Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7.

Identifieur interne : 000222 ( PubMed/Curation ); précédent : 000221; suivant : 000223

In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7.

Auteurs : Isaac M. Adanyeguh [France] ; Pierre-Gilles Henry ; Tra M. Nguyen ; Daisy Rinaldi ; Celine Jauffret ; Romain Valabregue ; Uzay E. Emir ; Dinesh K. Deelchand ; Alexis Brice ; Lynn E. Eberly ; Gülin Öz ; Alexandra Durr ; Fanny Mochel

Source :

RBID : pubmed:25773989

Abstract

Spinocerebellar ataxias (SCAs) belong to polyglutamine repeat disorders and are characterized by a predominant atrophy of the cerebellum and the pons. Proton magnetic resonance spectroscopy ((1) H MRS) using an optimized semiadiabatic localization by adiabatic selective refocusing (semi-LASER) protocol was performed at 3 T to determine metabolite concentrations in the cerebellar vermis and pons of a cohort of patients with SCA1 (n=16), SCA2 (n=12), SCA3 (n=21), and SCA7 (n=12) and healthy controls (n=33). Compared with controls, patients displayed lower total N-acetylaspartate and, to a lesser extent, lower glutamate, reflecting neuronal loss/dysfunction, whereas the glial marker, myoinositol (myo-Ins), was elevated. Patients also showed higher total creatine as reported in Huntington's disease, another polyglutamine repeat disorder. A strong correlation was found between the Scale for the Assessment and Rating of Ataxia and the neurometabolites in both affected regions of patients. Principal component analyses confirmed that neuronal metabolites (total N-acetylaspartate and glutamate) were inversely correlated in the vermis and the pons to glial (myo-Ins) and energetic (total creatine) metabolites, as well as to disease severity (motor scales). Neurochemical plots with selected metabolites also allowed the separation of SCA2 and SCA3 from controls. The neurometabolic profiles detected in patients underlie cell-specific changes in neuronal and astrocytic compartments that cannot be assessed by other neuroimaging modalities. The inverse correlation between metabolites from these two compartments suggests a metabolic attempt to compensate for neuronal damage in SCAs. Because these biomarkers reflect dynamic aspects of cellular metabolism, they are good candidates for proof-of-concept therapeutic trials. © 2015 International Parkinson and Movement Disorder Society.

