Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Imaging: What can it tell us about parkinsonian gait?

Identifieur interne : 000726 ( PubMed/Curation ); précédent : 000725; suivant : 000727

Imaging: What can it tell us about parkinsonian gait?

Auteurs : Nicolaas I. Bohnen [États-Unis] ; Klaus Jahn

Source :

RBID : pubmed:24132837

English descriptors

Abstract

Functional neuroimaging has provided new tools to study cerebral gait control in Parkinson's disease (PD). First, imaging of blood flow functions has identified a supraspinal locomotor network that includes the (frontal) cortex, basal ganglia, brainstem tegmentum, and cerebellum. These studies also emphasize the cognitive and attentional dependency of gait in PD. Furthermore, gait in PD and related syndromes like progressive supranuclear palsy may be associated with dysfunction of the indirect, modulatory prefrontal-subthalamic-pedunculopontine loop of locomotor control. The direct, stereotyped locomotor loop from the primary motor cortex to the spinal cord with rhythmic cerebellar input appears to be preserved and may contribute to the unflexible gait pattern in parkinsonian gait. Second, neurotransmitter and proteinopathy imaging studies are beginning to unravel novel mechanisms of parkinsonian gait and postural disturbances. Dopamine displacement imaging studies have shown evidence for a mesofrontal dopaminergic shift from a depleted striatum in parkinsonian gait. This may place additional burden on other brain systems mediating attention functions to perform previously automatic motor tasks. For example, our preliminary cholinergic imaging studies suggest significant slowing of gait speed when additional forebrain cholinergic denervation occurs in PD. Cholinergic denervation of the pedunculopontine nucleus and its thalamic projections have been associated with falls and impaired postural control. Deposition of β-amyloid may represent another non-dopaminergic correlate of gait disturbance in PD. These findings illustrate the emergence of dopamine non-responsive gait problems to reflect the transition from a predominantly hypodopaminergic disorder to a multisystem neurodegenerative disorder involving non-dopaminergic locomotor network structures and pathologies.

