Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dopamine overdose hypothesis: evidence and clinical implications.

Identifieur interne : 000749 ( PubMed/Curation ); précédent : 000748; suivant : 000750

Dopamine overdose hypothesis: evidence and clinical implications.

Auteurs : David E. Vaillancourt [États-Unis] ; Daniel Schonfeld ; Youngbin Kwak ; Nicolaas I. Bohnen ; Rachael Seidler

Source :

RBID : pubmed:24123087

English descriptors

Abstract

About a half a century has passed since dopamine was identified as a neurotransmitter, and it has been several decades since it was established that people with Parkinson's disease receive motor symptom relief from oral levodopa. Despite the evidence that levodopa can reduce motor symptoms, there has been a developing body of literature that dopaminergic therapy can improve cognitive functions in some patients but make them worse in others. Over the past two decades, several laboratories have shown that dopaminergic medications can impair the action of intact neural structures and impair the behaviors associated with these structures. In this review, we consider the evidence that has accumulated in the areas of reversal learning, motor sequence learning, and other cognitive tasks. The purported inverted-U shaped relationship between dopamine levels and performance is complex and includes many contributory factors. The regional striatal topography of nigrostriatal denervation is a critical factor, as supported by multimodal neuroimaging studies. A patient's individual genotype will determine the relative baseline position on this inverted-U curve. Dopaminergic pharmacotherapy and individual gene polymorphisms can affect the mesolimbic and prefrontal cortical dopaminergic functions in a comparable, inverted-U dose-response relationship. Depending on these factors, a patient can respond positively or negatively to levodopa when performing reversal learning and motor sequence learning tasks. These tasks may continue to be relevant as our society moves to increased technological demands of a digital world that requires newly learned motor sequences and adaptive behaviors to manage daily life activities.

