleInfo>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Matsufuji</namePart>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Matsufuji</namePart>
</name>
<name type="personal">
<namePart type="given">NM</namePart>
<namePart type="family">Wills</namePart>
</name>
<name type="personal">
<namePart type="given">RF</namePart>
<namePart type="family">Gesteland</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>EMBO J.</title>
</titleInfo>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>1360</start>
<end>1370</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1006/geno.1996.0601</identifier>
<identifier type="doi">10.1006/geno.1996.0601</identifier>
<identifier type="doi">10.1006/geno.1996.0601</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C7">
<titleInfo>
<title>Spacer-length dependence of programmed –1 or –2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting</title>
</titleInfo>
<name type="personal">
<namePart type="given">Z</namePart>
<namePart type="family">Lin</namePart>
</name>
<name type="personal">
<namePart type="given">RJ</namePart>
<namePart type="family">Gilbert</namePart>
</name>
<name type="personal">
<namePart type="given">I</namePart>
<namePart type="family">Brierley</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>40</number>
</detail>
<extent unit="pages">
<start>8674</start>
<end>8689</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1093/nar/gks629</identifier>
<identifier type="doi">10.1093/nar/gks629</identifier>
<identifier type="doi">10.1093/nar/gks629</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C8">
<titleInfo>
<title>Conserved translational frameshift in dsDNA bacteriophage tail assembly genes</title>
</titleInfo>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Xu</namePart>
</name>
<name type="personal">
<namePart type="given">RW</namePart>
<namePart type="family">Hendrix</namePart>
</name>
<name type="personal">
<namePart type="given">RL</namePart>
<namePart type="family">Duda</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Mol. Cell</title>
</titleInfo>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>11</start>
<end>21</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1016/j.molcel.2004.09.006</identifier>
<identifier type="doi">10.1016/j.molcel.2004.09.006</identifier>
<identifier type="doi">10.1016/j.molcel.2004.09.006</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C9">
<titleInfo>
<title>Recoding in bacteriophages and bacterial IS elements</title>
</titleInfo>
<name type="personal">
<namePart type="given">PV</namePart>
<namePart type="family">Baranov</namePart>
</name>
<name type="personal">
<namePart type="given">O</namePart>
<namePart type="family">Fayet</namePart>
</name>
<name type="personal">
<namePart type="given">RW</namePart>
<namePart type="family">Hendrix</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Trends Genet.</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>22</number>
</detail>
<extent unit="pages">
<start>174</start>
<end>181</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1016/j.tig.2006.01.005</identifier>
<identifier type="doi">10.1016/j.tig.2006.01.005</identifier>
<identifier type="doi">10.1016/j.tig.2006.01.005</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C10">
<titleInfo>
<title>Comparative genome analysis of Listeria bacteriophages reveals extensive mosaicism, programmed translational frameshifting, and a novel prophage insertion site</title>
</titleInfo>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Dorscht</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Klumpp</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Bielmann</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Schmelcher</namePart>
</name>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Born</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Zimmer</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Calendar</namePart>
</name>
<name type="personal">
<namePart type="given">MJ</namePart>
<namePart type="family">Loessner</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>J. Bacteriol.</title>
</titleInfo>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>191</number>
</detail>
<extent unit="pages">
<start>7206</start>
<end>7215</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1128/JB.01041-09</identifier>
<identifier type="doi">10.1128/JB.01041-09</identifier>
<identifier type="doi">10.1128/JB.01041-09</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C11">
<titleInfo>
<title>Origin and function of the two major tail proteins of bacteriophage SPP1</title>
</titleInfo>
<name type="personal">
<namePart type="given">I</namePart>
<namePart type="family">Auzat</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Dröge</namePart>
</name>
<name type="personal">
<namePart type="given">F</namePart>
<namePart type="family">Weise</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Lurz</namePart>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Tavares</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Mol. Microbiol.</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>70</number>
</detail>
<extent unit="pages">
<start>557</start>
<end>569</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1111/j.1365-2958.2008.06435.x</identifier>
<identifier type="doi">10.1111/j.1365-2958.2008.06435.x</identifier>
<identifier type="doi">10.1111/j.1365-2958.2008.06435.x</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C12">
<titleInfo>
<title>FSscan: a mechanism-based program to identify +1 ribosomal frameshift hotspots</title>
</titleInfo>
<name type="personal">
<namePart type="given">PY</namePart>
<namePart type="family">Liao</namePart>
</name>
<name type="personal">
<namePart type="given">YS</namePart>
<namePart type="family">Choi</namePart>
</name>
<name type="personal">
<namePart type="given">KH</namePart>
<namePart type="family">Lee</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>37</number>
</detail>
<extent unit="pages">
<start>7302</start>
<end>7311</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1093/nar/gkp796</identifier>
<identifier type="doi">10.1093/nar/gkp796</identifier>
<identifier type="doi">10.1093/nar/gkp796</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C13">
<titleInfo>
<title>Ribosomal frameshifting in the yeast retrotransposon Ty: tRNAs induce slippage on a 7 nucleotide minimal site</title>
</titleInfo>
<name type="personal">