DOI: 10.1002/mds.26181
PubMed: 25773989

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:25773989

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7.</title>
<author>
<name sortKey="Adanyeguh, Isaac M" sort="Adanyeguh, Isaac M" uniqKey="Adanyeguh I" first="Isaac M" last="Adanyeguh">Isaac M. Adanyeguh</name>
<affiliation wicri:level="1">
<nlm:affiliation>INSERM U 1127, Sorbonne Universités, UPMC Univ Paris Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INSERM U 1127, Sorbonne Universités, UPMC Univ Paris Institut du Cerveau et de la Moelle épinière, ICM, Paris</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Henry, Pierre Gilles" sort="Henry, Pierre Gilles" uniqKey="Henry P" first="Pierre-Gilles" last="Henry">Pierre-Gilles Henry</name>
</author>
<author>
<name sortKey="Nguyen, Tra M" sort="Nguyen, Tra M" uniqKey="Nguyen T" first="Tra M" last="Nguyen">Tra M. Nguyen</name>
</author>
<author>
<name sortKey="Rinaldi, Daisy" sort="Rinaldi, Daisy" uniqKey="Rinaldi D" first="Daisy" last="Rinaldi">Daisy Rinaldi</name>
</author>
<author>
<name sortKey="Jauffret, Celine" sort="Jauffret, Celine" uniqKey="Jauffret C" first="Celine" last="Jauffret">Celine Jauffret</name>
</author>
<author>
<name sortKey="Valabregue, Romain" sort="Valabregue, Romain" uniqKey="Valabregue R" first="Romain" last="Valabregue">Romain Valabregue</name>
</author>
<author>
<name sortKey="Emir, Uzay E" sort="Emir, Uzay E" uniqKey="Emir U" first="Uzay E" last="Emir">Uzay E. Emir</name>
</author>
<author>
<name sortKey="Deelchand, Dinesh K" sort="Deelchand, Dinesh K" uniqKey="Deelchand D" first="Dinesh K" last="Deelchand">Dinesh K. Deelchand</name>
</author>
<author>
<name sortKey="Brice, Alexis" sort="Brice, Alexis" uniqKey="Brice A" first="Alexis" last="Brice">Alexis Brice</name>
</author>
<author>
<name sortKey="Eberly, Lynn E" sort="Eberly, Lynn E" uniqKey="Eberly L" first="Lynn E" last="Eberly">Lynn E. Eberly</name>
</author>
<author>
<name sortKey="Oz, Gulin" sort="Oz, Gulin" uniqKey="Oz G" first="Gülin" last="Öz">Gülin Öz</name>
</author>
<author>
<name sortKey="Durr, Alexandra" sort="Durr, Alexandra" uniqKey="Durr A" first="Alexandra" last="Durr">Alexandra Durr</name>
</author>
<author>
<name sortKey="Mochel, Fanny" sort="Mochel, Fanny" uniqKey="Mochel F" first="Fanny" last="Mochel">Fanny Mochel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25773989</idno>
<idno type="pmid">25773989</idno>
<idno type="doi">10.1002/mds.26181</idno>
<idno type="wicri:Area/PubMed/Corpus">000222</idno>
<idno type="wicri:Area/PubMed/Curation">000222</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7.</title>
<author>
<name sortKey="Adanyeguh, Isaac M" sort="Adanyeguh, Isaac M" uniqKey="Adanyeguh I" first="Isaac M" last="Adanyeguh">Isaac M. Adanyeguh</name>
<affiliation wicri:level="1">
<nlm:affiliation>INSERM U 1127, Sorbonne Universités, UPMC Univ Paris Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INSERM U 1127, Sorbonne Universités, UPMC Univ Paris Institut du Cerveau et de la Moelle épinière, ICM, Paris</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Henry, Pierre Gilles" sort="Henry, Pierre Gilles" uniqKey="Henry P" first="Pierre-Gilles" last="Henry">Pierre-Gilles Henry</name>
</author>
<author>
<name sortKey="Nguyen, Tra M" sort="Nguyen, Tra M" uniqKey="Nguyen T" first="Tra M" last="Nguyen">Tra M. Nguyen</name>
</author>
<author>
<name sortKey="Rinaldi, Daisy" sort="Rinaldi, Daisy" uniqKey="Rinaldi D" first="Daisy" last="Rinaldi">Daisy Rinaldi</name>
</author>
<author>
<name sortKey="Jauffret, Celine" sort="Jauffret, Celine" uniqKey="Jauffret C" first="Celine" last="Jauffret">Celine Jauffret</name>
</author>
<author>
<name sortKey="Valabregue, Romain" sort="Valabregue, Romain" uniqKey="Valabregue R" first="Romain" last="Valabregue">Romain Valabregue</name>
</author>
<author>
<name sortKey="Emir, Uzay E" sort="Emir, Uzay E" uniqKey="Emir U" first="Uzay E" last="Emir">Uzay E. Emir</name>
</author>
<author>
<name sortKey="Deelchand, Dinesh K" sort="Deelchand, Dinesh K" uniqKey="Deelchand D" first="Dinesh K" last="Deelchand">Dinesh K. Deelchand</name>
</author>
<author>
<name sortKey="Brice, Alexis" sort="Brice, Alexis" uniqKey="Brice A" first="Alexis" last="Brice">Alexis Brice</name>
</author>
<author>
<name sortKey="Eberly, Lynn E" sort="Eberly, Lynn E" uniqKey="Eberly L" first="Lynn E" last="Eberly">Lynn E. Eberly</name>
</author>
<author>
<name sortKey="Oz, Gulin" sort="Oz, Gulin" uniqKey="Oz G" first="Gülin" last="Öz">Gülin Öz</name>
</author>
<author>
<name sortKey="Durr, Alexandra" sort="Durr, Alexandra" uniqKey="Durr A" first="Alexandra" last="Durr">Alexandra Durr</name>
</author>
<author>
<name sortKey="Mochel, Fanny" sort="Mochel, Fanny" uniqKey="Mochel F" first="Fanny" last="Mochel">Fanny Mochel</name>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Spinocerebellar ataxias (SCAs) belong to polyglutamine repeat disorders and are characterized by a predominant atrophy of the cerebellum and the pons. Proton magnetic resonance spectroscopy ((1) H MRS) using an optimized semiadiabatic localization by adiabatic selective refocusing (semi-LASER) protocol was performed at 3 T to determine metabolite concentrations in the cerebellar vermis and pons of a cohort of patients with SCA1 (n=16), SCA2 (n=12), SCA3 (n=21), and SCA7 (n=12) and healthy controls (n=33). Compared with controls, patients displayed lower total N-acetylaspartate and, to a lesser extent, lower glutamate, reflecting neuronal loss/dysfunction, whereas the glial marker, myoinositol (myo-Ins), was elevated. Patients also showed higher total creatine as reported in Huntington's disease, another polyglutamine repeat disorder. A strong correlation was found between