Serveur d'exploration sur la paléopathologie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs

Identifieur interne : 000022 ( Pmc/Corpus ); précédent : 000021; suivant : 000023

First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs

Auteurs : Jorge Cubo ; Holly Woodward ; Ewan Wolff ; John R. Horner

Source :

RBID : PMC:4495995

Abstract

Predator confrontation or predator evasion frequently produces bone fractures in potential prey in the wild. Although there are reports of healed bone injuries and pathologies in non-avian dinosaurs, no previously published instances of biomechanically adaptive bone modeling exist. Two tibiae from an ontogenetic sample of fifty specimens of the herbivorous dinosaur Maiasaura peeblesorum (Ornithopoda: Hadrosaurinae) exhibit exostoses. We show that these outgrowths are cases of biomechanically adaptive periosteal bone modeling resulting from overstrain on the tibia after a fibula fracture. Histological and biomechanical results are congruent with predictions derived from this hypothesis. Histologically, the outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high growth rates, as expected in a process of rapid strain equilibration response. These outgrowths show greater compactness at the periphery, where tensile and compressive biomechanical constraints are higher. Moreover, these outgrowths increase the maximum bending strength in the direction of the stresses derived from locomotion. They are located on the antero-lateral side of the tibia, as expected in a presumably bipedal one year old individual, and in the posterior position of the tibia, as expected in a presumably quadrupedal individual at least four years of age. These results reinforce myological evidence suggesting that Maiasaura underwent an ontogenetic shift from the primitive ornithischian bipedal condition when young to a derived quadrupedal posture when older.


Url:
DOI: 10.1371/journal.pone.0131131
PubMed: 26153689
PubMed Central: 4495995

Links to Exploration step

PMC:4495995

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs</title>
<author>
<name sortKey="Cubo, Jorge" sort="Cubo, Jorge" uniqKey="Cubo J" first="Jorge" last="Cubo">Jorge Cubo</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Sorbonne Universités, UPMC Univ Paris 06, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), 4 Place Jussieu, BC19, F-75005, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>CNRS, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F-75005, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Woodward, Holly" sort="Woodward, Holly" uniqKey="Woodward H" first="Holly" last="Woodward">Holly Woodward</name>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Montana State University, Museum of the Rockies, 600 West Kagy Boulevard, Bozeman, Montana, 59717, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff004">
<addr-line>Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, 1111 W. 17th St., Tulsa, OK, 74107, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wolff, Ewan" sort="Wolff, Ewan" uniqKey="Wolff E" first="Ewan" last="Wolff">Ewan Wolff</name>
<affiliation>
<nlm:aff id="aff005">
<addr-line>Small Animal Internal Medicine, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, IN, 47907, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Horner, John R" sort="Horner, John R" uniqKey="Horner J" first="John R." last="Horner">John R. Horner</name>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Montana State University, Museum of the Rockies, 600 West Kagy Boulevard, Bozeman, Montana, 59717, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">26153689</idno>
<idno type="pmc">4495995</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495995</idno>
<idno type="RBID">PMC:4495995</idno>
<idno type="doi">10.1371/journal.pone.0131131</idno>
<date when="2015">2015</date>
<idno type="wicri:Area/Pmc/Corpus">000022</idno>
<idno type="wicri:explorRef" wicri:stream="Pmc" wicri:step="Corpus" wicri:corpus="PMC">000022</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs</title>
<author>
<name sortKey="Cubo, Jorge" sort="Cubo, Jorge" uniqKey="Cubo J" first="Jorge" last="Cubo">Jorge Cubo</name>
<affiliation>
<nlm:aff id="aff001">
<addr-line>Sorbonne Universités, UPMC Univ Paris 06, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), 4 Place Jussieu, BC19, F-75005, Paris, France</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff002">
<addr-line>CNRS, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F-75005, Paris, France</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Woodward, Holly" sort="Woodward, Holly" uniqKey="Woodward H" first="Holly" last="Woodward">Holly Woodward</name>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Montana State University, Museum of the Rockies, 600 West Kagy Boulevard, Bozeman, Montana, 59717, United States of America</addr-line>
</nlm:aff>
</affiliation>
<affiliation>
<nlm:aff id="aff004">
<addr-line>Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, 1111 W. 17th St., Tulsa, OK, 74107, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Wolff, Ewan" sort="Wolff, Ewan" uniqKey="Wolff E" first="Ewan" last="Wolff">Ewan Wolff</name>
<affiliation>
<nlm:aff id="aff005">
<addr-line>Small Animal Internal Medicine, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, IN, 47907, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
<author>
<name sortKey="Horner, John R" sort="Horner, John R" uniqKey="Horner J" first="John R." last="Horner">John R. Horner</name>
<affiliation>
<nlm:aff id="aff003">
<addr-line>Montana State University, Museum of the Rockies, 600 West Kagy Boulevard, Bozeman, Montana, 59717, United States of America</addr-line>
</nlm:aff>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PLoS ONE</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>Predator confrontation or predator evasion frequently produces bone fractures in potential prey in the wild. Although there are reports of healed bone injuries and pathologies in non-avian dinosaurs, no previously published instances of biomechanically adaptive bone modeling exist. Two tibiae from an ontogenetic sample of fifty specimens of the herbivorous dinosaur
<italic>Maiasaura peeblesorum</italic>
(Ornithopoda: Hadrosaurinae) exhibit exostoses. We show that these outgrowths are cases of biomechanically adaptive periosteal bone modeling resulting from overstrain on the tibia after a fibula fracture. Histological and biomechanical results are congruent with predictions derived from this hypothesis. Histologically, the outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high growth rates, as expected in a process of rapid strain equilibration response. These outgrowths show greater compactness at the periphery, where tensile and compressive biomechanical constraints are higher. Moreover, these outgrowths increase the maximum bending strength in the direction of the stresses derived from locomotion. They are located on the antero-lateral side of the tibia, as expected in a presumably bipedal one year old individual, and in the posterior position of the tibia, as expected in a presumably quadrupedal individual at least four years of age. These results reinforce myological evidence suggesting that
<italic>Maiasaura</italic>
underwent an ontogenetic shift from the primitive ornithischian bipedal condition when young to a derived quadrupedal posture when older.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Horner, Jr" uniqKey="Horner J">JR Horner</name>
</author>
<author>
<name sortKey="Ricqles, A" uniqKey="Ricqles A">A Ricqlès</name>
</author>
<author>
<name sortKey="Padian, K" uniqKey="Padian K">K Padian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horner, Jr" uniqKey="Horner J">JR Horner</name>
</author>
<author>
<name sortKey="Padian, K" uniqKey="Padian K">K Padian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bybee, Pj" uniqKey="Bybee P">PJ Bybee</name>
</author>
<author>
<name sortKey="Lee, Ah" uniqKey="Lee A">AH Lee</name>
</author>
<author>
<name sortKey="Lamm, Et" uniqKey="Lamm E">ET Lamm</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mead, Aj" uniqKey="Mead A">AJ Mead</name>
</author>
<author>
<name sortKey="Patterson, Db" uniqKey="Patterson D">DB Patterson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schultz, Ah" uniqKey="Schultz A">AH Schultz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, Me" uniqKey="Taylor M">ME Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rothschild, Bm" uniqKey="Rothschild B">BM Rothschild</name>
</author>
<author>
<name sortKey="Rothschild, C" uniqKey="Rothschild C">C Rothschild</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcwhinney, L" uniqKey="Mcwhinney L">L McWhinney</name>
</author>
<author>
<name sortKey="Carpenter, K" uniqKey="Carpenter K">K Carpenter</name>
</author>
<author>
<name sortKey="Rothschild, B" uniqKey="Rothschild B">B Rothschild</name>
</author>
<author>
<name sortKey="Tanke, Dh" uniqKey="Tanke D">DH Tanke</name>
</author>
<author>
<name sortKey="Carpenter, K" uniqKey="Carpenter K">K Carpenter</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmitt, Jg" uniqKey="Schmitt J">JG Schmitt</name>
</author>
<author>
<name sortKey="Jackson, Fd" uniqKey="Jackson F">FD Jackson</name>
</author>
<author>
<name sortKey="Hanna, Rr" uniqKey="Hanna R">RR Hanna</name>
</author>
<author>
<name sortKey="Eberth, D" uniqKey="Eberth D">D Eberth</name>
</author>
<author>
<name sortKey="Evans, D" uniqKey="Evans D">D Evans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Horner, Jr" uniqKey="Horner J">JR Horner</name>
</author>
<author>
<name sortKey="De Ricqles, A" uniqKey="De Ricqles A">A de Ricqles</name>
</author>
<author>
<name sortKey="Padian, K" uniqKey="Padian K">K Padian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Castanet, J" uniqKey="Castanet J">J Castanet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bourdon, E" uniqKey="Bourdon E">E Bourdon</name>
</author>
<author>
<name sortKey="Castanet, J" uniqKey="Castanet J">J Castanet</name>
</author>
<author>
<name sortKey="De Ricqles, A" uniqKey="De Ricqles A">A de Ricqles</name>
</author>
<author>
<name sortKey="Scofield, P" uniqKey="Scofield P">P Scofield</name>
</author>
<author>
<name sortKey="Tennyson, A" uniqKey="Tennyson A">A Tennyson</name>
</author>
<author>
<name sortKey="Lamrous, H" uniqKey="Lamrous H">H Lamrous</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Doube, M" uniqKey="Doube M">M Doube</name>
</author>
<author>
<name sortKey="Klosowski, Mm" uniqKey="Klosowski M">MM Klosowski</name>
</author>
<author>
<name sortKey="Arganda Carreras, I" uniqKey="Arganda Carreras I">I Arganda-Carreras</name>
</author>
<author>
<name sortKey="Cordelieres, Fp" uniqKey="Cordelieres F">FP Cordelières</name>
</author>
<author>
<name sortKey="Dougherty, Rp" uniqKey="Dougherty R">RP Dougherty</name>