<namePart type="given">MF</namePart>
<namePart type="family">Belcourt</namePart>
</name>
<name type="personal">
<namePart type="given">PJ</namePart>
<namePart type="family">Farabaugh</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Cell</title>
</titleInfo>
<part>
<date>1990</date>
<detail type="volume">
<caption>vol.</caption>
<number>62</number>
</detail>
<extent unit="pages">
<start>339</start>
<end>352</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1016/0092-8674(90)90371-K</identifier>
<identifier type="doi">10.1016/0092-8674(90)90371-K</identifier>
<identifier type="doi">10.1016/0092-8674(90)90371-K</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C14">
<titleInfo>
<title>A novel programed frameshift expresses the POL3 gene of retrotransposon Ty3 of yeast: frameshifting without tRNA slippage</title>
</titleInfo>
<name type="personal">
<namePart type="given">PJ</namePart>
<namePart type="family">Farabaugh</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Zhao</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Vimaladithan</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Cell</title>
</titleInfo>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>74</number>
</detail>
<extent unit="pages">
<start>93</start>
<end>103</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1016/0092-8674(93)90297-4</identifier>
<identifier type="doi">10.1016/0092-8674(93)90297-4</identifier>
<identifier type="doi">10.1016/0092-8674(93)90297-4</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C15">
<titleInfo>
<title>Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae</title>
</titleInfo>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Asakura</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Oncogene</title>
</titleInfo>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>16</number>
</detail>
<extent unit="pages">
<start>121</start>
<end>130</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1038/sj.onc.1201487</identifier>
<identifier type="doi">10.1038/sj.onc.1201487</identifier>
<identifier type="doi">10.1038/sj.onc.1201487</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C16">
<titleInfo>
<title>Evolution of +1 programmed frameshifting signals and frameshift-regulating tRNAs in the order Saccharomycetales</title>
</titleInfo>
<name type="personal">
<namePart type="given">PJ</namePart>
<namePart type="family">Farabaugh</namePart>
</name>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="family">Kramer</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Vallabhaneni</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Raman</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>J. Mol. Evol.</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>63</number>
</detail>
<extent unit="pages">
<start>545</start>
<end>561</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1007/s00239-005-0311-0</identifier>
<identifier type="doi">10.1007/s00239-005-0311-0</identifier>
<identifier type="doi">10.1007/s00239-005-0311-0</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C17">
<titleInfo>
<title>Programmed translational frameshifting in a gene required for yeast telomere replication</title>
</titleInfo>
<name type="personal">
<namePart type="given">DK</namePart>
<namePart type="family">Morris</namePart>
</name>
<name type="personal">
<namePart type="given">V</namePart>
<namePart type="family">Lundblad</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Curr. Biol.</title>
</titleInfo>
<part>
<date>1997</date>
<detail type="volume">
<caption>vol.</caption>
<number>7</number>
</detail>
<extent unit="pages">
<start>969</start>
<end>976</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1016/S0960-9822(06)00416-7</identifier>
<identifier type="doi">10.1016/S0960-9822(06)00416-7</identifier>
<identifier type="doi">10.1016/S0960-9822(06)00416-7</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C18">
<titleInfo>
<title>An mRNA sequence derived from the yeast EST3 gene stimulates programmed +1 translational frameshifting</title>
</titleInfo>
<name type="personal">
<namePart type="given">D</namePart>
<namePart type="family">Taliaferro</namePart>
</name>
<name type="personal">
<namePart type="given">PJ</namePart>
<namePart type="family">Farabaugh</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>RNA</title>
</titleInfo>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>606</start>
<end>613</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1261/rna.412707</identifier>
<identifier type="doi">10.1261/rna.412707</identifier>
<identifier type="doi">10.1261/rna.412707</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C19">
<titleInfo>
<title>Recoding of translation in turtle mitochondrial genomes: programmed frameshift mutations and evidence of a modified genetic code</title>
</titleInfo>
<name type="personal">
<namePart type="given">RD</namePart>
<namePart type="family">Russell</namePart>
</name>
<name type="personal">
<namePart type="given">AT</namePart>
<namePart type="family">Beckenbach</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>J. Mol. Evol.</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>67</number>
</detail>
<extent unit="pages">
<start>682</start>
<end>695</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1007/s00239-008-9179-0</identifier>
<identifier type="doi">10.1007/s00239-008-9179-0</identifier>
<identifier type="doi">10.1007/s00239-008-9179-0</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C20">
<titleInfo>
<title>Extensive frameshift at all AGG and CCC codons in the mitochondrial cytochrome c oxidase subunit 1 gene of Perkinsus marinus (Alveolata; Dinoflagellata)</title>
</titleInfo>
<name type="personal">
<namePart type="given">I</namePart>
<namePart type="family">Masuda</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Matsuzaki</namePart>
</name>
<name type="personal">
<namePart type="given">K</namePart>
<namePart type="family">Kita</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>38</number>
</detail>
<extent unit="pages">
<start>6186</start>
<end>6194</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1093/nar/gkq449</identifier>
<identifier type="doi">10.1093/nar/gkq449</identifier>
<identifier type="doi">10.1093/nar/gkq449</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C21">
<titleInfo>
<title>Complex repeat structures and novel features in the mitochondrial genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana</title>