DOI: 10.1002/mds.25687
PubMed: 24123087

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24123087

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dopamine overdose hypothesis: evidence and clinical implications.</title>
<author>
<name sortKey="Vaillancourt, David E" sort="Vaillancourt, David E" uniqKey="Vaillancourt D" first="David E" last="Vaillancourt">David E. Vaillancourt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA; Department of Neurology, University of Florida, Gainesville, Florida, USA; Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA; Department of Neurology, University of Florida, Gainesville, Florida, USA; Department of Biomedical Engineering, University of Florida, Gainesville, Florida</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schonfeld, Daniel" sort="Schonfeld, Daniel" uniqKey="Schonfeld D" first="Daniel" last="Schonfeld">Daniel Schonfeld</name>
</author>
<author>
<name sortKey="Kwak, Youngbin" sort="Kwak, Youngbin" uniqKey="Kwak Y" first="Youngbin" last="Kwak">Youngbin Kwak</name>
</author>
<author>
<name sortKey="Bohnen, Nicolaas I" sort="Bohnen, Nicolaas I" uniqKey="Bohnen N" first="Nicolaas I" last="Bohnen">Nicolaas I. Bohnen</name>
</author>
<author>
<name sortKey="Seidler, Rachael" sort="Seidler, Rachael" uniqKey="Seidler R" first="Rachael" last="Seidler">Rachael Seidler</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24123087</idno>
<idno type="pmid">24123087</idno>
<idno type="doi">10.1002/mds.25687</idno>
<idno type="wicri:Area/PubMed/Corpus">000749</idno>
<idno type="wicri:Area/PubMed/Curation">000749</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dopamine overdose hypothesis: evidence and clinical implications.</title>
<author>
<name sortKey="Vaillancourt, David E" sort="Vaillancourt, David E" uniqKey="Vaillancourt D" first="David E" last="Vaillancourt">David E. Vaillancourt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA; Department of Neurology, University of Florida, Gainesville, Florida, USA; Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA; Department of Neurology, University of Florida, Gainesville, Florida, USA; Department of Biomedical Engineering, University of Florida, Gainesville, Florida</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schonfeld, Daniel" sort="Schonfeld, Daniel" uniqKey="Schonfeld D" first="Daniel" last="Schonfeld">Daniel Schonfeld</name>
</author>
<author>
<name sortKey="Kwak, Youngbin" sort="Kwak, Youngbin" uniqKey="Kwak Y" first="Youngbin" last="Kwak">Youngbin Kwak</name>
</author>
<author>
<name sortKey="Bohnen, Nicolaas I" sort="Bohnen, Nicolaas I" uniqKey="Bohnen N" first="Nicolaas I" last="Bohnen">Nicolaas I. Bohnen</name>
</author>
<author>
<name sortKey="Seidler, Rachael" sort="Seidler, Rachael" uniqKey="Seidler R" first="Rachael" last="Seidler">Rachael Seidler</name>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Brain (drug effects)</term>
<term>Brain (metabolism)</term>
<term>Cognition Disorders (drug therapy)</term>
<term>Cognition Disorders (etiology)</term>
<term>Dopamine (metabolism)</term>
<term>Dopamine Agents (adverse effects)</term>
<term>Humans</term>
<term>Learning Disorders (drug therapy)</term>
<term>Learning Disorders (etiology)</term>
<term>Levodopa (adverse effects)</term>
<term>Parkinson Disease (complications)</term>
<term>Parkinson Disease (drug therapy)</term>
<term>Parkinson Disease (pathology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="adverse effects" xml:lang="en">
<term>Dopamine Agents</term>
<term>Levodopa</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Dopamine</term>
</keywords>
<keywords scheme="MESH" qualifier="complications" xml:lang="en">
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Cognition Disorders</term>
<term>Learning Disorders</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Cognition Disorders</term>
<term>Learning Disorders</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">About a half a century has passed since dopamine was identified as a neurotransmitter, and it has been several decades since it was established that people with Parkinson's disease receive motor symptom relief from oral levodopa. Despite the evidence that levodopa can reduce motor symptoms, there has been a developing body of literature that dopaminergic therapy can improve cognitive functions in some patients but make them worse in others. Over the past two decades, several laboratories have shown that dopaminergic medications can impair the action of intact neural structures and impair the behaviors associated with these structures. In this review, we consider the evidence that has accumulated in the areas of reversal learning, motor sequence learning, and other cognitive tasks. The purported inverted-U shaped relationship between dopamine levels and performance is complex and includes many contributory factors. The regional striatal topography of nigrostriatal denervation is a critical factor, as supported by multimodal neuroimaging studies. A patient's individual genotype will determine the relative baseline position on this inverted-U curve. Dopaminergic pharmacotherapy and individual gene polymorphisms can affect the mesolimbic and prefrontal cortical dopaminergic functions in a comparable, inverted-U dose-response relationship. Depending on these factors, a patient can respond positively or negatively to levodopa when performing reversal learning and motor sequence learning tasks. These tasks may continue to be relevant as our society moves to increased technological demands of a digital world that requires newly learned motor sequences and adaptive behaviors to manage daily life activities.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">24123087</PMID>
<DateCreated>
<Year>2013</Year>
<Month>12</Month>
<Day>10</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>07</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1531-8257</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov. Disord.</ISOAbbreviation>
</Journal>
<ArticleTitle>Dopamine overdose hypothesis: evidence and clinical implications.</ArticleTitle>
<Pagination>
<MedlinePgn>1920-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mds.25687</ELocationID>
<Abstract>