</author>
<author>
<name sortKey="Jackson, Js" uniqKey="Jackson J">JS Jackson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lee, Tc" uniqKey="Lee T">TC Lee</name>
</author>
<author>
<name sortKey="Staines, A" uniqKey="Staines A">A Staines</name>
</author>
<author>
<name sortKey="Taylor, D" uniqKey="Taylor D">D Taylor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lanyon, Le" uniqKey="Lanyon L">LE Lanyon</name>
</author>
<author>
<name sortKey="Goodship, Ae" uniqKey="Goodship A">AE Goodship</name>
</author>
<author>
<name sortKey="Pye, Cj" uniqKey="Pye C">CJ Pye</name>
</author>
<author>
<name sortKey="Macfie, Jh" uniqKey="Macfie J">JH MacFie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Goodship, Ae" uniqKey="Goodship A">AE Goodship</name>
</author>
<author>
<name sortKey="Lanyon, Le" uniqKey="Lanyon L">LE Lanyon</name>
</author>
<author>
<name sortKey="Mcfie, H" uniqKey="Mcfie H">H McFie</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Margerie, E" uniqKey="Margerie E">E Margerie</name>
</author>
<author>
<name sortKey="Robin, Jp" uniqKey="Robin J">JP Robin</name>
</author>
<author>
<name sortKey="Verrier, D" uniqKey="Verrier D">D Verrier</name>
</author>
<author>
<name sortKey="Cubo, J" uniqKey="Cubo J">J Cubo</name>
</author>
<author>
<name sortKey="Groscolas, R" uniqKey="Groscolas R">R Groscolas</name>
</author>
<author>
<name sortKey="Castanet, J" uniqKey="Castanet J">J Castanet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Montes, L" uniqKey="Montes L">L Montes</name>
</author>
<author>
<name sortKey="Le Roy, N" uniqKey="Le Roy N">N Le Roy</name>
</author>
<author>
<name sortKey="Perret, M" uniqKey="Perret M">M Perret</name>
</author>
<author>
<name sortKey="Buffrenil, V" uniqKey="Buffrenil V">V Buffrénil</name>
</author>
<author>
<name sortKey="Castanet, J" uniqKey="Castanet J">J Castanet</name>
</author>
<author>
<name sortKey="Cubo, J" uniqKey="Cubo J">J Cubo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cubo, J" uniqKey="Cubo J">J Cubo</name>
</author>
<author>
<name sortKey="Casinos, A" uniqKey="Casinos A">A Casinos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Casinos, A" uniqKey="Casinos A">A Casinos</name>
</author>
<author>
<name sortKey="Cubo, J" uniqKey="Cubo J">J Cubo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="De Margerie, E" uniqKey="De Margerie E">E De Margerie</name>
</author>
<author>
<name sortKey="Cubo, J" uniqKey="Cubo J">J Cubo</name>
</author>
<author>
<name sortKey="Castanet, J" uniqKey="Castanet J">J Castanet</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Cubo, J" uniqKey="Cubo J">J Cubo</name>
</author>
<author>
<name sortKey="Casinos, A" uniqKey="Casinos A">A Casinos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wallace, Ij" uniqKey="Wallace I">IJ Wallace</name>
</author>
<author>
<name sortKey="Demes, B" uniqKey="Demes B">B Demes</name>
</author>
<author>
<name sortKey="Mongle, C" uniqKey="Mongle C">C Mongle</name>
</author>
<author>
<name sortKey="Pearson, Om" uniqKey="Pearson O">OM Pearson</name>
</author>
<author>
<name sortKey="Polk, Jd" uniqKey="Polk J">JD Polk</name>
</author>
<author>
<name sortKey="Lieberman, De" uniqKey="Lieberman D">DE Lieberman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yang, P F" uniqKey="Yang P">P-F Yang</name>
</author>
<author>
<name sortKey="Sanno, M" uniqKey="Sanno M">M Sanno</name>
</author>
<author>
<name sortKey="Ganse, B" uniqKey="Ganse B">B Ganse</name>
</author>
<author>
<name sortKey="Koy, T" uniqKey="Koy T">T Koy</name>
</author>
<author>
<name sortKey="Brueggemann, G P" uniqKey="Brueggemann G">G-P Brueggemann</name>
</author>
<author>
<name sortKey="Mueller, Lp" uniqKey="Mueller L">LP Mueller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dilkes, Dw" uniqKey="Dilkes D">DW Dilkes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Judex, S" uniqKey="Judex S">S Judex</name>
</author>
<author>
<name sortKey="Gross, Ts" uniqKey="Gross T">TS Gross</name>
</author>
<author>
<name sortKey="Zernicke, Rf" uniqKey="Zernicke R">RF Zernicke</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lieberman, De" uniqKey="Lieberman D">DE Lieberman</name>
</author>
<author>
<name sortKey="Polk, Jd" uniqKey="Polk J">JD Polk</name>
</author>
<author>
<name sortKey="Demes, B" uniqKey="Demes B">B Demes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ruff, C" uniqKey="Ruff C">C Ruff</name>
</author>
<author>
<name sortKey="Hayes, W" uniqKey="Hayes W">W Hayes</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Main, Rp" uniqKey="Main R">RP Main</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bertram, J" uniqKey="Bertram J">J Bertram</name>
</author>
<author>
<name sortKey="Biewener, A" uniqKey="Biewener A">A Biewener</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lieberman, De" uniqKey="Lieberman D">DE Lieberman</name>
</author>
<author>
<name sortKey="Pearson, Om" uniqKey="Pearson O">OM Pearson</name>
</author>
<author>
<name sortKey="Polk, Jd" uniqKey="Polk J">JD Polk</name>
</author>
<author>
<name sortKey="Demes, B" uniqKey="Demes B">B Demes</name>
</author>
<author>
<name sortKey="Crompton, Aw" uniqKey="Crompton A">AW Crompton</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Edeiken, J" uniqKey="Edeiken J">J Edeiken</name>
</author>
<author>
<name sortKey="Hodes, Pj" uniqKey="Hodes P">PJ Hodes</name>
</author>
<author>
<name sortKey="Caplan, Lh" uniqKey="Caplan L">LH Caplan</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, Wb" uniqKey="Miller W">WB Miller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Huchzermeyer, Fw" uniqKey="Huchzermeyer F">FW Huchzermeyer</name>
</author>
<author>
<name sortKey="Cooper, Je" uniqKey="Cooper J">JE Cooper</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reece, Rl" uniqKey="Reece R">RL Reece</name>
</author>
<author>
<name sortKey="Beddome, Vd" uniqKey="Beddome V">VD Beddome</name>
</author>
<author>
<name sortKey="Barr, Da" uniqKey="Barr D">DA Barr</name>
</author>
<author>
<name sortKey="Scott, Pc" uniqKey="Scott P">PC Scott</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boyde, A" uniqKey="Boyde A">A Boyde</name>
</author>
<author>
<name sortKey="Banes, Aj" uniqKey="Banes A">AJ Banes</name>
</author>
<author>
<name sortKey="Dillaman, Rm" uniqKey="Dillaman R">RM Dillaman</name>
</author>
<author>
<name sortKey="Mechanic, Gl" uniqKey="Mechanic G">GL Mechanic</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schmidt, Ev" uniqKey="Schmidt E">EV Schmidt</name>
</author>
<author>
<name sortKey="Smith, Re" uniqKey="Smith R">RE Smith</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Brothwell, D" uniqKey="Brothwell D">D Brothwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Campbell, Jg" uniqKey="Campbell J">JG Campbell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Chinsamy, A" uniqKey="Chinsamy A">A Chinsamy</name>
</author>
<author>
<name sortKey="Tumarkin Deratzian, A" uniqKey="Tumarkin Deratzian A">A Tumarkin-Deratzian</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolff, Eds" uniqKey="Wolff E">EDS Wolff</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wolff, Eds" uniqKey="Wolff E">EDS Wolff</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">PLoS One</journal-id>
<journal-id journal-id-type="iso-abbrev">PLoS ONE</journal-id>
<journal-id journal-id-type="publisher-id">plos</journal-id>
<journal-id journal-id-type="pmc">plosone</journal-id>
<journal-title-group>
<journal-title>PLoS ONE</journal-title>
</journal-title-group>
<issn pub-type="epub">1932-6203</issn>
<publisher>
<publisher-name>Public Library of Science</publisher-name>
<publisher-loc>San Francisco, CA USA</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">26153689</article-id>
<article-id pub-id-type="pmc">4495995</article-id>
<article-id pub-id-type="doi">10.1371/journal.pone.0131131</article-id>
<article-id pub-id-type="publisher-id">PONE-D-15-12202</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Research Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs</article-title>
<alt-title alt-title-type="running-head">Biomechanically Adaptive Bone Modeling in
<italic>Maiasaura</italic>
</alt-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Cubo</surname>
<given-names>Jorge</given-names>
</name>
<xref ref-type="aff" rid="aff001">
<sup>1</sup>
</xref>
<xref ref-type="aff" rid="aff002">
<sup>2</sup>
</xref>
<xref rid="cor001" ref-type="corresp">*</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Woodward</surname>
<given-names>Holly</given-names>
</name>
<xref ref-type="aff" rid="aff003">
<sup>3</sup>
</xref>
<xref ref-type="aff" rid="aff004">
<sup>4</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Wolff</surname>
<given-names>Ewan</given-names>
</name>
<xref ref-type="aff" rid="aff005">
<sup>5</sup>
</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Horner</surname>
<given-names>John R.</given-names>
</name>
<xref ref-type="aff" rid="aff003">
<sup>3</sup>
</xref>
</contrib>
</contrib-group>
<aff id="aff001">
<label>1</label>
<addr-line>Sorbonne Universités, UPMC Univ Paris 06, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), 4 Place Jussieu, BC19, F-75005, Paris, France</addr-line>
</aff>
<aff id="aff002">
<label>2</label>
<addr-line>CNRS, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP), F-75005, Paris, France</addr-line>
</aff>
<aff id="aff003">
<label>3</label>
<addr-line>Montana State University, Museum of the Rockies, 600 West Kagy Boulevard, Bozeman, Montana, 59717, United States of America</addr-line>
</aff>
<aff id="aff004">
<label>4</label>
<addr-line>Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Sciences, 1111 W. 17th St., Tulsa, OK, 74107, United States of America</addr-line>
</aff>
<aff id="aff005">
<label>5</label>
<addr-line>Small Animal Internal Medicine, Purdue University College of Veterinary Medicine, 625 Harrison Street, West Lafayette, IN, 47907, United States of America</addr-line>
</aff>
<contrib-group>
<contrib contrib-type="editor">
<name>
<surname>Farke</surname>
<given-names>Andrew A.</given-names>
</name>
<role>Editor</role>
<xref ref-type="aff" rid="edit1"></xref>
</contrib>
</contrib-group>
<aff id="edit1">
<addr-line>Raymond M. Alf Museum of Paleontology, UNITED STATES</addr-line>
</aff>
<author-notes>
<fn fn-type="conflict" id="coi001">
<p>
<bold>Competing Interests: </bold>
The authors have declared that no competing interests exist.</p>
</fn>
<fn fn-type="con" id="contrib001">
<p>Conceived and designed the experiments: JC HW EW JRH. Performed the experiments: JC HW EW JRH. Analyzed the data: JC HW EW JRH. Contributed reagents/materials/analysis tools: JC HW EW JRH. Wrote the paper: JC HW EW JRH. Proposed the adaptive bone modeling hypothesis: JC.</p>
</fn>
<corresp id="cor001">* E-mail:
<email>jorge.cubo_garcia@upmc.fr</email>
</corresp>
</author-notes>