</titleInfo>
<name type="personal">
<namePart type="given">MP</namePart>
<namePart type="family">Oudot-Le Secq</namePart>
</name>
<name type="personal">
<namePart type="given">BR</namePart>
<namePart type="family">Green</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Gene</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>476</number>
</detail>
<extent unit="pages">
<start>20</start>
<end>26</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1016/j.gene.2011.02.001</identifier>
<identifier type="doi">10.1016/j.gene.2011.02.001</identifier>
<identifier type="doi">10.1016/j.gene.2011.02.001</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C22">
<titleInfo>
<title>Hungry codons promote frameshifting in human mitochondrial ribosomes</title>
</titleInfo>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Temperley</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Richter</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Dennerlein</namePart>
</name>
<name type="personal">
<namePart type="given">RN</namePart>
<namePart type="family">Lightowlers</namePart>
</name>
<name type="personal">
<namePart type="given">ZM</namePart>
<namePart type="family">Chrzanowska-Lightowlers</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Science</title>
</titleInfo>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>327</number>
</detail>
<extent unit="pages">
<start>301</start>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1126/science.1180674</identifier>
<identifier type="doi">10.1126/science.1180674</identifier>
<identifier type="doi">10.1126/science.1180674</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C23">
<titleInfo>
<title>Euplotes telomerase contains an La motif protein produced by apparent translational frameshifting</title>
</titleInfo>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Aigner</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Lingner</namePart>
</name>
<name type="personal">
<namePart type="given">KJ</namePart>
<namePart type="family">Goodrich</namePart>
</name>
<name type="personal">
<namePart type="given">CA</namePart>
<namePart type="family">Grosshans</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Shevchenko</namePart>
</name>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Mann</namePart>
</name>
<name type="personal">
<namePart type="given">TR</namePart>
<namePart type="family">Cech</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>EMBO J.</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>19</number>
</detail>
<extent unit="pages">
<start>6230</start>
<end>6239</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1093/emboj/19.22.6230</identifier>
<identifier type="doi">10.1093/emboj/19.22.6230</identifier>
<identifier type="doi">10.1093/emboj/19.22.6230</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C24">
<titleInfo>
<title>Connection between stop codon reassignment and frequent use of shifty stop frameshifting</title>
</titleInfo>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Vallabhaneni</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Fan-Minogue</namePart>
</name>
<name type="personal">
<namePart type="given">DM</namePart>
<namePart type="family">Bedwell</namePart>
</name>
<name type="personal">
<namePart type="given">PJ</namePart>
<namePart type="family">Farabaugh</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>RNA</title>
</titleInfo>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>15</number>
</detail>
<extent unit="pages">
<start>889</start>
<end>897</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1261/rna.1508109</identifier>
<identifier type="doi">10.1261/rna.1508109</identifier>
<identifier type="doi">10.1261/rna.1508109</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C25">
<titleInfo>
<title>Normal tRNAs promote frameshifting</title>
</titleInfo>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<name type="personal">
<namePart type="given">RF</namePart>
<namePart type="family">Gesteland</namePart>
</name>
<name type="personal">
<namePart type="given">BR</namePart>
<namePart type="family">Reid</namePart>
</name>
<name type="personal">
<namePart type="given">CW</namePart>
<namePart type="family">Anderson</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Cell</title>
</titleInfo>
<part>
<date>1979</date>
<detail type="volume">
<caption>vol.</caption>
<number>18</number>
</detail>
<extent unit="pages">
<start>1119</start>
<end>1131</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1016/0092-8674(79)90225-3</identifier>
<identifier type="doi">10.1016/0092-8674(79)90225-3</identifier>
<identifier type="doi">10.1016/0092-8674(79)90225-3</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C26">
<titleInfo>
<title>A net +1 frameshift permits synthesis of thymidine kinase from a drug-resistant herpes simplex virus mutant</title>
</titleInfo>
<name type="personal">
<namePart type="given">CB</namePart>
<namePart type="family">Hwang</namePart>
</name>
<name type="personal">
<namePart type="given">B</namePart>
<namePart type="family">Horsburgh</namePart>
</name>
<name type="personal">
<namePart type="given">E</namePart>
<namePart type="family">Pelosi</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Roberts</namePart>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Digard</namePart>
</name>
<name type="personal">
<namePart type="given">DM</namePart>
<namePart type="family">Coen</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl Acad. Sci. USA</title>
</titleInfo>
<part>
<date>1994</date>
<detail type="volume">
<caption>vol.</caption>
<number>91</number>
</detail>
<extent unit="pages">
<start>5461</start>
<end>5465</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1073/pnas.91.12.5461</identifier>
<identifier type="doi">10.1073/pnas.91.12.5461</identifier>
<identifier type="doi">10.1073/pnas.91.12.5461</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C27">
<titleInfo>
<title>Slipping and sliding: frameshift mutations in herpes simplex virus thymidine kinase and drug-resistance</title>
</titleInfo>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Griffiths</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Drug Resist. Updat.</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>14</number>
</detail>
<extent unit="pages">
<start>251</start>
<end>259</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1016/j.drup.2011.08.003</identifier>