the Scale for the Assessment and Rating of Ataxia and the neurometabolites in both affected regions of patients. Principal component analyses confirmed that neuronal metabolites (total N-acetylaspartate and glutamate) were inversely correlated in the vermis and the pons to glial (myo-Ins) and energetic (total creatine) metabolites, as well as to disease severity (motor scales). Neurochemical plots with selected metabolites also allowed the separation of SCA2 and SCA3 from controls. The neurometabolic profiles detected in patients underlie cell-specific changes in neuronal and astrocytic compartments that cannot be assessed by other neuroimaging modalities. The inverse correlation between metabolites from these two compartments suggests a metabolic attempt to compensate for neuronal damage in SCAs. Because these biomarkers reflect dynamic aspects of cellular metabolism, they are good candidates for proof-of-concept therapeutic trials. © 2015 International Parkinson and Movement Disorder Society.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="In-Process">
<PMID Version="1">25773989</PMID>
<DateCreated>
<Year>2015</Year>
<Month>04</Month>
<Day>13</Day>
</DateCreated>
<DateRevised>
<Year>2015</Year>
<Month>05</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1531-8257</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov. Disord.</ISOAbbreviation>
</Journal>
<ArticleTitle>In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7.</ArticleTitle>
<Pagination>
<MedlinePgn>662-70</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mds.26181</ELocationID>
<Abstract>
<AbstractText>Spinocerebellar ataxias (SCAs) belong to polyglutamine repeat disorders and are characterized by a predominant atrophy of the cerebellum and the pons. Proton magnetic resonance spectroscopy ((1) H MRS) using an optimized semiadiabatic localization by adiabatic selective refocusing (semi-LASER) protocol was performed at 3 T to determine metabolite concentrations in the cerebellar vermis and pons of a cohort of patients with SCA1 (n=16), SCA2 (n=12), SCA3 (n=21), and SCA7 (n=12) and healthy controls (n=33). Compared with controls, patients displayed lower total N-acetylaspartate and, to a lesser extent, lower glutamate, reflecting neuronal loss/dysfunction, whereas the glial marker, myoinositol (myo-Ins), was elevated. Patients also showed higher total creatine as reported in Huntington's disease, another polyglutamine repeat disorder. A strong correlation was found between the Scale for the Assessment and Rating of Ataxia and the neurometabolites in both affected regions of patients. Principal component analyses confirmed that neuronal metabolites (total N-acetylaspartate and glutamate) were inversely correlated in the vermis and the pons to glial (myo-Ins) and energetic (total creatine) metabolites, as well as to disease severity (motor scales). Neurochemical plots with selected metabolites also allowed the separation of SCA2 and SCA3 from controls. The neurometabolic profiles detected in patients underlie cell-specific changes in neuronal and astrocytic compartments that cannot be assessed by other neuroimaging modalities. The inverse correlation between metabolites from these two compartments suggests a metabolic attempt to compensate for neuronal damage in SCAs. Because these biomarkers reflect dynamic aspects of cellular metabolism, they are good candidates for proof-of-concept therapeutic trials. © 2015 International Parkinson and Movement Disorder Society.</AbstractText>
<CopyrightInformation>© 2015 International Parkinson and Movement Disorder Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Adanyeguh</LastName>
<ForeName>Isaac M</ForeName>
<Initials>IM</Initials>
<AffiliationInfo>
<Affiliation>INSERM U 1127, Sorbonne Universités, UPMC Univ Paris Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Henry</LastName>
<ForeName>Pierre-Gilles</ForeName>
<Initials>PG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nguyen</LastName>
<ForeName>Tra M</ForeName>
<Initials>TM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rinaldi</LastName>
<ForeName>Daisy</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jauffret</LastName>
<ForeName>Celine</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Valabregue</LastName>
<ForeName>Romain</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Emir</LastName>
<ForeName>Uzay E</ForeName>
<Initials>UE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Deelchand</LastName>
<ForeName>Dinesh K</ForeName>
<Initials>DK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brice</LastName>
<ForeName>Alexis</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Eberly</LastName>
<ForeName>Lynn E</ForeName>
<Initials>LE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Öz</LastName>
<ForeName>Gülin</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Durr</LastName>
<ForeName>Alexandra</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mochel</LastName>
<ForeName>Fanny</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>ClinicalTrials.gov</DataBankName>
<AccessionNumberList>
<AccessionNumber>NCT01470729</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 NS076408</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 NS076408</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41 EB015894</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P41 EB015894</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DA023651</GrantID>
<Acronym>DA</Acronym>
<Agency>NIDA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NR010731</GrantID>
<Acronym>NR</Acronym>
<Agency>NINR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS070815</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS070815</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Cerebellum. 2008;7(2):215-21</RefSource>