<pub-date pub-type="epub">
<day>8</day>
<month>7</month>
<year>2015</year>
</pub-date>
<pub-date pub-type="collection">
<year>2015</year>
</pub-date>
<volume>10</volume>
<issue>7</issue>
<elocation-id>e0131131</elocation-id>
<history>
<date date-type="received">
<day>23</day>
<month>3</month>
<year>2015</year>
</date>
<date date-type="accepted">
<day>27</day>
<month>5</month>
<year>2015</year>
</date>
</history>
<permissions>
<copyright-year>2015</copyright-year>
<copyright-holder>Cubo et al</copyright-holder>
<license xlink:href="http://creativecommons.org/licenses/by/4.0/">
<license-p>This is an open access article distributed under the terms of the
<ext-link ext-link-type="uri" xlink:href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution License</ext-link>
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited</license-p>
</license>
</permissions>
<self-uri content-type="pdf" xlink:type="simple" xlink:href="pone.0131131.pdf"></self-uri>
<abstract>
<p>Predator confrontation or predator evasion frequently produces bone fractures in potential prey in the wild. Although there are reports of healed bone injuries and pathologies in non-avian dinosaurs, no previously published instances of biomechanically adaptive bone modeling exist. Two tibiae from an ontogenetic sample of fifty specimens of the herbivorous dinosaur
<italic>Maiasaura peeblesorum</italic>
(Ornithopoda: Hadrosaurinae) exhibit exostoses. We show that these outgrowths are cases of biomechanically adaptive periosteal bone modeling resulting from overstrain on the tibia after a fibula fracture. Histological and biomechanical results are congruent with predictions derived from this hypothesis. Histologically, the outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high growth rates, as expected in a process of rapid strain equilibration response. These outgrowths show greater compactness at the periphery, where tensile and compressive biomechanical constraints are higher. Moreover, these outgrowths increase the maximum bending strength in the direction of the stresses derived from locomotion. They are located on the antero-lateral side of the tibia, as expected in a presumably bipedal one year old individual, and in the posterior position of the tibia, as expected in a presumably quadrupedal individual at least four years of age. These results reinforce myological evidence suggesting that
<italic>Maiasaura</italic>
underwent an ontogenetic shift from the primitive ornithischian bipedal condition when young to a derived quadrupedal posture when older.</p>
</abstract>
<funding-group>
<funding-statement>Funding and support for HW was provided by Gerry Ohrstrom, the Museum of the Rockies, the Jurassic Foundation, the Geological Society of America, and NSF grant #EAR 8705986. Funding and support for JC was provided by the CNRS (France), the UPMC-Sorbonne Universités (France) and by the grants CGL-2011-23919 and CGL-2012-34459 of the Spanish Ministry of Economy and Competitiveness. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.</funding-statement>
</funding-group>
<counts>
<fig-count count="4"></fig-count>
<table-count count="0"></table-count>
<page-count count="11"></page-count>
</counts>
<custom-meta-group>
<custom-meta id="data-availability">
<meta-name>Data Availability</meta-name>
<meta-value>All data underlying the findings in our study are freely available in the manuscript and in a public repository (high resolution images of tibiae examined in this report can be downloaded from Morphobank
<ext-link ext-link-type="uri" xlink:href="http://www.morphobank.org">www.morphobank.org</ext-link>
; project P2136).</meta-value>
</custom-meta>
</custom-meta-group>
</article-meta>
<notes>
<title>Data Availability</title>
<p>All data underlying the findings in our study are freely available in the manuscript and in a public repository (high resolution images of tibiae examined in this report can be downloaded from Morphobank
<ext-link ext-link-type="uri" xlink:href="http://www.morphobank.org">www.morphobank.org</ext-link>
; project P2136).</p>
</notes>
</front>
<body>
<sec sec-type="intro" id="sec001">
<title>Introduction</title>
<p>Intensive paleontological fieldwork over the last three decades has produced a rich collection of non-avian dinosaur fossils permitting detailed ontogenetic descriptions and paleobiological estimations of life history traits using bone histology (e.g.,
<italic>Maiasaura</italic>
[
<xref rid="pone.0131131.ref001" ref-type="bibr">1</xref>
],
<italic>Tyrannosaurus</italic>
[
<xref rid="pone.0131131.ref002" ref-type="bibr">2</xref>
],
<italic>Allosaurus</italic>
[
<xref rid="pone.0131131.ref003" ref-type="bibr">3</xref>
]). These collections also allow analyses on the incidence of healed skeletal injuries, or bone abnormalities. Moderate to high incidences of healed skeletal injuries have been reported in natural populations of extant species: e.g., 64% (n = 61) in the Virginia opossum [
<xref rid="pone.0131131.ref004" ref-type="bibr">4</xref>
]; 36% (n = 118) in gibbons [
<xref rid="pone.0131131.ref005" ref-type="bibr">5</xref>
]; 15% (n = 308) in African viverrids [
<xref rid="pone.0131131.ref006" ref-type="bibr">6</xref>
]. We have found two cases of exostoses (4%; n = 50) in the tibiae belonging to an ontogenetic sample of
<italic>Maiasaura peeblesorum</italic>
. This study is aimed at testing hypotheses on the proximal causation of these bone outgrowths.</p>
<p>Bone periostitis is a common bone abnormality easily recognized by the expansion of diaphyseal contours (outgrowths) and involving an alteration in bone surface texture [
<xref rid="pone.0131131.ref007" ref-type="bibr">7</xref>
]. Such features are the outcome of three groups of aetiologies: trauma, local infection, and collateral effects of other diseases including neoplasms and metabolic diseases [
<xref rid="pone.0131131.ref008" ref-type="bibr">8</xref>
]. Our comparisons with modern vertebrates suggest that the reported exostoses in the tibiae of
<italic>Maiasaura</italic>
are the outcome of trauma (fibula fracture). Moreover, the topological position of these outgrowths is interpreted as evidence for an ontogenetic shift from a bipedal to a quadrupedal posture in
<italic>Maiasaura</italic>
.</p>
</sec>
<sec sec-type="materials|methods" id="sec002">
<title>Material and Methods</title>
<p>Over more than thirty years, the Museum of the Rockies (MOR; Bozeman, MT) has prepared disarticulated
<italic>Maiasaura peeblesorum</italic>
fossils collected from a rich, monodominant bonebed in the Campanian sediments of the Two Medicine Formation [
<xref rid="pone.0131131.ref009" ref-type="bibr">9</xref>
]. Fifty tibiae from that bonebed were used in a population histology analysis, representing individuals from one year of age through skeletal maturity (Repository: Museum of the Rockies, Montana State University, 600 West Kagy Boulevard, Bozeman, Montana 59717 USA). The minimum number of individuals, based on the number of right tibiae, is 32. If each tibia represents a distinct individual, then the maximum number sampled is 50. Two tibiae (MOR 005-T9 and MOR 005-T42) exhibited exostoses. No permits were required for the described study because the fossils were collected on land owned by the Museum of the Rockies Inc.</p>
<p>Thin sections were prepared from 0.3 cm thick wafers of bone removed transversely from either side of the minimum diaphyseal circumference of
<italic>Maiasaura</italic>
tibiae. Thin section slides were processed using a Buehler Ecomet 4 variable speed grinder, using the following sequence of grit papers: 60, 180, 320, 600, and 800. Completed slides were analysed using a Nikon Optiphot-Pol polarizing microscope at either 10 X or 40 X total magnification, and photomicrographs were taken incrementally using a Nikon DS-Fi1 digital sight camera. The software package NIS-Elements BR 3.0 was used to create a single image from multiple photographs, so that composite images of the tibia thin sections have a mosaic appearance. Minimum age of
<italic>Maiasaura</italic>
individuals was determined by counting the number of annually deposited lines of arrested growth (see [
<xref rid="pone.0131131.ref010" ref-type="bibr">10</xref>
<xref rid="pone.0131131.ref012" ref-type="bibr">12</xref>
] for descriptions of skeletochronology methods). High resolution images of tibiae examined in this report can be downloaded from Morphobank (
<ext-link ext-link-type="uri" xlink:href="http://www.morphobank.org">www.morphobank.org</ext-link>
; project P2136).</p>
<p>Three types of analyses were performed on these sections: histological (identification of bone tissue types and qualitative comparisons of bone compactness), biomechanical (quantification of the maximum second moment of the area, proportional to the bending strength, and its orientation using BoneJ [
<xref rid="pone.0131131.ref013" ref-type="bibr">13</xref>
])), and paleopathological (analysis of possible explanatory aetiologies).</p>
</sec>
<sec id="sec003">
<title>Results and Discussion</title>
<p>The ontogenetic series of fifty tibiae of
<italic>Maiasaura peeblesorum</italic>
analyzed contains two tibiae (MOR 005-T9 and MOR 005-T42) exhibiting exostoses (Figs
<xref rid="pone.0131131.g001" ref-type="fig">1</xref>
and
<xref rid="pone.0131131.g002" ref-type="fig">2</xref>
). On tibia MOR 005-T9, there is no visual indication of any lesion or outgrowth on the diaphysis (
<xref rid="pone.0131131.g001" ref-type="fig">Fig 1</xref>
). On MOR 005-T42, there is a distinct bulge in the bone, approximately 20 cm in length, but again the diaphyseal surface is smooth (
<xref rid="pone.0131131.g001" ref-type="fig">Fig 1</xref>
). Because many of the bones from this bonebed are tectonically distorted or deformed, the unusual appearance of this specimen went unnoticed until histologically sectioned.</p>
<fig id="pone.0131131.g001" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131131.g001</object-id>
<label>Fig 1</label>
<caption>
<title>Overall views of the bones showing outgrowths.</title>
<p>(A) Right tibiae of a one year old
<italic>Maiasaura</italic>
specimen and (B) a four year old specimen. The red lines indicate where the histological sample was taken. Proximal is to the left, distal to the right. Scale bar equals 10 cm.</p>
</caption>
<graphic xlink:href="pone.0131131.g001"></graphic>
</fig>
<fig id="pone.0131131.g002" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131131.g002</object-id>
<label>Fig 2</label>
<caption>
<title>Bone cross-sections showing the general histological aspect of the outgrowths.</title>
<p>(A) Right tibiae of a presumably bipedal
<italic>Maiasaura</italic>
specimen and (B) a presumably quadrupedal specimen. Scale bar for bone sections equals 1 cm. Abbreviations: Ant., anterior; Lat., lateral; Med., medial; Post., posterior.</p>