<identifier type="doi">10.1016/j.drup.2011.08.003</identifier>
<identifier type="doi">10.1016/j.drup.2011.08.003</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C28">
<titleInfo>
<title>Quantification and analysis of thymidine kinase expression from acyclovir-resistant G-string insertion and deletion mutants in herpes simplex virus-infected cells</title>
</titleInfo>
<name type="personal">
<namePart type="given">D</namePart>
<namePart type="family">Pan</namePart>
</name>
<name type="personal">
<namePart type="given">DM</namePart>
<namePart type="family">Coen</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>J. Virol.</title>
</titleInfo>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>86</number>
</detail>
<extent unit="pages">
<start>4518</start>
<end>4526</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1128/JVI.06995-11</identifier>
<identifier type="doi">10.1128/JVI.06995-11</identifier>
<identifier type="doi">10.1128/JVI.06995-11</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C29">
<titleInfo>
<title>Epitopes derived by incidental translational frameshifting give rise to a protective CTL response</title>
</titleInfo>
<name type="personal">
<namePart type="given">MB</namePart>
<namePart type="family">Zook</namePart>
</name>
<name type="personal">
<namePart type="given">MT</namePart>
<namePart type="family">Howard</namePart>
</name>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Sinnathamby</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<name type="personal">
<namePart type="given">LC</namePart>
<namePart type="family">Eisenlohr</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>J. Immunol.</title>
</titleInfo>
<part>
<date>2006</date>
<detail type="volume">
<caption>vol.</caption>
<number>176</number>
</detail>
<extent unit="pages">
<start>6928</start>
<end>6934</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C30">
<titleInfo>
<title>An overlapping protein-coding region in influenza A virus segment 3 modulates the host response</title>
</titleInfo>
<name type="personal">
<namePart type="given">BW</namePart>
<namePart type="family">Jagger</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Science</title>
</titleInfo>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>337</number>
</detail>
<extent unit="pages">
<start>199</start>
<end>204</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1126/science.1222213</identifier>
<identifier type="doi">10.1126/science.1222213</identifier>
<identifier type="doi">10.1126/science.1222213</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C31">
<titleInfo>
<title>Influenza A virus polymerase: structural insights into replication and host adaptation mechanisms</title>
</titleInfo>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Boivin</namePart>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Cusack</namePart>
</name>
<name type="personal">
<namePart type="given">RW</namePart>
<namePart type="family">Ruigrok</namePart>
</name>
<name type="personal">
<namePart type="given">DJ</namePart>
<namePart type="family">Hart</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>285</number>
</detail>
<extent unit="pages">
<start>28 411</start>
<end>28 417</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1074/jbc.R110.117531</identifier>
<identifier type="doi">10.1074/jbc.R110.117531</identifier>
<identifier type="doi">10.1074/jbc.R110.117531</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C32">
<titleInfo>
<title>Codon-anticodon binding in tRNAphe</title>
</titleInfo>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Eisinger</namePart>
</name>
<name type="personal">
<namePart type="given">B</namePart>
<namePart type="family">Feuer</namePart>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Yamane</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nat. New Biol.</title>
</titleInfo>
<part>
<date>1971</date>
<detail type="volume">
<caption>vol.</caption>
<number>231</number>
</detail>
<extent unit="pages">
<start>126</start>
<end>128</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1038/231126a0</identifier>
<identifier type="doi">10.1038/231126a0</identifier>
<identifier type="doi">10.1038/231126a0</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C33">
<titleInfo>
<title>Slippery runs, shifty stops, backward steps, and forward hops: –2, –1, +1, +2, +5, and +6 ribosomal frameshifting</title>
</titleInfo>
<name type="personal">
<namePart type="given">RB</namePart>
<namePart type="family">Weiss</namePart>
</name>
<name type="personal">
<namePart type="given">DM</namePart>
<namePart type="family">Dunn</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<name type="personal">
<namePart type="given">RF</namePart>
<namePart type="family">Gesteland</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Cold Spring Harb. Symp. Quant. Biol.</title>
</titleInfo>
<part>
<date>1987</date>
<detail type="volume">
<caption>vol.</caption>
<number>52</number>
</detail>
<extent unit="pages">
<start>687</start>
<end>693</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1101/SQB.1987.052.01.078</identifier>
<identifier type="doi">10.1101/SQB.1987.052.01.078</identifier>
<identifier type="doi">10.1101/SQB.1987.052.01.078</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C34">
<titleInfo>
<title>Programmed frameshifting in budding yeast</title>
</titleInfo>
<name type="personal">
<namePart type="given">PJ</namePart>
<namePart type="family">Farabaugh</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<name type="personal">
<namePart type="given">RF</namePart>
<namePart type="family">Gesteland</namePart>
</name>
<genre>book</genre>
<relatedItem type="host">
<titleInfo>
<title>Recoding: expansion of decoding rules enriches gene expression</title>
</titleInfo>
<originInfo>
<publisher>Springer. </publisher>
<place>
<placeTerm type="text">Heidelberg, Germany</placeTerm>
</place>
</originInfo>
<part>
<date>2010</date>
<extent unit="pages">
<start>221</start>
<end>248</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C35">
<titleInfo>
<title>Codon usage tabulated from the international DNA sequence databases: status for the year 2000</title>
</titleInfo>
<name type="personal">
<namePart type="given">Y</namePart>
<namePart type="family">Nakamura</namePart>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Gojobori</namePart>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Ikemura</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<part>