<AbstractText>About a half a century has passed since dopamine was identified as a neurotransmitter, and it has been several decades since it was established that people with Parkinson's disease receive motor symptom relief from oral levodopa. Despite the evidence that levodopa can reduce motor symptoms, there has been a developing body of literature that dopaminergic therapy can improve cognitive functions in some patients but make them worse in others. Over the past two decades, several laboratories have shown that dopaminergic medications can impair the action of intact neural structures and impair the behaviors associated with these structures. In this review, we consider the evidence that has accumulated in the areas of reversal learning, motor sequence learning, and other cognitive tasks. The purported inverted-U shaped relationship between dopamine levels and performance is complex and includes many contributory factors. The regional striatal topography of nigrostriatal denervation is a critical factor, as supported by multimodal neuroimaging studies. A patient's individual genotype will determine the relative baseline position on this inverted-U curve. Dopaminergic pharmacotherapy and individual gene polymorphisms can affect the mesolimbic and prefrontal cortical dopaminergic functions in a comparable, inverted-U dose-response relationship. Depending on these factors, a patient can respond positively or negatively to levodopa when performing reversal learning and motor sequence learning tasks. These tasks may continue to be relevant as our society moves to increased technological demands of a digital world that requires newly learned motor sequences and adaptive behaviors to manage daily life activities.</AbstractText>
<CopyrightInformation>© 2013 Movement Disorder Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Vaillancourt</LastName>
<ForeName>David E</ForeName>
<Initials>DE</Initials>
<AffiliationInfo>
<Affiliation>Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA; Department of Neurology, University of Florida, Gainesville, Florida, USA; Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schonfeld</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kwak</LastName>
<ForeName>Youngbin</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bohnen</LastName>
<ForeName>Nicolaas I</ForeName>
<Initials>NI</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Seidler</LastName>
<ForeName>Rachael</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 NS015655</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P01 NS015655</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS052318</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS052318</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS070856</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS070856</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS075012</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS075012</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015259">Dopamine Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>46627O600J</RegistryNumber>
<NameOfSubstance UI="D007980">Levodopa</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>VTD58H1Z2X</RegistryNumber>
<NameOfSubstance UI="D004298">Dopamine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2000 Mar;10(3):284-94</RefSource>
<PMID Version="1">10731223</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2009 Apr 21;72(16):1378-84</RefSource>
<PMID Version="1">19129507</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):301-6</RefSource>
<PMID Version="1">11134516</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2001 May 15;21(10):3628-38</RefSource>
<PMID Version="1">11331392</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2001 Dec;11(12):1136-43</RefSource>
<PMID Version="1">11709484</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Psychiatry. 2002 Apr;159(4):652-4</RefSource>
<PMID Version="1">11925305</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2002 May 17;936(1-2):58-67</RefSource>
<PMID Version="1">11988230</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2002 Apr;12(2):217-22</RefSource>
<PMID Version="1">12015240</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2002 Jun 1;22(11):4563-7</RefSource>
<PMID Version="1">12040063</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cogn Affect Behav Neurosci. 2001 Jun;1(2):137-60</RefSource>
<PMID Version="1">12467110</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2003 Jun 10;60(11):1744-9</RefSource>
<PMID Version="1">12796524</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2003 Jul;19(3):197-211</RefSource>
<PMID Version="1">12811735</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2004 Jan;19(1):181-9</RefSource>
<PMID Version="1">14750976</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2004 Apr 6;101(14):5093-8</RefSource>
<PMID Version="1">15051874</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2004 Aug;19(8):885-91</RefSource>
<PMID Version="1">15300652</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 1969 Feb 13;280(7):337-45</RefSource>
<PMID Version="1">4178641</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 1988 Apr 7;318(14):876-80</RefSource>
<PMID Version="1">3352672</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1988 Apr;111 ( Pt 2):299-321</RefSource>
<PMID Version="1">3378138</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1990 Jun;63(6):1385-400</RefSource>
<PMID Version="1">2358882</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1991 Oct;114 ( Pt 5):2283-301</RefSource>
<PMID Version="1">1933245</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 1994 Sep;63(3):972-9</RefSource>
<PMID Version="1">7914228</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 1995 Aug 17;376(6541):572-5</RefSource>
<PMID Version="1">7637804</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Neurosurg Psychiatry. 1995 Dec;59(6):597-600</RefSource>
<PMID Version="1">7500096</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1996 Apr;119 ( Pt 2):585-91</RefSource>
<PMID Version="1">8800950</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1996 Sep 6;273(5280):1399-402</RefSource>
<PMID Version="1">8703077</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Learn Mem. 1994 Jul-Aug;1(2):106-20</RefSource>
<PMID Version="1">10467589</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2000;38(5):596-612</RefSource>
<PMID Version="1">10689037</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1999 Sep;122 ( Pt 9):1637-50</RefSource>