</caption>
<graphic xlink:href="pone.0131131.g002"></graphic>
</fig>
<p>Experimental work (osteotomy) simulating the effects of a fracture in a zeugopodial bone (the ulna) produces increased strains in the adjacent zeugopodial element (the radius), promoting bone modeling (bone formation occurs over primary bone) and/or remodeling (bone formation occurs on a surface previously resorbed by osteoclasts, intracortically, at the periosteum or at the endosteum) [
<xref rid="pone.0131131.ref014" ref-type="bibr">14</xref>
<xref rid="pone.0131131.ref016" ref-type="bibr">16</xref>
]. In adult sheep, ulnar osteotomy produces both intracortical remodeling and periosteal modeling in the radius [
<xref rid="pone.0131131.ref014" ref-type="bibr">14</xref>
,
<xref rid="pone.0131131.ref015" ref-type="bibr">15</xref>
], whereas in still-growing young pigs ulnar osteotomy produces endosteal remodeling and periosteal “explosive” growth (modeling) in the radius [
<xref rid="pone.0131131.ref016" ref-type="bibr">16</xref>
]. Consistently, the exostoses found in the two
<italic>Maiasaura</italic>
tibiae are hypothesized to be cases of biomechanically adaptive periosteal bone modeling resulting from overstrain on the tibia after a fibula fracture.</p>
<sec id="sec004">
<title>(a) Histological analyses</title>
<p>The cortex of
<italic>Maisaura</italic>
tibia is mainly formed by laminar fibrolamellar bone tissue interrupted by lines of arrested growth (Figs
<xref rid="pone.0131131.g002" ref-type="fig">2</xref>
and
<xref rid="pone.0131131.g003" ref-type="fig">3</xref>
). Fibula fracture may have produced instantaneous biomechanical overstrain on the adjacent tibia, necessitating rapid cortical compensation via directional outgrowths. So we expect to find a bone tissue formed at very high growth rates. The histological architecture of the
<italic>Maiasaura</italic>
tibial outgrowths consists of directional radial fibrolamellar periosteal bone tissue, involving two layers of periosteal growth in the small tibia (38.4 cm length) from a one year old specimen (MOR 005-T9) and a single layer in a larger tibia (90.5 cm length) from an immature individual at least four years of age (MOR 005-T42) (
<xref rid="pone.0131131.g003" ref-type="fig">Fig 3</xref>
). According to uniformitarianism, the same natural laws and rules (e.g. Amprino’s rule) that operate now have operated in the past. Amprino’s rule suggests a relationship between bone growth rates and bone tissue types [
<xref rid="pone.0131131.ref017" ref-type="bibr">17</xref>
]. Radial fibrolamellar bone tissue type is found in vertebrates under natural (up to 171 μm/day in the King Penguin [
<xref rid="pone.0131131.ref017" ref-type="bibr">17</xref>
]) and artificial (47 μm/day in the Chicken [
<xref rid="pone.0131131.ref018" ref-type="bibr">18</xref>
]) selection for very high bone growth rates. Thus the observation of radial fibrolamellar bone tissue in the outgrowths of
<italic>Maiasaura</italic>
suggests that they were formed at very high bone growth rates. Physical activity may stimulate rapid bone growth, particularly in young individuals. However, the discontinuity observed between the cortical bone and the outgrowths in both specimens (MOR 005-T9 and MOR 005-T42) suggests an abrupt change in mechanical constraints compatible with fibula fracture. Always in the context of uniformitarianism, the finding of rapidly formed radial fibrolamellar bone tissue in the young pig radius after ulnar osteotomy [
<xref rid="pone.0131131.ref016" ref-type="bibr">16</xref>
] is congruent with our hypothesis. The observed cortical response in the growing pigs [
<xref rid="pone.0131131.ref016" ref-type="bibr">16</xref>
] provides an appropriate modern analogue to the condition observed in the fossil tibiae. We compared the fibrolamellar complex of mammals and dinosaurs on the basis of their similarities in terms of histological structure, developmental mechanisms and function. However we do not know whether they are homologous (i.e., acquired by the last common ancestor of amniotes) or the outcome of convergent evolution (as occurs with many physiological and morphological traits linked to endothermy).</p>
<fig id="pone.0131131.g003" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131131.g003</object-id>
<label>Fig 3</label>
<caption>
<title>Detailed histological aspect of the outgrowths.</title>
<p>Outgrowths are constituted by radial fibrolamellar periosteal bone tissue formed at very high bone growth rate [
<xref rid="pone.0131131.ref012" ref-type="bibr">12</xref>
,
<xref rid="pone.0131131.ref013" ref-type="bibr">13</xref>
], to compensate the overstrain presumably produced by a fibula fracture. These outgrowths involve two pulses of periosteal growth in the one year old specimen (A) and a single pulse in the four years old specimen (B). Considering that the further from the neutral plane of bending, the higher the biomechanical constraints [
<xref rid="pone.0131131.ref014" ref-type="bibr">14</xref>
,
<xref rid="pone.0131131.ref015" ref-type="bibr">15</xref>
], we expect higher compactness on the periphery of bone outgrowth to compensate for the increased constraints on the bone surface. Our observations support these predictions in both the first and second bursts of growth of the one year old specimen (A) and in the single burst of growth of the four years old specimen (B). Scale bar equals 1 mm.</p>
</caption>
<graphic xlink:href="pone.0131131.g003"></graphic>
</fig>
<p>The second moment of the area (
<italic>I</italic>
), proportional to the bending strength of a long bone, is computed as:
<disp-formula id="pone.0131131.e001">
<alternatives>
<graphic xlink:href="pone.0131131.e001.jpg" id="pone.0131131.e001g" position="anchor" mimetype="image" orientation="portrait"></graphic>
<mml:math id="M1">
<mml:mi>I</mml:mi>
<mml:mo>=</mml:mo>
<mml:mrow>
<mml:mo stretchy="false"></mml:mo>
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>y</mml:mi>
</mml:mrow>
<mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msup>
</mml:mrow>
</mml:mrow>
<mml:mspace width="0.25em"></mml:mspace>
<mml:mi>z</mml:mi>
<mml:mspace width="0.25em"></mml:mspace>
<mml:mi>δ</mml:mi>
<mml:mi>y</mml:mi>
</mml:math>
</alternatives>
</disp-formula>
where
<italic>z δy</italic>
is the cross-sectional area of a thin layer at a distance
<italic>y</italic>
from the neutral axis [
<xref rid="pone.0131131.ref019" ref-type="bibr">19</xref>
]. It is obvious that, all other things being equal, a compact layer of bone (i.e., with primary osteons filled by centripetal bone apposition) may produce a higher increase of the second moment of the area of a bone section (and a higher increase of the bending strength of the long bone), than a layer with low compactness (i.e., with primary osteons still unfilled by centripetal bone apposition). Moreover, we deduce from the same equation that the farther from the neutral axis, the higher the contribution of a thin layer to the second moment of the area of a bone section (and to the bending strength of the long bone [
<xref rid="pone.0131131.ref020" ref-type="bibr">20</xref>
]). Thus, considering that biomechanical constraints (i.e., tensile or compressive) acting on bone tissue during bending increase away from the neutral plane in a transverse section [
<xref rid="pone.0131131.ref019" ref-type="bibr">19</xref>
,
<xref rid="pone.0131131.ref020" ref-type="bibr">20</xref>
], and that stresses should concentrate in the periphery of bone cortex, we expect to find greater compactness at the periphery of each outgrowth. Our histological results also agree with this prediction: both layers of localized periosteal growth observed in MOR 005-T9, and the single layer observed in MOR 005-T42, show higher bone compactness near the surface than deeper within the radial tissue of these outgrowths (
<xref rid="pone.0131131.g003" ref-type="fig">Fig 3</xref>
). In strong contrast, during normal long bone development, deep primary osteons are filled by centripetal bone apposition before the more recently formed, peripheral primary osteons (see for instance
<xref rid="pone.0131131.g001" ref-type="fig">Fig 1E</xref>
in [
<xref rid="pone.0131131.ref021" ref-type="bibr">21</xref>
]).</p>
</sec>
<sec id="sec005">
<title>(b) Biomechanical analyses</title>
<p>Because the tibia naturally experiences bending moments during locomotion, the exostoses observed in
<italic>Maiasaura</italic>
tibiae would increase the diaphyseal second moment of the area
<italic>(I</italic>
, proportional to the bending strength [
<xref rid="pone.0131131.ref022" ref-type="bibr">22</xref>
]). Experimental strain recordings in the sheep tibia show that, during peak loading, this bone withstands craniocaudal bending with maximal tensile strains located on the anterior surface, and maximal compressive strains located on the posterior surface [
<xref rid="pone.0131131.ref023" ref-type="bibr">23</xref>
]. Data on tibia deformation obtained using an
<italic>in vivo</italic>
optical approach in humans suggest that this bone mainly withstands craniocaudal bending, but also mediolateral bending and torsion [
<xref rid="pone.0131131.ref024" ref-type="bibr">24</xref>
]. Summarizing, it has been shown that tibia withstands craniocaudal bending in a quadruped (sheep [
<xref rid="pone.0131131.ref023" ref-type="bibr">23</xref>
]), whereas this bone withstands craniocaudal bending but also mediolateral bending in a biped (humans [
<xref rid="pone.0131131.ref024" ref-type="bibr">24</xref>
]). Myological evidence suggests that
<italic>Maiasaura</italic>
underwent an ontogenetic shift from a bipedal condition to a quadrupedal posture [
<xref rid="pone.0131131.ref025" ref-type="bibr">25</xref>
]. So we expect to find the outgrowths in a more or less medio-lateral axis in the tibia of the presumably bipedal, one year old, specimen MOR 005-T9, and in an antero-posterior axis in the tibia of the presumably quadrupedal, at least four years of age, individual MOR 005-T42. Our results are congruent with these predictions. Before fibula failure, tibia Imax was oriented at 38° relative to the antero-posterior axis in MOR 005-T9 (
<xref rid="pone.0131131.g004" ref-type="fig">Fig 4B</xref>
). After fibula failure, the first burst of localized periosteal growth in the tibia produced a 13.8% increase in the maximal second moment of area towards the medio-lateral axis (from 38° to 49°counterclockwise relative to the antero-posterior axis), as expected considering the strain measurements obtained in a bipedal tetrapod [
<xref rid="pone.0131131.ref024" ref-type="bibr">24</xref>
] (
<xref rid="pone.0131131.g004" ref-type="fig">Fig 4C</xref>
). The second outgrowth pulse produced a further Imax increase (of 34.6%), also towards the medio-lateral axis (from 49° to 58°) (
<xref rid="pone.0131131.g004" ref-type="fig">Fig 4D</xref>
).