<date>2000</date>
<detail type="volume">
<caption>vol.</caption>
<number>28</number>
</detail>
<extent unit="pages">
<start>292</start>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1093/nar/28.1.292</identifier>
<identifier type="doi">10.1093/nar/28.1.292</identifier>
<identifier type="doi">10.1093/nar/28.1.292</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C36">
<titleInfo>
<title>Deciphering synonymous codons in the three domains of life: co-evolution with specific tRNA modification enzymes</title>
</titleInfo>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Grosjean</namePart>
</name>
<name type="personal">
<namePart type="given">V</namePart>
<namePart type="family">de Crécy-Lagard</namePart>
</name>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Marck</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>FEBS Lett.</title>
</titleInfo>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>584</number>
</detail>
<extent unit="pages">
<start>252</start>
<end>264</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1016/j.febslet.2009.11.052</identifier>
<identifier type="doi">10.1016/j.febslet.2009.11.052</identifier>
<identifier type="doi">10.1016/j.febslet.2009.11.052</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C37">
<titleInfo>
<title>GtRNAdb: a database of transfer RNA genes detected in genomic sequence</title>
</titleInfo>
<name type="personal">
<namePart type="given">PP</namePart>
<namePart type="family">Chan</namePart>
</name>
<name type="personal">
<namePart type="given">TM</namePart>
<namePart type="family">Lowe</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>37</number>
</detail>
<extent unit="pages">
<start>D93</start>
<end>D97</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1093/nar/gkn787</identifier>
<identifier type="doi">10.1093/nar/gkn787</identifier>
<identifier type="doi">10.1093/nar/gkn787</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C38">
<titleInfo>
<title>Codon conservation in the influenza A virus genome defines RNA packaging signals</title>
</titleInfo>
<name type="personal">
<namePart type="given">JR</namePart>
<namePart type="family">Gog</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>35</number>
</detail>
<extent unit="pages">
<start>1897</start>
<end>1907</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1093/nar/gkm087</identifier>
<identifier type="doi">10.1093/nar/gkm087</identifier>
<identifier type="doi">10.1093/nar/gkm087</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C39">
<titleInfo>
<title>Functional tRNAs with altered 3′ ends</title>
</titleInfo>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">O'Connor</namePart>
</name>
<name type="personal">
<namePart type="given">NM</namePart>
<namePart type="family">Wills</namePart>
</name>
<name type="personal">
<namePart type="given">L</namePart>
<namePart type="family">Bossi</namePart>
</name>
<name type="personal">
<namePart type="given">RF</namePart>
<namePart type="family">Gesteland</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>EMBO J.</title>
</titleInfo>
<part>
<date>1993</date>
<detail type="volume">
<caption>vol.</caption>
<number>12</number>
</detail>
<extent unit="pages">
<start>2559</start>
<end>2566</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C40">
<titleInfo>
<title>Function of the ribosomal E-site: a mutagenesis study</title>
</titleInfo>
<name type="personal">
<namePart type="given">PV</namePart>
<namePart type="family">Sergiev</namePart>
</name>
<name type="personal">
<namePart type="given">DV</namePart>
<namePart type="family">Lesnyak</namePart>
</name>
<name type="personal">
<namePart type="given">SV</namePart>
<namePart type="family">Kiparisov</namePart>
</name>
<name type="personal">
<namePart type="given">DE</namePart>
<namePart type="family">Burakovsky</namePart>
</name>
<name type="personal">
<namePart type="given">AA</namePart>
<namePart type="family">Leonov</namePart>
</name>
<name type="personal">
<namePart type="given">AA</namePart>
<namePart type="family">Bogdanov</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Brimacombe</namePart>
</name>
<name type="personal">
<namePart type="given">OA</namePart>
<namePart type="family">Dontsova</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>33</number>
</detail>
<extent unit="pages">
<start>6048</start>
<end>6056</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1093/nar/gki910</identifier>
<identifier type="doi">10.1093/nar/gki910</identifier>
<identifier type="doi">10.1093/nar/gki910</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C41">
<titleInfo>
<title>Recoding: translational bifurcations in gene expression</title>
</titleInfo>
<name type="personal">
<namePart type="given">PV</namePart>
<namePart type="family">Baranov</namePart>
</name>
<name type="personal">
<namePart type="given">RF</namePart>
<namePart type="family">Gesteland</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Gene</title>
</titleInfo>
<part>
<date>2002</date>
<detail type="volume">
<caption>vol.</caption>
<number>286</number>
</detail>
<extent unit="pages">
<start>187</start>
<end>201</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1016/S0378-1119(02)00423-7</identifier>
<identifier type="doi">10.1016/S0378-1119(02)00423-7</identifier>
<identifier type="doi">10.1016/S0378-1119(02)00423-7</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C42">
<titleInfo>
<title>Genetic analysis of the E-site during RF2 programmed frameshifting</title>
</titleInfo>
<name type="personal">
<namePart type="given">CL</namePart>
<namePart type="family">Sanders</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Curran</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>RNA</title>
</titleInfo>
<part>
<date>2007</date>
<detail type="volume">
<caption>vol.</caption>
<number>13</number>
</detail>
<extent unit="pages">
<start>1483</start>
<end>1491</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1261/rna.638707</identifier>
<identifier type="doi">10.1261/rna.638707</identifier>
<identifier type="doi">10.1261/rna.638707</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C43">
<titleInfo>
<title>A new kinetic model reveals the synergistic effect of E-, P- and A-sites on +1 ribosomal frameshifting</title>
</titleInfo>
<name type="personal">
<namePart type="given">PY</namePart>