<PMID Version="1">10468504</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychology. 1999 Oct;13(4):564-74</RefSource>
<PMID Version="1">10527065</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Physiol Scand Suppl. 1964;:SUPPL 232:1-55</RefSource>
<PMID Version="1">14229500</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2005 Aug;165(1):114-24</RefSource>
<PMID Version="1">15965762</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Aug 30;102(35):12566-71</RefSource>
<PMID Version="1">16107540</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Biobehav Rev. 2006;30(1):1-23</RefSource>
<PMID Version="1">15935475</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2006;44(5):774-84</RefSource>
<PMID Version="1">16150469</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychologia. 2006;44(10):1663-73</RefSource>
<PMID Version="1">16730032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2006 Oct;21(10):1656-62</RefSource>
<PMID Version="1">16830317</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Sci. 2006 Oct 25;248(1-2):72-7</RefSource>
<PMID Version="1">16753182</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropsychopharmacology. 2007 Jan;32(1):180-9</RefSource>
<PMID Version="1">16841074</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2007 Apr;13(3):146-51</RefSource>
<PMID Version="1">17055764</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 May 2;27(18):4832-8</RefSource>
<PMID Version="1">17475791</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2007 Jul 2;18(10):951-5</RefSource>
<PMID Version="1">17558276</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2008 Feb;131(Pt 2):397-408</RefSource>
<PMID Version="1">18178571</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Biobehav Rev. 2008;32(2):219-36</RefSource>
<PMID Version="1">18061261</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Oct 15;28(42):10687-95</RefSource>
<PMID Version="1">18923044</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 2012 Feb 9;366(6):511-9</RefSource>
<PMID Version="1">22316445</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2009 Jul;102(1):475-89</RefSource>
<PMID Version="1">19439679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2009 Nov;132(Pt 11):2970-9</RefSource>
<PMID Version="1">19690093</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2009 Dec 15;24(16):2316-27</RefSource>
<PMID Version="1">19908312</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2010 Feb;103(2):942-9</RefSource>
<PMID Version="1">20018839</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2010;183:275-97</RefSource>
<PMID Version="1">20696325</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2010 Dec;9(12):1200-13</RefSource>
<PMID Version="1">20880750</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2012 Jan;33(1):35-42</RefSource>
<PMID Version="1">20359780</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2012 Apr 21;230(1):116-24</RefSource>
<PMID Version="1">22343069</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2012 Nov;27(13):1636-43</RefSource>
<PMID Version="1">23008179</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2013 Feb;28(2):153-60</RefSource>
<PMID Version="1">23165957</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neural Transm. 2013 Apr;120(4):659-64</RefSource>
<PMID Version="1">23232664</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2013 May 15;245:128-36</RefSource>
<PMID Version="1">23439215</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Mot Behav. 2013;45(5):423-9</RefSource>
<PMID Version="1">23971968</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2013 Aug;28(9):1230-40</RefSource>
<PMID Version="1">23536417</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2014 Mar;24(3):633-42</RefSource>
<PMID Version="1">23183711</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Feb 4;29(5):1538-43</RefSource>
<PMID Version="1">19193900</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13448-53</RefSource>
<PMID Version="1">11069306</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000187">drug effects</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003072">Cognition Disorders</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000188">drug therapy</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000209">etiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004298">Dopamine</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015259">Dopamine Agents</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000009">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007859">Learning Disorders</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000188">drug therapy</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000209">etiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007980">Levodopa</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000009">adverse effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010300">Parkinson Disease</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000150">complications</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000188">drug therapy</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000473">pathology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS521970</OtherID>
<OtherID Source="NLM">PMC3859825</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">dopamine</Keyword>
<Keyword MajorTopicYN="N">dorsal striatum</Keyword>
<Keyword MajorTopicYN="N">learning</Keyword>
<Keyword MajorTopicYN="N">prefrontal cortex</Keyword>
<Keyword MajorTopicYN="N">ventral striatum</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>5</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>8</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>8</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>10</Month>
<Day>9</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24123087</ArticleId>
<ArticleId IdType="doi">10.1002/mds.25687</ArticleId>
<ArticleId IdType="pmc">PMC3859825</ArticleId>
<ArticleId IdType="mid">NIHMS521970</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000749 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000749 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24123087
   |texte=   Dopamine overdose hypothesis: evidence and clinical implications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:24123087" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024