<italic>Maiasaura</italic>
tibia MOR 005-T42 reveals a single outgrowth, increasing Imax by 39.6% but in the antero-posterior axis (as expected, considering the strain measurements obtained in a quadrupedal tetrapod [
<xref rid="pone.0131131.ref023" ref-type="bibr">23</xref>
]). This interpretation is based on empirical data obtained in two species, so it should be accepted with caution pending additional experimental data. Moreover, relationships between patterns of bone loading and sites of periosteal bone formation are complex [
<xref rid="pone.0131131.ref023" ref-type="bibr">23</xref>
,
<xref rid="pone.0131131.ref026" ref-type="bibr">26</xref>
,
<xref rid="pone.0131131.ref027" ref-type="bibr">27</xref>
]. Our interpretation relies on the classic assumption that functional loading promotes bone formation in regions that experience the highest strains [
<xref rid="pone.0131131.ref028" ref-type="bibr">28</xref>
,
<xref rid="pone.0131131.ref029" ref-type="bibr">29</xref>
]. However, an increasing number of studies have found evidence for a different mechanism: functional loading stimulates bone formation at sites experiencing small strain magnitudes (e.g. [
<xref rid="pone.0131131.ref023" ref-type="bibr">23</xref>
,
<xref rid="pone.0131131.ref026" ref-type="bibr">26</xref>
]). These last results are congruent with the load predictability hypothesis according to which bone curvature and elliptic cross-sectional shape with a minor axis aligned with the direction of bending may decrease bone strength but may increase load predictability by promoting a preferred bending direction [
<xref rid="pone.0131131.ref030" ref-type="bibr">30</xref>
]. Moreover, during sheep ontogeny, increased functional loading promotes periosteal modeling in proximal midshafts, whereas it induces cortical Haversian remodeling in distal midshafts [
<xref rid="pone.0131131.ref031" ref-type="bibr">31</xref>
]. Periosteal modeling decrease and intracortical Haversian remodeling increase with age [
<xref rid="pone.0131131.ref031" ref-type="bibr">31</xref>
]. In our view, all these hypotheses are not mutually exclusive: (i) Moderate functional loadings may stimulate bone formation at sites experiencing small strain magnitudes to increase load predictability, provided that a sufficient safety factor to withstand unexpected loads is preserved. (ii) Extreme functional loadings (e.g., following trauma) involving small safety factors and a risk of fracture may stimulate bone formation at sites experiencing the highest strains. Experimental data obtained in the sheep radius are congruent with our view and support our interpretation for the functional causation of
<italic>Maiasaura</italic>
outgrowths. Sheep radius shows bone curvature in the sagittal plane (see
<xref rid="pone.0131131.g001" ref-type="fig">Fig 1</xref>
of [
<xref rid="pone.0131131.ref015" ref-type="bibr">15</xref>
]), and an elliptic cross-section with a major axis in the latero-medial direction (see
<xref rid="pone.0131131.g002" ref-type="fig">Fig 2A</xref>
of [
<xref rid="pone.0131131.ref015" ref-type="bibr">15</xref>
]), so that the preferred bending direction (determined by the plane of curvature and the direction of the minimum second moment of the area of the bone cross-section) is craniocaudal. Experimental strain recordings agree with this prediction and show that sheep radius withstands craniocaudal bending, with the concave caudal surface under longitudinal compression and the convex cranial surface under longitudinal tension [
<xref rid="pone.0131131.ref015" ref-type="bibr">15</xref>
]. After ulnar osteotomy, radius withstands higher functional loadings involving reduced safety factors. As expected, bone formation occurs at the caudal surface of the radius, where the highest strains were recorded [
<xref rid="pone.0131131.ref015" ref-type="bibr">15</xref>
]. Similarly,
<italic>Maiasaura</italic>
outgrowths may indicate the regions experiencing the highest strains after fibula fracture.</p>
<fig id="pone.0131131.g004" orientation="portrait" position="float">
<object-id pub-id-type="doi">10.1371/journal.pone.0131131.g004</object-id>
<label>Fig 4</label>
<caption>
<title>Biomechanical analysis of the outgrowths of the one year individual MOR 005-T9.</title>
<p>Entire bone cross-section (A) and biomechanical analyses of bone areas (white surfaces) before fibula failure (B), after the first outgrowth subsequent to fibula failure (C), and after the second outgrowth (D). The black lines represent antero-posterior and latero-medial axes for reference. The blue line represents the maximum second moment of the area (Imax), which is proportional to the bending strength of the bone. The red line is the neutral plane. Before fibula failure, tibia Imax was oriented at 38° relative to the antero-posterior axis (B). After fibula failure, tibia Imax increased 13.8% towards the mediolateral axis (from 38° to 49°), as expected in a presumably bipedal, one year old specimen (C). The second burst of growth further increased tibia bending strength (34.6% relative to the situation before the trauma) towards the mediolateral axis (from 49° to 58°) (D). Scale bar equals 1 cm. Abbreviations: Ant., anterior; Lat., lateral; Med., medial; Post., posterior.</p>
</caption>
<graphic xlink:href="pone.0131131.g004"></graphic>
</fig>
</sec>
<sec id="sec006">
<title>(c) Paleopathology analyses</title>
<p>Describing modified bone structure as resulting from modeling requires that scenarios regarding disease be ruled out. As noted, in MOR 005-T9 and T42, there is a collar of fibro-lamellar bone lying beneath the periosteal layer of the tibia. This can be observed grossly as an area of smooth bowed thickened bone on the diaphysis (
<xref rid="pone.0131131.g001" ref-type="fig">Fig 1</xref>
). Although this style of bone forming beneath the periosteum is characteristic of a number of lesions, it readily becomes clear that there is no ‘good fit’ paleopathologic hypothesis. Perhaps the simplest lesion is a periosteal reactive lesion, which involves uplift of the periosteum and rapid deposition of benign bone [
<xref rid="pone.0131131.ref032" ref-type="bibr">32</xref>
]. Grossly, this can be marked either a smooth thickened area of bone, or the bone texture can appear irregularly emarginated and have a roughened texture. The appearance of periosteal reactive bone is not consistent. This is one type of lesion described previously in stegosaurs [
<xref rid="pone.0131131.ref008" ref-type="bibr">8</xref>
]. These lesions are unlikely to produce a uniform cuff of bone as they must by nature be localized to the insult. Unlike recent stegosaur work [
<xref rid="pone.0131131.ref033" ref-type="bibr">33</xref>
], there is no erosive endosteal component described histologically to suggest osteomyelitis in these specimens. Abscesses, although known to produce periosteal reactive bone growth in mammalian Brodie’s abscesses [
<xref rid="pone.0131131.ref034" ref-type="bibr">34</xref>
], are characterized by pus, which is a neutrophilic fluid not present in archosaurs. Instead, cordoned off bone infections are characterized by heterophil induced caseous fibriscesses [
<xref rid="pone.0131131.ref035" ref-type="bibr">35</xref>
] which should not present the same impetus for fibrolamellar bone deposition. The outward appearance of such lesions therefore will lack draining sinuses, but may appear wildly proliferative with an open cavity that would once have contained caseous necrotic debris. Bone neoplasia such as osteomas and osteosarcomas are described in avian wildlife [
<xref rid="pone.0131131.ref036" ref-type="bibr">36</xref>
], however these lesions are generally more focal, and in the case of osteosarcoma frequently involve severe alterations to bone density, underlying structure and integrity. Grossly, osteomas are button-like smooth lesions, sometimes having a mildly roughened texture but otherwise having very well delineated margins. Osteosarcomas can arise from the bone margin (parosteal osteosarcoma), or can be have more medullary involvement and tend to have a very expansile proliferative appearance.</p>
<p>Perhaps the most compelling similarity to a pathologic condition is avian osteopetrosis [
<xref rid="pone.0131131.ref037" ref-type="bibr">37</xref>
<xref rid="pone.0131131.ref041" ref-type="bibr">41</xref>
]. This skeletal lesion develops as a consequence of the avian leucosis virus, and differs from human osteopetrosis in that the human condition involves primarily cartilaginous and medullary resorption defects rather than periosteal bone deposition targeting [
<xref rid="pone.0131131.ref037" ref-type="bibr">37</xref>
]. On gross pathology, the bone may have a latticework collar of bone surrounding the diaphysis and may have very minimal density bone deposits proximal to the metaphysis. Previous papers have described this condition in archaeology era birds from early Britain [
<xref rid="pone.0131131.ref039" ref-type="bibr">39</xref>
], and alluded to its presence in dinosaurs [
<xref rid="pone.0131131.ref040" ref-type="bibr">40</xref>
,
<xref rid="pone.0131131.ref041" ref-type="bibr">41</xref>
]. Noticeably absent from the two MOR
<italic>Maiasaura</italic>