<namePart type="family">Liao</namePart>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Gupta</namePart>
</name>
<name type="personal">
<namePart type="given">AN</namePart>
<namePart type="family">Petrov</namePart>
</name>
<name type="personal">
<namePart type="given">JD</namePart>
<namePart type="family">Dinman</namePart>
</name>
<name type="personal">
<namePart type="given">KH</namePart>
<namePart type="family">Lee</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nucleic Acids Res.</title>
</titleInfo>
<part>
<date>2008</date>
<detail type="volume">
<caption>vol.</caption>
<number>36</number>
</detail>
<extent unit="pages">
<start>2619</start>
<end>2629</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1093/nar/gkn100</identifier>
<identifier type="doi">10.1093/nar/gkn100</identifier>
<identifier type="doi">10.1093/nar/gkn100</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C44">
<titleInfo>
<title>The E site and its importance for improving accuracy and preventing frameshifts</title>
</titleInfo>
<name type="personal">
<namePart type="given">M</namePart>
<namePart type="family">Pech</namePart>
</name>
<name type="personal">
<namePart type="given">O</namePart>
<namePart type="family">Vesper</namePart>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="family">Yamamoto</namePart>
</name>
<name type="personal">
<namePart type="given">DN</namePart>
<namePart type="family">Wilson</namePart>
</name>
<name type="personal">
<namePart type="given">KH</namePart>
<namePart type="family">Nierhaus</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<name type="personal">
<namePart type="given">RF</namePart>
<namePart type="family">Gesteland</namePart>
</name>
<genre>book</genre>
<relatedItem type="host">
<titleInfo>
<title>Recoding: expansion of decoding rules enriches gene expression</title>
</titleInfo>
<originInfo>
<publisher>Springer. </publisher>
<place>
<placeTerm type="text">Heidelberg, Germany</placeTerm>
</place>
</originInfo>
<part>
<date>2010</date>
<extent unit="pages">
<start>345</start>
<end>364</end>
</extent>
</part>
</relatedItem>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C45">
<titleInfo>
<title>Quality control by the ribosome following peptide bond formation</title>
</titleInfo>
<name type="personal">
<namePart type="given">HS</namePart>
<namePart type="family">Zaher</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Green</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nature</title>
</titleInfo>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>457</number>
</detail>
<extent unit="pages">
<start>161</start>
<end>166</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1038/nature07582</identifier>
<identifier type="doi">10.1038/nature07582</identifier>
<identifier type="doi">10.1038/nature07582</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C46">
<titleInfo>
<title>Distinct response of yeast ribosomes to a miscoding event during translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">DE</namePart>
<namePart type="family">Eyler</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Green</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>RNA</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<extent unit="pages">
<start>925</start>
<end>932</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1261/rna.2623711</identifier>
<identifier type="doi">10.1261/rna.2623711</identifier>
<identifier type="doi">10.1261/rna.2623711</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C47">
<titleInfo>
<title>A primary role for release factor 3 in quality control during translation elongation in Escherichia coli</title>
</titleInfo>
<name type="personal">
<namePart type="given">HS</namePart>
<namePart type="family">Zaher</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Green</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Cell</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>147</number>
</detail>
<extent unit="pages">
<start>396</start>
<end>408</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1016/j.cell.2011.08.045</identifier>
<identifier type="doi">10.1016/j.cell.2011.08.045</identifier>
<identifier type="doi">10.1016/j.cell.2011.08.045</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C48">
<titleInfo>
<title>The ‘allosteric three-site model’ of elongation cannot be confirmed in a well-defined ribosome system from Escherichia coli</title>
</titleInfo>
<name type="personal">
<namePart type="given">YP</namePart>
<namePart type="family">Semenkov</namePart>
</name>
<name type="personal">
<namePart type="given">MV</namePart>
<namePart type="family">Rodnina</namePart>
</name>
<name type="personal">
<namePart type="given">W</namePart>
<namePart type="family">Wintermeyer</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl Acad. Sci. USA.</title>
</titleInfo>
<part>
<date>1996</date>
<detail type="volume">
<caption>vol.</caption>
<number>93</number>
</detail>
<extent unit="pages">
<start>12 183</start>
<end>12 188</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1073/pnas.93.22.12183</identifier>
<identifier type="doi">10.1073/pnas.93.22.12183</identifier>
<identifier type="doi">10.1073/pnas.93.22.12183</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C49">
<titleInfo>
<title>Real-time tRNA transit on single translating ribosomes at codon resolution</title>
</titleInfo>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="family">Uemura</namePart>
</name>
<name type="personal">
<namePart type="given">CE</namePart>
<namePart type="family">Aitken</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Korlach</namePart>
</name>
<name type="personal">
<namePart type="given">BA</namePart>
<namePart type="family">Flusberg</namePart>
</name>
<name type="personal">
<namePart type="given">SW</namePart>
<namePart type="family">Turner</namePart>
</name>
<name type="personal">
<namePart type="given">JD</namePart>
<namePart type="family">Puglisi</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Nature</title>
</titleInfo>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>464</number>
</detail>
<extent unit="pages">
<start>1012</start>
<end>1017</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1038/nature08925</identifier>
<identifier type="doi">10.1038/nature08925</identifier>
<identifier type="doi">10.1038/nature08925</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C50">
<titleInfo>
<title>Allosteric vs. spontaneous exit-site (E-site) tRNA dissociation early in protein synthesis</title>