DOI: 10.1002/mds.25534
PubMed: 24132837

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:24132837

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Imaging: What can it tell us about parkinsonian gait?</title>
<author>
<name sortKey="Bohnen, Nicolaas I" sort="Bohnen, Nicolaas I" uniqKey="Bohnen N" first="Nicolaas I" last="Bohnen">Nicolaas I. Bohnen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Neurology Service and Geriatric Research, Education, and Clinical Center, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Neurology Service and Geriatric Research, Education, and Clinical Center, VA Ann Arbor Healthcare System, Ann Arbor, Michigan</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jahn, Klaus" sort="Jahn, Klaus" uniqKey="Jahn K" first="Klaus" last="Jahn">Klaus Jahn</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1002/mds.25534</idno>
<idno type="RBID">pubmed:24132837</idno>
<idno type="pmid">24132837</idno>
<idno type="wicri:Area/PubMed/Corpus">000726</idno>
<idno type="wicri:Area/PubMed/Curation">000726</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Imaging: What can it tell us about parkinsonian gait?</title>
<author>
<name sortKey="Bohnen, Nicolaas I" sort="Bohnen, Nicolaas I" uniqKey="Bohnen N" first="Nicolaas I" last="Bohnen">Nicolaas I. Bohnen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Neurology Service and Geriatric Research, Education, and Clinical Center, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Neurology Service and Geriatric Research, Education, and Clinical Center, VA Ann Arbor Healthcare System, Ann Arbor, Michigan</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Jahn, Klaus" sort="Jahn, Klaus" uniqKey="Jahn K" first="Klaus" last="Jahn">Klaus Jahn</name>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Brain (metabolism)</term>
<term>Brain (pathology)</term>
<term>Brain (physiopathology)</term>
<term>Gait Disorders, Neurologic (etiology)</term>
<term>Gait Disorders, Neurologic (pathology)</term>
<term>Humans</term>
<term>Neuroimaging</term>
<term>Neurotransmitter Agents (metabolism)</term>
<term>Parkinsonian Disorders (complications)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Neurotransmitter Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="complications" xml:lang="en">
<term>Parkinsonian Disorders</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Gait Disorders, Neurologic</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Brain</term>
<term>Gait Disorders, Neurologic</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Neuroimaging</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Functional neuroimaging has provided new tools to study cerebral gait control in Parkinson's disease (PD). First, imaging of blood flow functions has identified a supraspinal locomotor network that includes the (frontal) cortex, basal ganglia, brainstem tegmentum, and cerebellum. These studies also emphasize the cognitive and attentional dependency of gait in PD. Furthermore, gait in PD and related syndromes like progressive supranuclear palsy may be associated with dysfunction of the indirect, modulatory prefrontal-subthalamic-pedunculopontine loop of locomotor control. The direct, stereotyped locomotor loop from the primary motor cortex to the spinal cord with rhythmic cerebellar input appears to be preserved and may contribute to the unflexible gait pattern in parkinsonian gait. Second, neurotransmitter and proteinopathy imaging studies are beginning to unravel novel mechanisms of parkinsonian gait and postural disturbances. Dopamine displacement imaging studies have shown evidence for a mesofrontal dopaminergic shift from a depleted striatum in parkinsonian gait. This may place additional burden on other brain systems mediating attention functions to perform previously automatic motor tasks. For example, our preliminary cholinergic imaging studies suggest significant slowing of gait speed when additional forebrain cholinergic denervation occurs in PD. Cholinergic denervation of the pedunculopontine nucleus and its thalamic projections have been associated with falls and impaired postural control. Deposition of β-amyloid may represent another non-dopaminergic correlate of gait disturbance in PD. These findings illustrate the emergence of dopamine non-responsive gait problems to reflect the transition from a predominantly hypodopaminergic disorder to a multisystem neurodegenerative disorder involving non-dopaminergic locomotor network structures and pathologies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">24132837</PMID>
<DateCreated>
<Year>2013</Year>
<Month>10</Month>
<Day>17</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>05</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>12</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1531-8257</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov. Disord.</ISOAbbreviation>
</Journal>
<ArticleTitle>Imaging: What can it tell us about parkinsonian gait?</ArticleTitle>
<Pagination>
<MedlinePgn>1492-500</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mds.25534</ELocationID>
<Abstract>