specimens in this paper is the circumferential deposition of bone around the entire diaphysis that characterizes this condition. Additionally, both individuals lack evidence of the classic second phase of the disease in which the trabecular and endosteal bone becomes highly decreased in density [
<xref rid="pone.0131131.ref037" ref-type="bibr">37</xref>
].</p>
<p>In sum, the known pathologic scenarios fall short of explaining the bone histology observed in these two specimens. The authors grant that a scenario for a pathologic etiology for which there is no modern analog [
<xref rid="pone.0131131.ref042" ref-type="bibr">42</xref>
,
<xref rid="pone.0131131.ref043" ref-type="bibr">43</xref>
] or a lesion for which examination of the complete skeleton would have yielded a different interpretation is always possible. However, the parsimonious argument for a biomechanical explanation (as supported by this paper) makes this possibility less likely given that the gross and histopathologic appearance of the bone does not suggest pathologic novelty.</p>
</sec>
</sec>
<sec sec-type="conclusions" id="sec007">
<title>Conclusions</title>
<p>Paleopathology hypotheses (periosteal reactive lesions [
<xref rid="pone.0131131.ref008" ref-type="bibr">8</xref>
,
<xref rid="pone.0131131.ref032" ref-type="bibr">32</xref>
,
<xref rid="pone.0131131.ref033" ref-type="bibr">33</xref>
], osteomyelitis [
<xref rid="pone.0131131.ref034" ref-type="bibr">34</xref>
], fibriscesses [
<xref rid="pone.0131131.ref035" ref-type="bibr">35</xref>
], bone neoplasia [
<xref rid="pone.0131131.ref036" ref-type="bibr">36</xref>
], and avian osteopetrosis [
<xref rid="pone.0131131.ref037" ref-type="bibr">37</xref>
,
<xref rid="pone.0131131.ref041" ref-type="bibr">41</xref>
]) fail to explain the presence of the observed exostoses in the tibiae of
<italic>Maiasaura</italic>
. In contrast, the hypothesis according to which these outgrowths are cases of biomechanically adaptive periosteal bone modeling after fibula fracture are strongly supported by histological and biomechanical data. The quantification of the frequency of (observed or inferred) bone fractures is important in paleontological population studies. Moreover, by documenting the differences in the compensating biomechanical responses in the tibiae between
<italic>Maiasaura</italic>
juveniles and sub-adults, our study independently supports the hypothesis that
<italic>Maiasaura</italic>
underwent an ontogenetic shift from bipedality to quadrupedality previously suggested by a myological analysis [
<xref rid="pone.0131131.ref025" ref-type="bibr">25</xref>
]. Evidence for ontogenetic postural change in turn suggests that immature dinosaurs exhibit ancestral character states (in the case of
<italic>Maiasaura</italic>
, bipedality), whereas derived character states (i.e., quadrupedality) did not develop until late-juvenile or sub-adult stages of growth, further implying the need to consider that small-bodied dinosaurs with unique combinations of shared and derived characteristics may in fact be immature morphs of derived taxa.</p>
</sec>
</body>
<back>
<ack>
<p>We thank the Museum of the Rockies (Bozeman, Montana, USA) and the P & M Curie University of Sorbonne Universités (Paris, France) for logistic support.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="pone.0131131.ref001">
<label>1</label>
<mixed-citation publication-type="journal">
<name>
<surname>Horner</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Ricqlès</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Padian</surname>
<given-names>K</given-names>
</name>
.
<article-title>Long bone histology of the hadrosaurid dinosaur
<italic>Maiasaura peeblesorum</italic>
: growth dynamics and physiology based on an ontogenetic series of skeletal elements</article-title>
.
<source>J Vert Paleontol</source>
.
<year>2000</year>
;
<volume>20</volume>
:
<fpage>109</fpage>
<lpage>123</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref002">
<label>2</label>
<mixed-citation publication-type="journal">
<name>
<surname>Horner</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>Padian</surname>
<given-names>K</given-names>
</name>
.
<article-title>Age and growth dynamics of
<italic>Tyrannosaurus rex</italic>
</article-title>
.
<source>Proc R Soc Lond B</source>
.
<year>2004</year>
;
<volume>271</volume>
:
<fpage>1875</fpage>
<lpage>1880</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref003">
<label>3</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bybee</surname>
<given-names>PJ</given-names>
</name>
,
<name>
<surname>Lee</surname>
<given-names>AH</given-names>
</name>
,
<name>
<surname>Lamm</surname>
<given-names>ET</given-names>
</name>
.
<article-title>Sizing the Jurassic theropod dinosaur
<italic>Allosaurus</italic>
: assessing growth strategy and evolution of ontogenetic scaling of limbs</article-title>
.
<source>J Morphol</source>
.
<year>2006</year>
;
<volume>267</volume>
:
<fpage>347</fpage>
<lpage>359</lpage>
.
<pub-id pub-id-type="pmid">16380967</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref004">
<label>4</label>
<mixed-citation publication-type="journal">
<name>
<surname>Mead</surname>
<given-names>AJ</given-names>
</name>
,
<name>
<surname>Patterson</surname>
<given-names>DB</given-names>
</name>
.
<article-title>Skeletal lesions in a population of Virginia opossums (
<italic>Didelphis virginiana</italic>
) from Baldwin county, Georgia</article-title>
.
<source>J Wildlife Dis</source>
.
<year>2009</year>
;
<volume>45</volume>
:
<fpage>325</fpage>
<lpage>332</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref005">
<label>5</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schultz</surname>
<given-names>AH</given-names>
</name>
.
<article-title>Notes on diseases and healed fractures of wild apes and their bearing on the antiquity of pathological conditions in man</article-title>
.
<source>B Hist Med</source>
.
<year>1939</year>
;
<volume>12</volume>
:
<fpage>571</fpage>
<lpage>582</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref006">
<label>6</label>
<mixed-citation publication-type="journal">
<name>
<surname>Taylor</surname>
<given-names>ME</given-names>
</name>
.
<article-title>Bone diseases and fractures in East African Viverridae</article-title>
.
<source>Can J Zool</source>
.
<year>1971</year>
;
<volume>49</volume>
:
<fpage>1035</fpage>
<lpage>1042</lpage>
.
<pub-id pub-id-type="pmid">5118669</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref007">
<label>7</label>
<mixed-citation publication-type="journal">
<name>
<surname>Rothschild</surname>
<given-names>BM</given-names>
</name>
,
<name>
<surname>Rothschild</surname>
<given-names>C</given-names>
</name>
.
<article-title>Recognition of hypertrophic osteoarthropathy in skeletal remains</article-title>
.
<source>J Rheumatol</source>
.
<year>1998</year>
;
<volume>25</volume>
:
<fpage>2221</fpage>
<lpage>2227</lpage>
.
<pub-id pub-id-type="pmid">9818668</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref008">
<label>8</label>
<mixed-citation publication-type="book">
<name>
<surname>McWhinney</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Carpenter</surname>
<given-names>K</given-names>
</name>
,
<name>
<surname>Rothschild</surname>
<given-names>B</given-names>
</name>
.
<chapter-title>Dinosaurian humeral periostitis: a case of a juxtacortical lesion in the fossil record</chapter-title>
In:
<name>
<surname>Tanke</surname>
<given-names>DH</given-names>
</name>
,
<name>
<surname>Carpenter</surname>
<given-names>K</given-names>
</name>
, editors.
<source>Mesozoic Vertebrate Life</source>
.
<publisher-name>Indiana Univ. Press</publisher-name>
;
<year>2001</year>
pp.
<fpage>364</fpage>
<lpage>377</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref009">
<label>9</label>
<mixed-citation publication-type="book">
<name>
<surname>Schmitt</surname>
<given-names>JG</given-names>
</name>
,
<name>
<surname>Jackson</surname>
<given-names>FD</given-names>
</name>
,
<name>
<surname>Hanna</surname>
<given-names>RR</given-names>
</name>
.
<chapter-title>Debris flow origin of an unusual late Cretaceous hadrosaur bonebed in the Two Medicine Formation of western Montana</chapter-title>
In:
<name>
<surname>Eberth</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Evans</surname>
<given-names>D</given-names>
</name>
, editors.
<source>Hadrosaurs</source>
.
<publisher-name>Indiana Press</publisher-name>
,
<publisher-loc>Bloomington</publisher-loc>
;
<year>2014</year>
pp.
<fpage>486</fpage>
<lpage>501</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref010">
<label>10</label>
<mixed-citation publication-type="journal">
<name>
<surname>Horner</surname>
<given-names>JR</given-names>
</name>
,
<name>
<surname>de Ricqles</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Padian</surname>
<given-names>K</given-names>
</name>
.
<article-title>Variation in dinosaur skeletochronology indicators: implications for age assessment and physiology</article-title>
.
<source>Paleobiology</source>
.
<year>1999</year>
;
<volume>25</volume>
:
<fpage>295</fpage>
<lpage>304</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref011">
<label>11</label>
<mixed-citation publication-type="journal">
<name>
<surname>Castanet</surname>
<given-names>J</given-names>
</name>
.
<article-title>Time recording in bone microstructures of endothermic animals; functional relationships</article-title>
.
<source>C R Palevol</source>
.