</titleInfo>
<name type="personal">
<namePart type="given">C</namePart>
<namePart type="family">Chen</namePart>
</name>
<name type="personal">
<namePart type="given">B</namePart>
<namePart type="family">Stevens</namePart>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="family">Kaur</namePart>
</name>
<name type="personal">
<namePart type="given">Z</namePart>
<namePart type="family">Smilansky</namePart>
</name>
<name type="personal">
<namePart type="given">BS</namePart>
<namePart type="family">Cooperman</namePart>
</name>
<name type="personal">
<namePart type="given">YE</namePart>
<namePart type="family">Goldman</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl Acad. Sci. USA</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>108</number>
</detail>
<extent unit="pages">
<start>16 980</start>
<end>16 985</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1073/pnas.1106999108</identifier>
<identifier type="doi">10.1073/pnas.1106999108</identifier>
<identifier type="doi">10.1073/pnas.1106999108</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C51">
<titleInfo>
<title>Further in vitro exploration fails to support the allosteric three-site model</title>
</titleInfo>
<name type="personal">
<namePart type="given">AD</namePart>
<namePart type="family">Petropoulos</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Green</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>J. Biol. Chem.</title>
</titleInfo>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>287</number>
</detail>
<extent unit="pages">
<start>11 642</start>
<end>11 648</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1074/jbc.C111.330068</identifier>
<identifier type="doi">10.1074/jbc.C111.330068</identifier>
<identifier type="doi">10.1074/jbc.C111.330068</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C52">
<titleInfo>
<title>Non-canonical translation in RNA viruses</title>
</titleInfo>
<name type="personal">
<namePart type="given">AE</namePart>
<namePart type="family">Firth</namePart>
</name>
<name type="personal">
<namePart type="given">I</namePart>
<namePart type="family">Brierley</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>J. Gen. Virol.</title>
</titleInfo>
<part>
<date>2012</date>
<detail type="volume">
<caption>vol.</caption>
<number>93</number>
</detail>
<extent unit="pages">
<start>1385</start>
<end>1409</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1099/vir.0.042499-0</identifier>
<identifier type="doi">10.1099/vir.0.042499-0</identifier>
<identifier type="doi">10.1099/vir.0.042499-0</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C53">
<titleInfo>
<title>Analysis of the coding potential of the partially overlapping 3′ ORF in segment 5 of the plant fijiviruses</title>
</titleInfo>
<name type="personal">
<namePart type="given">AE</namePart>
<namePart type="family">Firth</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Virol. J.</title>
</titleInfo>
<part>
<date>2009</date>
<detail type="volume">
<caption>vol.</caption>
<number>17</number>
</detail>
<extent unit="pages">
<start>32</start>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1186/1743-422X-6-32</identifier>
<identifier type="doi">10.1186/1743-422X-6-32</identifier>
<identifier type="doi">10.1186/1743-422X-6-32</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C54">
<titleInfo>
<title>A –1 ribosomal frameshift in a double-stranded RNA virus of yeast forms a gag-pol fusion protein</title>
</titleInfo>
<name type="personal">
<namePart type="given">JD</namePart>
<namePart type="family">Dinman</namePart>
</name>
<name type="personal">
<namePart type="given">T</namePart>
<namePart type="family">Icho</namePart>
</name>
<name type="personal">
<namePart type="given">RB</namePart>
<namePart type="family">Wickner</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Proc. Natl Acad. Sci. USA</title>
</titleInfo>
<part>
<date>1991</date>
<detail type="volume">
<caption>vol.</caption>
<number>88</number>
</detail>
<extent unit="pages">
<start>174</start>
<end>178</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1073/pnas.88.1.174</identifier>
<identifier type="doi">10.1073/pnas.88.1.174</identifier>
<identifier type="doi">10.1073/pnas.88.1.174</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C55">
<titleInfo>
<title>A dual-luciferase reporter system for studying recoding signals</title>
</titleInfo>
<name type="personal">
<namePart type="given">G</namePart>
<namePart type="family">Grentzmann</namePart>
</name>
<name type="personal">
<namePart type="given">JA</namePart>
<namePart type="family">Ingram</namePart>
</name>
<name type="personal">
<namePart type="given">PJ</namePart>
<namePart type="family">Kelly</namePart>
</name>
<name type="personal">
<namePart type="given">RF</namePart>
<namePart type="family">Gesteland</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>RNA</title>
</titleInfo>
<part>
<date>1998</date>
<detail type="volume">
<caption>vol.</caption>
<number>4</number>
</detail>
<extent unit="pages">
<start>479</start>
<end>486</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1017/S1355838298971576</identifier>
<identifier type="doi">10.1017/S1355838298971576</identifier>
<identifier type="doi">10.1017/S1355838298971576</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C56">
<titleInfo>
<title>Processive selenocysteine incorporation during synthesis of eukaryotic selenoproteins</title>
</titleInfo>
<name type="personal">
<namePart type="given">SM</namePart>
<namePart type="family">Fixsen</namePart>
</name>
<name type="personal">
<namePart type="given">MT</namePart>
<namePart type="family">Howard</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>J. Mol. Biol.</title>
</titleInfo>
<part>
<date>2010</date>
<detail type="volume">
<caption>vol.</caption>
<number>399</number>
</detail>
<extent unit="pages">
<start>385</start>
<end>396</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1016/j.jmb.2010.04.033</identifier>
<identifier type="doi">10.1016/j.jmb.2010.04.033</identifier>
<identifier type="doi">10.1016/j.jmb.2010.04.033</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C57">
<titleInfo>
<title>Programmed ribosomal frameshifting in decoding the SARS-CoV genome</title>
</titleInfo>
<name type="personal">
<namePart type="given">PV</namePart>
<namePart type="family">Baranov</namePart>
</name>
<name type="personal">