<PMID Version="1">18418676</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2015 May;73(5):1718-25</RefSource>
<PMID Version="1">24948590</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 Mar 10;30(10):3831-8</RefSource>
<PMID Version="1">20220018</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2010 Jul 15;25(9):1253-61</RefSource>
<PMID Version="1">20310029</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2010 Sep;9(9):885-94</RefSource>
<PMID Version="1">20723845</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2011 Feb;34(2):76-87</RefSource>
<PMID Version="1">21236501</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2011 Apr;65(4):901-10</RefSource>
<PMID Version="1">21413056</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cerebellum. 2011 Jun;10(2):208-17</RefSource>
<PMID Version="1">20838948</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 2011 Nov;24(9):1038-46</RefSource>
<PMID Version="1">21294206</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2012 Jan 6;287(2):1361-70</RefSource>
<PMID Version="1">22123819</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(2):e30554</RefSource>
<PMID Version="1">22347384</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 2012 Mar;32(3):502-14</RefSource>
<PMID Version="1">22044866</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Top Behav Neurosci. 2012;11:169-98</RefSource>
<PMID Version="1">22076698</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cerebellum. 2012 Jun;11(2):488-504</RefSource>
<PMID Version="1">21964941</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2012 Jun;27(7):907-10</RefSource>
<PMID Version="1">22517114</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(10):e47479</RefSource>
<PMID Version="1">23094053</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(10):e47925</RefSource>
<PMID Version="1">23118909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 2012 Nov;32(11):1977-88</RefSource>
<PMID Version="1">22805874</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2013 Mar;136(Pt 3):905-17</RefSource>
<PMID Version="1">23423669</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 2000 Feb;43(2):319-23</RefSource>
<PMID Version="1">10680699</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2000 May;74(5):1968-78</RefSource>
<PMID Version="1">10800940</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Radiology. 2002 May;223(2):371-8</RefSource>
<PMID Version="1">11997539</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2002 Dec;125(Pt 12):2743-9</RefSource>
<PMID Version="1">12429601</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2004 Aug;10(6):335-51</RefSource>
<PMID Version="1">15261875</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2004 Aug;127(Pt 8):1785-95</RefSource>
<PMID Version="1">15240431</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Magn Reson Med. 1993 Dec;30(6):672-9</RefSource>
<PMID Version="1">8139448</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dev Neurosci. 1993;15(3-5):289-98</RefSource>
<PMID Version="1">7805581</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NMR Biomed. 1995 Jun;8(4):139-48</RefSource>
<PMID Version="1">8771088</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Genet. 2005 Oct;6(10):743-55</RefSource>
<PMID Version="1">16205714</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2006 Jun 13;66(11):1717-20</RefSource>
<PMID Version="1">16769946</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 Dec 8;281(49):37361-71</RefSource>
<PMID Version="1">17028195</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neuropathol. 2008 Jan;115(1):71-86</RefSource>
<PMID Version="1">17786457</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2013 Jul;12(7):650-8</RefSource>
<PMID Version="1">23707147</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Radiology. 2014 Mar;270(3):658-79</RefSource>
<PMID Version="1">24568703</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Top Behav Neurosci. 2012;11:199-251</RefSource>
<PMID Version="1">22294088</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Magn Reson Imaging. 2009 Jul;30(1):11-7</RefSource>
<PMID Version="1">19557841</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<OtherID Source="NLM">NIHMS659613 [Available on 04/15/16]</OtherID>
<OtherID Source="NLM">PMC4397159 [Available on 04/15/16]</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">NMR spectroscopy</Keyword>
<Keyword MajorTopicYN="N">biomarker</Keyword>
<Keyword MajorTopicYN="N">movement disorders</Keyword>
<Keyword MajorTopicYN="N">neurochemical profile</Keyword>
<Keyword MajorTopicYN="N">spinocerebellar ataxia</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>9</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>12</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>1</Month>
<Day>8</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2015</Year>
<Month>3</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pmc-release">
<Year>2016</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25773989</ArticleId>
<ArticleId IdType="doi">10.1002/mds.26181</ArticleId>
<ArticleId IdType="pmc">PMC4397159</ArticleId>
<ArticleId IdType="mid">NIHMS659613</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000222 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 000222 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:25773989
   |texte=   In vivo neurometabolic profiling in patients with spinocerebellar ataxia types 1, 2, 3, and 7.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:25773989" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024