<year>2006</year>
;
<volume>5</volume>
:
<fpage>629</fpage>
<lpage>636</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.crpv.2005.10.006">10.1016/j.crpv.2005.10.006</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref012">
<label>12</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bourdon</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Castanet</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>de Ricqles</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Scofield</surname>
<given-names>P</given-names>
</name>
,
<name>
<surname>Tennyson</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Lamrous</surname>
<given-names>H</given-names>
</name>
,
<etal>et al</etal>
<article-title>Bone growth marks reveal protracted growth in New Zealand kiwi (Aves, Apterygidae)</article-title>
.
<source>Biol Lett</source>
.
<year>2009</year>
;
<volume>5</volume>
:
<fpage>639</fpage>
<lpage>642</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1098/rsbl.2009.0310">10.1098/rsbl.2009.0310</ext-link>
</comment>
<pub-id pub-id-type="pmid">19515655</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref013">
<label>13</label>
<mixed-citation publication-type="journal">
<name>
<surname>Doube</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Klosowski</surname>
<given-names>MM</given-names>
</name>
,
<name>
<surname>Arganda-Carreras</surname>
<given-names>I</given-names>
</name>
,
<name>
<surname>Cordelières</surname>
<given-names>FP</given-names>
</name>
,
<name>
<surname>Dougherty</surname>
<given-names>RP</given-names>
</name>
,
<name>
<surname>Jackson</surname>
<given-names>JS</given-names>
</name>
,
<etal>et al</etal>
(
<year>2010</year>
)
<article-title>BoneJ: free and extensible bone image analysis in ImageJ</article-title>
.
<source>Bone</source>
<volume>47</volume>
,
<fpage>1076</fpage>
<lpage>1079</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/j.bone.2010.08.023">10.1016/j.bone.2010.08.023</ext-link>
</comment>
<pub-id pub-id-type="pmid">20817052</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref014">
<label>14</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lee</surname>
<given-names>TC</given-names>
</name>
,
<name>
<surname>Staines</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Taylor</surname>
<given-names>D</given-names>
</name>
.
<article-title>Bone adaptation to load: microdamage as a stimulus for bone remodelling</article-title>
.
<source>J Anat</source>
.
<year>2002</year>
;
<volume>201</volume>
:
<fpage>437</fpage>
<lpage>446</lpage>
.
<pub-id pub-id-type="pmid">12489756</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref015">
<label>15</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lanyon</surname>
<given-names>LE</given-names>
</name>
,
<name>
<surname>Goodship</surname>
<given-names>AE</given-names>
</name>
,
<name>
<surname>Pye</surname>
<given-names>CJ</given-names>
</name>
,
<name>
<surname>MacFie</surname>
<given-names>JH</given-names>
</name>
.
<article-title>Mechanically adaptive bone remodelling</article-title>
.
<source>J Biomech</source>
.
<year>1982</year>
;
<volume>15</volume>
:
<fpage>141</fpage>
<lpage>154</lpage>
.
<pub-id pub-id-type="pmid">7096367</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref016">
<label>16</label>
<mixed-citation publication-type="journal">
<name>
<surname>Goodship</surname>
<given-names>AE</given-names>
</name>
,
<name>
<surname>Lanyon</surname>
<given-names>LE</given-names>
</name>
,
<name>
<surname>McFie</surname>
<given-names>H</given-names>
</name>
.
<article-title>Functional adaptation of bone to increased stress</article-title>
.
<source>J Bone Jt Surg</source>
.
<year>1979</year>
;
<volume>61</volume>
:
<fpage>539</fpage>
<lpage>546</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref017">
<label>17</label>
<mixed-citation publication-type="journal">
<name>
<surname>Margerie</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Robin</surname>
<given-names>JP</given-names>
</name>
,
<name>
<surname>Verrier</surname>
<given-names>D</given-names>
</name>
,
<name>
<surname>Cubo</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Groscolas</surname>
<given-names>R</given-names>
</name>
,
<name>
<surname>Castanet</surname>
<given-names>J</given-names>
</name>
.
<article-title>Assessing a relationship between bone microstructure and growth rate: a fluorescent labelling study in the king penguin chick (
<italic>Aptenodytes patagonicus</italic>
)</article-title>
.
<source>J Exp Biol</source>
.
<year>2004</year>
;
<volume>207</volume>
:
<fpage>869</fpage>
<lpage>879</lpage>
.
<pub-id pub-id-type="pmid">14747417</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref018">
<label>18</label>
<mixed-citation publication-type="journal">
<name>
<surname>Montes</surname>
<given-names>L</given-names>
</name>
,
<name>
<surname>Le Roy</surname>
<given-names>N</given-names>
</name>
,
<name>
<surname>Perret</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Buffrénil</surname>
<given-names>V</given-names>
</name>
,
<name>
<surname>Castanet</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Cubo</surname>
<given-names>J</given-names>
</name>
.
<article-title>Relationships between bone growth rate, body mass and resting metabolic rate in growing amniotes: a phylogenetic approach</article-title>
.
<source>Biol J Linn Soc</source>
.
<year>2007</year>
;
<volume>92</volume>
:
<fpage>63</fpage>
<lpage>76</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref019">
<label>19</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cubo</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Casinos</surname>
<given-names>A</given-names>
</name>
.
<article-title>Biomechanical significance of cross-sectional geometry of avian long bones</article-title>
.
<source>Eur J Morphol</source>
.
<year>1998</year>
;
<volume>36</volume>
:
<fpage>19</fpage>
<lpage>28</lpage>
.
<pub-id pub-id-type="pmid">9526136</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref020">
<label>20</label>
<mixed-citation publication-type="journal">
<name>
<surname>Casinos</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Cubo</surname>
<given-names>J</given-names>
</name>
.
<article-title>Avian long bones, flight and bipedalism</article-title>
.
<source>Comp Biochem Physiol A</source>
.
<year>2001</year>
;
<volume>131</volume>
:
<fpage>159</fpage>
<lpage>167</lpage>
.
<pub-id pub-id-type="pmid">11733174</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref021">
<label>21</label>
<mixed-citation publication-type="journal">
<name>
<surname>De Margerie</surname>
<given-names>E</given-names>
</name>
,
<name>
<surname>Cubo</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Castanet</surname>
<given-names>J</given-names>
</name>
.
<article-title>Bone typology and growth rate: testing and quantifying “Amprino”s rule’ in the mallard (
<italic>Anas platyrhynchos</italic>
)</article-title>
.
<source>C R Biol</source>
.
<year>2002</year>
;
<volume>325</volume>
:
<fpage>221</fpage>
<lpage>230</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S1631-0691(02)01429-4">10.1016/S1631-0691(02)01429-4</ext-link>
</comment>
<pub-id pub-id-type="pmid">12017770</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref022">
<label>22</label>
<mixed-citation publication-type="journal">
<name>
<surname>Cubo</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Casinos</surname>
<given-names>A</given-names>
</name>
.
<article-title>Flightlessness and long bone allometry in Palaeognathiformes and Sphenisciformes</article-title>
.
<source>Neth J Zool</source>
.
<year>1997</year>
;
<volume>47</volume>
:
<fpage>209</fpage>
<lpage>226</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref023">
<label>23</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wallace</surname>
<given-names>IJ</given-names>
</name>
,
<name>
<surname>Demes</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Mongle</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Pearson</surname>
<given-names>OM</given-names>
</name>
,
<name>
<surname>Polk</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Lieberman</surname>
<given-names>DE</given-names>
</name>
.
<article-title>Exercise-Induced Bone Formation Is Poorly Linked to Local Strain Magnitude in the Sheep Tibia</article-title>
.
<source>PLoS One</source>
.
<year>2014</year>
;
<volume>9</volume>
:
<fpage>e99108</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0099108">10.1371/journal.pone.0099108</ext-link>
</comment>
<pub-id pub-id-type="pmid">24897411</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref024">
<label>24</label>
<mixed-citation publication-type="journal">
<name>
<surname>Yang</surname>
<given-names>P-F</given-names>
</name>
,
<name>
<surname>Sanno</surname>
<given-names>M</given-names>
</name>
,
<name>
<surname>Ganse</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Koy</surname>
<given-names>T</given-names>
</name>
,
<name>
<surname>Brueggemann</surname>
<given-names>G-P</given-names>
</name>
,
<name>
<surname>Mueller</surname>
<given-names>LP</given-names>
</name>
,
<etal>et al</etal>
<article-title>Torsion and Antero-Posterior Bending in the In Vivo Human Tibia Loading Regimes during Walking and Running</article-title>
.
<source>PLoS One</source>
.
<year>2014</year>
;
<volume>9</volume>
:
<fpage>e94525</fpage>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1371/journal.pone.0094525">10.1371/journal.pone.0094525</ext-link>
</comment>
<pub-id pub-id-type="pmid">24732724</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref025">
<label>25</label>
<mixed-citation publication-type="journal">
<name>
<surname>Dilkes</surname>
<given-names>DW</given-names>
</name>
.
<article-title>An ontogenetic perspective on locomotion in the Late Cretaceous dinosaur
<italic>Maiasaura peeblesorum</italic>
(Ornithischia: Hadrosauridae)</article-title>
.
<source>Can J Earth Sci</source>
.
<year>2001</year>
;
<volume>38</volume>
:
<fpage>1205</fpage>
<lpage>1227</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref026">
<label>26</label>
<mixed-citation publication-type="journal">
<name>
<surname>Judex</surname>
<given-names>S</given-names>
</name>
,
<name>
<surname>Gross</surname>
<given-names>TS</given-names>
</name>
,
<name>
<surname>Zernicke</surname>
<given-names>RF</given-names>
</name>
.
<article-title>Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton</article-title>
.
<source>J Bone Min Res</source>
.
<year>1997</year>
;
<volume>12</volume>
:
<fpage>1737</fpage>
<lpage>1745</lpage>
.
<pub-id pub-id-type="pmid">9333136</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref027">
<label>27</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lieberman</surname>
<given-names>DE</given-names>
</name>
,
<name>
<surname>Polk</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Demes</surname>
<given-names>B</given-names>
</name>
.
<article-title>Predicting long bone loading from cross-sectional geometry</article-title>
.
<source>Am J Phys Anthropol</source>
.