<namePart type="given">CM</namePart>
<namePart type="family">Henderson</namePart>
</name>
<name type="personal">
<namePart type="given">CB</namePart>
<namePart type="family">Anderson</namePart>
</name>
<name type="personal">
<namePart type="given">RF</namePart>
<namePart type="family">Gesteland</namePart>
</name>
<name type="personal">
<namePart type="given">JF</namePart>
<namePart type="family">Atkins</namePart>
</name>
<name type="personal">
<namePart type="given">MT</namePart>
<namePart type="family">Howard</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Virology</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>332</number>
</detail>
<extent unit="pages">
<start>498</start>
<end>510</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1016/j.virol.2004.11.038</identifier>
<identifier type="doi">10.1016/j.virol.2004.11.038</identifier>
<identifier type="doi">10.1016/j.virol.2004.11.038</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C58">
<titleInfo>
<title>Characterization of the reconstructed 1918 Spanish influenza pandemic virus</title>
</titleInfo>
<name type="personal">
<namePart type="given">TM</namePart>
<namePart type="family">Tumpey</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Science</title>
</titleInfo>
<part>
<date>2005</date>
<detail type="volume">
<caption>vol.</caption>
<number>310</number>
</detail>
<extent unit="pages">
<start>77</start>
<end>80</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1126/science.1119392</identifier>
<identifier type="doi">10.1126/science.1119392</identifier>
<identifier type="doi">10.1126/science.1119392</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C59">
<titleInfo>
<title>A Rab11- and microtubule-dependent mechanism for cytoplasmic transport of influenza A virus viral RNA</title>
</titleInfo>
<name type="personal">
<namePart type="given">MJ</namePart>
<namePart type="family">Amorim</namePart>
</name>
<name type="personal">
<namePart type="given">EA</namePart>
<namePart type="family">Bruce</namePart>
</name>
<name type="personal">
<namePart type="given">EK</namePart>
<namePart type="family">Read</namePart>
</name>
<name type="personal">
<namePart type="given">A</namePart>
<namePart type="family">Foeglein</namePart>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Mahen</namePart>
</name>
<name type="personal">
<namePart type="given">AD</namePart>
<namePart type="family">Stuart</namePart>
</name>
<name type="personal">
<namePart type="given">P</namePart>
<namePart type="family">Digard</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>J. Virol.</title>
</titleInfo>
<part>
<date>2011</date>
<detail type="volume">
<caption>vol.</caption>
<number>85</number>
</detail>
<extent unit="pages">
<start>4143</start>
<end>4156</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1128/JVI.02606-10</identifier>
<identifier type="doi">10.1128/JVI.02606-10</identifier>
<identifier type="doi">10.1128/JVI.02606-10</identifier>
</relatedItem>
<relatedItem type="references" displayLabel="RSOB120109C60">
<titleInfo>
<title>Probability-based protein identification by searching sequence databases using mass spectrometry data</title>
</titleInfo>
<name type="personal">
<namePart type="given">DN</namePart>
<namePart type="family">Perkins</namePart>
</name>
<name type="personal">
<namePart type="given">DJ</namePart>
<namePart type="family">Pappin</namePart>
</name>
<name type="personal">
<namePart type="given">DM</namePart>
<namePart type="family">Creasy</namePart>
</name>
<name type="personal">
<namePart type="given">JS</namePart>
<namePart type="family">Cottrell</namePart>
</name>
<genre>journal</genre>
<relatedItem type="host">
<titleInfo>
<title>Electrophoresis</title>
</titleInfo>
<part>
<date>1999</date>
<detail type="volume">
<caption>vol.</caption>
<number>20</number>
</detail>
<extent unit="pages">
<start>3551</start>
<end>3567</end>
</extent>
</part>
</relatedItem>
<identifier type="uri">http://dx.doi.org/10.1002/(SICI)1522-2683(19991201)20:18%3C3551::AID-ELPS3551%3E3.0.CO;2-2</identifier>
<identifier type="doi">10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2</identifier>
<identifier type="doi">10.1002/(SICI)1522-2683(19991201)20:18%3C3551::AID-ELPS3551%3E3.0.CO;2-2</identifier>
</relatedItem>
<identifier type="istex">012F5221B39722B8C7E668A533DD5BBAC0CEFFA1</identifier>
<identifier type="ark">ark:/67375/V84-6MH98309-R</identifier>
<identifier type="DOI">10.1098/rsob.120109</identifier>
<identifier type="href">rsob120109.pdf</identifier>
<identifier type="ArticleID">rsob120109</identifier>
<accessCondition type="use and reproduction" contentType="open-access">© 2012 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original author and source are credited.</accessCondition>
<recordInfo>
<recordContentSource authority="ISTEX" authorityURI="https://loaded-corpus.data.istex.fr" valueURI="https://loaded-corpus.data.istex.fr/ark:/67375/XBH-W19DTZ70-2">RSL</recordContentSource>
<recordOrigin>Converted from (version 1.2.10) to MODS version 3.6.</recordOrigin>
<recordCreationDate encoding="w3cdtf">2020-04-30</recordCreationDate>
</recordInfo>
</mods>
<json:item>
<extension>json</extension>
<original>false</original>
<mimetype>application/json</mimetype>
<uri>https://api.istex.fr/ark:/67375/V84-6MH98309-R/record.json</uri>
</json:item>
</metadata>
<annexes>
<json:item>
<extension>jpeg</extension>
<original>true</original>
<mimetype>image/jpeg</mimetype>
<uri>https://api.istex.fr/ark:/67375/V84-6MH98309-R/annexes.jpeg</uri>
</json:item>
<json:item>
<extension>tiff</extension>
<original>true</original>
<mimetype>image/tiff</mimetype>
<uri>https://api.istex.fr/document/012F5221B39722B8C7E668A533DD5BBAC0CEFFA1/annexes/tiff</uri>
</json:item>
</annexes>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/PandemieGrippaleV1/Data/Istex/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001852 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Istex/Corpus/biblio.hfd -nk 001852 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    PandemieGrippaleV1
   |flux=    Istex
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:012F5221B39722B8C7E668A533DD5BBAC0CEFFA1
   |texte=   Ribosomal frameshifting used in influenza A virus expression occurs within the sequence UCC_UUU_CGU and is in the +1 direction
}}

Wicri

This area was generated with Dilib version V0.6.34.
Data generation: Wed Jun 10 11:04:28 2020. Site generation: Sun Mar 28 09:10:28 2021