<AbstractText>Functional neuroimaging has provided new tools to study cerebral gait control in Parkinson's disease (PD). First, imaging of blood flow functions has identified a supraspinal locomotor network that includes the (frontal) cortex, basal ganglia, brainstem tegmentum, and cerebellum. These studies also emphasize the cognitive and attentional dependency of gait in PD. Furthermore, gait in PD and related syndromes like progressive supranuclear palsy may be associated with dysfunction of the indirect, modulatory prefrontal-subthalamic-pedunculopontine loop of locomotor control. The direct, stereotyped locomotor loop from the primary motor cortex to the spinal cord with rhythmic cerebellar input appears to be preserved and may contribute to the unflexible gait pattern in parkinsonian gait. Second, neurotransmitter and proteinopathy imaging studies are beginning to unravel novel mechanisms of parkinsonian gait and postural disturbances. Dopamine displacement imaging studies have shown evidence for a mesofrontal dopaminergic shift from a depleted striatum in parkinsonian gait. This may place additional burden on other brain systems mediating attention functions to perform previously automatic motor tasks. For example, our preliminary cholinergic imaging studies suggest significant slowing of gait speed when additional forebrain cholinergic denervation occurs in PD. Cholinergic denervation of the pedunculopontine nucleus and its thalamic projections have been associated with falls and impaired postural control. Deposition of β-amyloid may represent another non-dopaminergic correlate of gait disturbance in PD. These findings illustrate the emergence of dopamine non-responsive gait problems to reflect the transition from a predominantly hypodopaminergic disorder to a multisystem neurodegenerative disorder involving non-dopaminergic locomotor network structures and pathologies.</AbstractText>
<CopyrightInformation>© 2013 Movement Disorder Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bohnen</LastName>
<ForeName>Nicolaas I</ForeName>
<Initials>NI</Initials>
<AffiliationInfo>
<Affiliation>Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA; Neurology Service and Geriatric Research, Education, and Clinical Center, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jahn</LastName>
<ForeName>Klaus</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P01 NS015655</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS070856</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018377">Neurotransmitter Agents</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2013 Mar;241:105-12</RefSource>
<PMID Version="1">23262122</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2013 Feb 12;80(7):634-41</RefSource>
<PMID Version="1">23345641</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2009 Mar;15(3):187-95</RefSource>
<PMID Version="1">18573676</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Brain Res. 2008;171:353-62</RefSource>
<PMID Version="1">18718326</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2008;23 Suppl 3:S521-33</RefSource>
<PMID Version="1">18781679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol. 2008 Aug;255 Suppl 4:19-29</RefSource>
<PMID Version="1">18821082</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Expert Rev Neurother. 2009 Feb;9(2):279-90</RefSource>
<PMID Version="1">19210201</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2009 Nov 17;73(20):1670-6</RefSource>
<PMID Version="1">19917989</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2009 Dec;30(12):3901-9</RefSource>
<PMID Version="1">19479730</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2010 Jan;133(Pt 1):215-24</RefSource>
<PMID Version="1">19846583</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2010 Mar 17;166(2):712-9</RefSource>
<PMID Version="1">20034546</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 May 1;50(4):1589-98</RefSource>
<PMID Version="1">20034578</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2010 May 4;74(18):1416-23</RefSource>
<PMID Version="1">20439843</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Neurosci. 2010 Aug;17(8):984-7</RefSource>
<PMID Version="1">20400313</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2010 Aug;120(8):2745-54</RefSource>
<PMID Version="1">20628197</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2010 Dec 15;25(16):2735-9</RefSource>
<PMID Version="1">20931632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2011 Jan;134(Pt 1):59-72</RefSource>
<PMID Version="1">21126990</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 May 1;56(1):268-79</RefSource>
<PMID Version="1">20869448</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2011 Jul 12;77(2):101-9</RefSource>
<PMID Version="1">21613601</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Neurosci. 2011 Sep;18(9):1154-7</RefSource>
<PMID Version="1">21724402</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2013 Mar;28(3):296-301</RefSource>
<PMID Version="1">23239424</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2013 Apr;136(Pt 4):1204-15</RefSource>
<PMID Version="1">23485851</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1999 Nov;46(5):723-31</RefSource>
<PMID Version="1">10553989</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2000 Sep;123 ( Pt 9):1767-83</RefSource>
<PMID Version="1">10960043</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2000 Nov;15(6):1158-67</RefSource>
<PMID Version="1">11104200</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurobiol. 2000 Dec;10(6):732-9</RefSource>
<PMID Version="1">11240282</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Presse Med. 2001 Mar 10;30(9):452-9</RefSource>
<PMID Version="1">11285785</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Neurol. 2001;87:25-40</RefSource>
<PMID Version="1">11347228</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2001 Nov;14(5):1186-92</RefSource>
<PMID Version="1">11697950</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2003 Mar;149(2):187-94</RefSource>
<PMID Version="1">12610686</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Neurol. 2003 Mar;60(3):337-41</RefSource>
<PMID Version="1">12633144</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2004 Aug;22(4):1722-31</RefSource>
<PMID Version="1">15275928</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 1976 Jul;56(3):465-501</RefSource>
<PMID Version="1">778867</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 1979;2:113-68</RefSource>
<PMID Version="1">231924</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Bull. 1986 Mar;16(3):377-81</RefSource>
<PMID Version="1">2871907</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1987 Sep;37(9):1539-42</RefSource>