<year>2004</year>
;
<volume>123</volume>
:
<fpage>156</fpage>
<lpage>171</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/ajpa.10316">10.1002/ajpa.10316</ext-link>
</comment>
<pub-id pub-id-type="pmid">14730649</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref028">
<label>28</label>
<mixed-citation publication-type="journal">
<name>
<surname>Ruff</surname>
<given-names>C</given-names>
</name>
,
<name>
<surname>Hayes</surname>
<given-names>W</given-names>
</name>
.
<article-title>Cross-Sectional Geometry of Pecos Pueblo Femora and Tibiae—a Biomechanical Investigation. 1. Method and General Patterns of Variation</article-title>
.
<source>Am J Phys Anthropol</source>
.
<year>1983</year>
;
<volume>60</volume>
:
<fpage>359</fpage>
<lpage>381</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/ajpa.1330600308">10.1002/ajpa.1330600308</ext-link>
</comment>
<pub-id pub-id-type="pmid">6846510</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref029">
<label>29</label>
<mixed-citation publication-type="journal">
<name>
<surname>Main</surname>
<given-names>RP</given-names>
</name>
.
<article-title>Ontogenetic relationships between in vivo strain environment, bone histomorphometry and growth in the goat radius</article-title>
.
<source>J Anat</source>
.
<year>2007</year>
;
<volume>210</volume>
:
<fpage>272</fpage>
<lpage>293</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/j.1469-7580.2007.00696.x">10.1111/j.1469-7580.2007.00696.x</ext-link>
</comment>
<pub-id pub-id-type="pmid">17331177</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref030">
<label>30</label>
<mixed-citation publication-type="journal">
<name>
<surname>Bertram</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Biewener</surname>
<given-names>A</given-names>
</name>
.
<article-title>Bone Curvature—Sacrificing Strength for Load Predictability</article-title>
.
<source>J Theor Biol</source>
.
<year>1988</year>
;
<volume>131</volume>
:
<fpage>75</fpage>
<lpage>92</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1016/S0022-5193(88)80122-X">10.1016/S0022-5193(88)80122-X</ext-link>
</comment>
<pub-id pub-id-type="pmid">3419194</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref031">
<label>31</label>
<mixed-citation publication-type="journal">
<name>
<surname>Lieberman</surname>
<given-names>DE</given-names>
</name>
,
<name>
<surname>Pearson</surname>
<given-names>OM</given-names>
</name>
,
<name>
<surname>Polk</surname>
<given-names>JD</given-names>
</name>
,
<name>
<surname>Demes</surname>
<given-names>B</given-names>
</name>
,
<name>
<surname>Crompton</surname>
<given-names>AW</given-names>
</name>
.
<article-title>Optimization of bone growth and remodeling in response to loading in tapered mammalian limbs</article-title>
.
<source>J Exp Biol</source>
.
<year>2003</year>
;
<volume>206</volume>
:
<fpage>3125</fpage>
<lpage>3138</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1242/jeb.00514">10.1242/jeb.00514</ext-link>
</comment>
<pub-id pub-id-type="pmid">12909694</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref032">
<label>32</label>
<mixed-citation publication-type="journal">
<name>
<surname>Edeiken</surname>
<given-names>J</given-names>
</name>
,
<name>
<surname>Hodes</surname>
<given-names>PJ</given-names>
</name>
,
<name>
<surname>Caplan</surname>
<given-names>LH</given-names>
</name>
(
<year>1966</year>
)
<article-title>New Bone Production and Periosteal Reaction</article-title>
.
<source>Amer. Jour. Roent.</source>
<volume>97</volume>
,
<fpage>708</fpage>
<lpage>716</lpage>
.
<pub-id pub-id-type="pmid">5224751</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref033">
<label>33</label>
<mixed-citation publication-type="other">Redelsdorff R, Hayashi S, Rothschild BM, Chinsamy A (2014) Non-traumatic bone infection in stegosaurs from Como Bluff, Wyoming,
<italic>Lethaia</italic>
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1111/let.12086">10.1111/let.12086</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref034">
<label>34</label>
<mixed-citation publication-type="journal">
<name>
<surname>Miller</surname>
<given-names>WB</given-names>
</name>
(
<year>1979</year>
)
<article-title>Brodie’s Abscess: Reappraisal 1</article-title>
,
<source>Radiology</source>
<volume>132</volume>
,
<fpage>15</fpage>
<lpage>23</lpage>
.
<pub-id pub-id-type="pmid">451190</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref035">
<label>35</label>
<mixed-citation publication-type="journal">
<name>
<surname>Huchzermeyer</surname>
<given-names>FW</given-names>
</name>
,
<name>
<surname>Cooper</surname>
<given-names>JE</given-names>
</name>
(
<year>2000</year>
)
<article-title>Fibriscess, not abscess, resulting from a localised inflammatory response to infection in reptiles and birds</article-title>
.
<source>Vet. Rec.</source>
<volume>147</volume>
,
<fpage>515</fpage>
<lpage>517</lpage>
.
<pub-id pub-id-type="pmid">11110493</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref036">
<label>36</label>
<mixed-citation publication-type="journal">
<name>
<surname>Reece</surname>
<given-names>RL</given-names>
</name>
,
<name>
<surname>Beddome</surname>
<given-names>VD</given-names>
</name>
,
<name>
<surname>Barr</surname>
<given-names>DA</given-names>
</name>
,
<name>
<surname>Scott</surname>
<given-names>PC</given-names>
</name>
(
<year>1992</year>
)
<article-title>Common necropsy findings in captive birds in Victoria, Australia (1978–1987)</article-title>
.
<source>J. Zoo & Wildlife Med</source>
.
<volume>23</volume>
,
<fpage>301</fpage>
<lpage>312</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref037">
<label>37</label>
<mixed-citation publication-type="journal">
<name>
<surname>Boyde</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Banes</surname>
<given-names>AJ</given-names>
</name>
,
<name>
<surname>Dillaman</surname>
<given-names>RM</given-names>
</name>
,
<name>
<surname>Mechanic</surname>
<given-names>GL</given-names>
</name>
(
<year>1978</year>
)
<article-title>A morphologic diagnosis of an avian bone disorder caused by myeloblastosis-associated virus</article-title>
.
<source>Metab. Bone Dis. Rel. Res.</source>
<volume>1</volume>
,
<fpage>235</fpage>
<lpage>242</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref038">
<label>38</label>
<mixed-citation publication-type="journal">
<name>
<surname>Schmidt</surname>
<given-names>EV</given-names>
</name>
,
<name>
<surname>Smith</surname>
<given-names>RE</given-names>
</name>
(
<year>1982</year>
)
<article-title>Skeletal Hyperostoses: Viral Induction of Avian Osteopetrosis</article-title>
.
<source>Anim. Mod. Human Dis.</source>
<volume>106</volume>
,
<fpage>297</fpage>
<lpage>299</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref039">
<label>39</label>
<mixed-citation publication-type="journal">
<name>
<surname>Brothwell</surname>
<given-names>D</given-names>
</name>
(
<year>2002</year>
)
<article-title>Ancient avian osteopetrosis; The current state of knowledge</article-title>
.
<source>Acta Zool. Crac.</source>
<volume>45</volume>
,
<fpage>315</fpage>
<lpage>318</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref040">
<label>40</label>
<mixed-citation publication-type="journal">
<name>
<surname>Campbell</surname>
<given-names>JG</given-names>
</name>
(
<year>1965</year>
)
<article-title>A dinosaur bone lesion resembling avian osteopetrosis and some remarks on the mode of development of the lesions</article-title>
.
<source>J. Roy. microsc. Soc.</source>
<volume>85</volume>
,
<fpage>163</fpage>
<lpage>174</lpage>
.</mixed-citation>
</ref>
<ref id="pone.0131131.ref041">
<label>41</label>
<mixed-citation publication-type="journal">
<name>
<surname>Chinsamy</surname>
<given-names>A</given-names>
</name>
,
<name>
<surname>Tumarkin-Deratzian</surname>
<given-names>A</given-names>
</name>
(
<year>2009</year>
)
<article-title>Pathologic Bone Tissues in a Turkey Vulture and a Nonavian Dinosaur: Implications for Interpreting Endosteal Bone and Radial Fibrolamellar Bone in Fossil Dinosaurs</article-title>
.
<source>The Anat. Rec.</source>
<volume>292</volume>
,
<fpage>1478</fpage>
<lpage>1484</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1002/ar.20991">10.1002/ar.20991</ext-link>
</comment>
<pub-id pub-id-type="pmid">19711479</pub-id>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref042">
<label>42</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wolff</surname>
<given-names>EDS</given-names>
</name>
.
<article-title>The discovery of two novel archosaur diseases with implications for future paleopathological exploration</article-title>
.
<source>Hist Biol</source>
.
<year>2008</year>
;
<volume>20</volume>
:
<fpage>185</fpage>
<lpage>189</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1080/08912960802556642">10.1080/08912960802556642</ext-link>
</comment>
</mixed-citation>
</ref>
<ref id="pone.0131131.ref043">
<label>43</label>
<mixed-citation publication-type="journal">
<name>
<surname>Wolff</surname>
<given-names>EDS</given-names>
</name>
.
<article-title>The limitations of homology in vertebrate paleopathology Reply</article-title>
.
<source>Hist Biol</source>
.
<year>2009</year>
;
<volume>21</volume>
:
<fpage>235</fpage>
<lpage>238</lpage>
.
<comment>doi:
<ext-link ext-link-type="uri" xlink:href="http://dx.doi.org/10.1080/08912960903471196">10.1080/08912960903471196</ext-link>
</comment>
</mixed-citation>
</ref>
</ref-list>
</back>
</pmc>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Archeologie/explor/PaleopathV1/Data/Pmc/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000022 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd -nk 000022 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Archeologie
   |area=    PaleopathV1
   |flux=    Pmc
   |étape=   Corpus
   |type=    RBID
   |clé=     PMC:4495995
   |texte=   First Reported Cases of Biomechanically Adaptive Bone Modeling in Non-Avian Dinosaurs
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Corpus/RBID.i   -Sk "pubmed:26153689" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a PaleopathV1 

Wicri

This area was generated with Dilib version V0.6.27.
Data generation: Mon Mar 20 13:15:48 2017. Site generation: Sun Mar 10 11:28:25 2024