<PMID Version="1">3627454</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1988 Jun 14;452(1-2):273-85</RefSource>
<PMID Version="1">3401734</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 1988 Nov;405:1-37</RefSource>
<PMID Version="1">3076600</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1992 Jul 10;585(1-2):267-71</RefSource>
<PMID Version="1">1380869</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Prog Neurobiol. 1995 Sep;47(1):1-29</RefSource>
<PMID Version="1">8570851</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Rev Neurol (Paris). 1996 Feb;152(2):128-34</RefSource>
<PMID Version="1">8761620</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 1997 Jun 13;228(3):183-6</RefSource>
<PMID Version="1">9218638</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1999 Mar;45(3):329-36</RefSource>
<PMID Version="1">10072047</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1999 Jul;122 ( Pt 7):1271-82</RefSource>
<PMID Version="1">10388793</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2004 Dec 3;15(17):2621-4</RefSource>
<PMID Version="1">15570164</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2005 Oct;20(10):1272-7</RefSource>
<PMID Version="1">16007622</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2005 Nov 28;16(17):1883-7</RefSource>
<PMID Version="1">16272872</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hokkaido Igaku Zasshi. 2006 Jan;81(1):15-23</RefSource>
<PMID Version="1">16528976</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2006 Apr;12(3):155-64</RefSource>
<PMID Version="1">16459124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2006 Sep;21(9):1326-32</RefSource>
<PMID Version="1">16721756</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2006 Sep;24(6):1815-20</RefSource>
<PMID Version="1">17004944</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 2008 Mar;28(3):441-4</RefSource>
<PMID Version="1">18073772</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neuropathol. 2008 Apr;115(4):409-15</RefSource>
<PMID Version="1">18231798</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2008;23 Suppl 2:S431-8</RefSource>
<PMID Version="1">18668624</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2008;23 Suppl 2:S461-7</RefSource>
<PMID Version="1">18668627</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2011 Dec;26(14):2496-503</RefSource>
<PMID Version="1">21898597</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2012 Feb 1;227(1):21-9</RefSource>
<PMID Version="1">22040905</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2012 Jan;135(Pt 1):148-60</RefSource>
<PMID Version="1">22232591</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2012 Feb 7;78(6):409-16</RefSource>
<PMID Version="1">22282641</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2012 Jun;18(5):537-42</RefSource>
<PMID Version="1">22436654</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2012 Jul;18(6):781-7</RefSource>
<PMID Version="1">22510204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 2012 Aug;32(8):1609-17</RefSource>
<PMID Version="1">22569194</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neurol Scand. 2012 Sep;126(3):210-8</RefSource>
<PMID Version="1">22324564</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Neurosurg Psychiatry. 2012 Oct;83(10):986-93</RefSource>
<PMID Version="1">22773859</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2012 Dec 4;79(23):2222-3</RefSource>
<PMID Version="1">23100405</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Conf Proc IEEE Eng Med Biol Soc. 2012;2012:69-72</RefSource>
<PMID Version="1">23365834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2013;8(1):e52602</RefSource>
<PMID Version="1">23382821</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000473">pathology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000503">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020233">Gait Disorders, Neurologic</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000209">etiology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000473">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D059906">Neuroimaging</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018377">Neurotransmitter Agents</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020734">Parkinsonian Disorders</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000150">complications</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS482450</OtherID>
<OtherID Source="NLM">PMC3801220</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">MRI</Keyword>
<Keyword MajorTopicYN="N">PET</Keyword>
<Keyword MajorTopicYN="N">Parkinson's disease</Keyword>
<Keyword MajorTopicYN="N">SPECT</Keyword>
<Keyword MajorTopicYN="N">acetylcholine</Keyword>
<Keyword MajorTopicYN="N">amyloid</Keyword>
<Keyword MajorTopicYN="N">cerebellum</Keyword>
<Keyword MajorTopicYN="N">dopamine</Keyword>
<Keyword MajorTopicYN="N">gait</Keyword>
<Keyword MajorTopicYN="N">network</Keyword>
<Keyword MajorTopicYN="N">pedunculopontine nucleus</Keyword>
<Keyword MajorTopicYN="N">progressive supranuclear palsy</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>3</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>4</Month>
<Day>8</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>4</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>5</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/mds.25534</ArticleId>
<ArticleId IdType="pubmed">24132837</ArticleId>
<ArticleId IdType="pmc">PMC3801220</ArticleId>
<ArticleId IdType="mid">NIHMS482450</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000726 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000726 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:24132837
   |texte=   Imaging: What can it tell us about parkinsonian gait?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:24132837" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024