Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor.

Identifieur interne : 002B79 ( PubMed/Corpus ); précédent : 002B78; suivant : 002B80

Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor.

Auteurs : Robert E. Gross ; Paul Krack ; Maria C. Rodriguez-Oroz ; Ali R. Rezai ; Alim-Louis Benabid

Source :

RBID : pubmed:16810720

English descriptors

Abstract

The vast majority of centers use electrophysiological mapping techniques to finalize target selection during the implantation of deep brain stimulation (DBS) leads for the treatment of Parkinson's disease and tremor. This review discusses the techniques used for physiological mapping and addresses the questions of how various mapping strategies modify target selection and outcome following subthalamic nucleus (STN), globus pallidus internus (GPi), and ventralis intermedius (Vim) deep brain stimulation. Mapping strategies vary greatly across centers, but can be broadly categorized into those that use microelectrode or semimicroelectrode techniques to optimize position prior to implantation and macrostimulation through a macroelectrode or the DBS lead, and those that rely solely on macrostimulation and its threshold for clinical effects (benefits and side effects). Microelectrode criteria for implantation into the STN or GPi include length of the nucleus recorded, presence of movement-responsive neurons, and/or distance from the borders with adjacent structures. However, the threshold for the production of clinical benefits relative to side effects is, in most centers, the final, and sometimes only, determinant of DBS electrode position. Macrostimulation techniques for mapping, the utility of microelectrode mapping is reflected in its modification of electrode position in 17% to 87% of patients undergoing STN DBS, with average target adjustments of 1 to 4 mm. Nevertheless, with the absence of class I data, and in consideration of the large number of variables that impact clinical outcome, it is not possible to conclude that one technique is superior to the other in so far as motor Unified Parkinson's Disease Rating Scale outcome is concerned. Moreover, mapping technique is only one out of many variables that determine the outcome. The increase in surgical risk of intracranial hemorrhage correlated to the number of microelectrode trajectories must be considered against the risk of suboptimal benefits related to omission of this technique.

DOI: 10.1002/mds.20960
PubMed: 16810720

Links to Exploration step

pubmed:16810720

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor.</title>
<author>
<name sortKey="Gross, Robert E" sort="Gross, Robert E" uniqKey="Gross R" first="Robert E" last="Gross">Robert E. Gross</name>
<affiliation>
<nlm:affiliation>Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, USA. robert_gross@emory.org</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krack, Paul" sort="Krack, Paul" uniqKey="Krack P" first="Paul" last="Krack">Paul Krack</name>
</author>
<author>
<name sortKey="Rodriguez Oroz, Maria C" sort="Rodriguez Oroz, Maria C" uniqKey="Rodriguez Oroz M" first="Maria C" last="Rodriguez-Oroz">Maria C. Rodriguez-Oroz</name>
</author>
<author>
<name sortKey="Rezai, Ali R" sort="Rezai, Ali R" uniqKey="Rezai A" first="Ali R" last="Rezai">Ali R. Rezai</name>
</author>
<author>
<name sortKey="Benabid, Alim Louis" sort="Benabid, Alim Louis" uniqKey="Benabid A" first="Alim-Louis" last="Benabid">Alim-Louis Benabid</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="doi">10.1002/mds.20960</idno>
<idno type="RBID">pubmed:16810720</idno>
<idno type="pmid">16810720</idno>
<idno type="wicri:Area/PubMed/Corpus">002B79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor.</title>
<author>
<name sortKey="Gross, Robert E" sort="Gross, Robert E" uniqKey="Gross R" first="Robert E" last="Gross">Robert E. Gross</name>
<affiliation>
<nlm:affiliation>Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, USA. robert_gross@emory.org</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Krack, Paul" sort="Krack, Paul" uniqKey="Krack P" first="Paul" last="Krack">Paul Krack</name>
</author>
<author>
<name sortKey="Rodriguez Oroz, Maria C" sort="Rodriguez Oroz, Maria C" uniqKey="Rodriguez Oroz M" first="Maria C" last="Rodriguez-Oroz">Maria C. Rodriguez-Oroz</name>
</author>
<author>
<name sortKey="Rezai, Ali R" sort="Rezai, Ali R" uniqKey="Rezai A" first="Ali R" last="Rezai">Ali R. Rezai</name>
</author>
<author>
<name sortKey="Benabid, Alim Louis" sort="Benabid, Alim Louis" uniqKey="Benabid A" first="Alim-Louis" last="Benabid">Alim-Louis Benabid</name>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="ISSN">0885-3185</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Brain (surgery)</term>
<term>Brain Mapping (methods)</term>
<term>Deep Brain Stimulation (methods)</term>
<term>Electrodes, Implanted</term>
<term>Globus Pallidus (anatomy & histology)</term>
<term>Globus Pallidus (physiology)</term>
<term>Humans</term>
<term>Microelectrodes</term>
<term>Parkinson Disease (complications)</term>
<term>Parkinson Disease (surgery)</term>
<term>Parkinson Disease (therapy)</term>
<term>Subthalamic Nucleus (anatomy & histology)</term>
<term>Subthalamic Nucleus (physiology)</term>
<term>Tremor (etiology)</term>
<term>Tremor (therapy)</term>
<term>Ventral Thalamic Nuclei (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Globus Pallidus</term>
<term>Subthalamic Nucleus</term>
</keywords>
<keywords scheme="MESH" qualifier="complications" xml:lang="en">
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Tremor</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Brain Mapping</term>
<term>Deep Brain Stimulation</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Globus Pallidus</term>
<term>Subthalamic Nucleus</term>
<term>Ventral Thalamic Nuclei</term>
</keywords>
<keywords scheme="MESH" qualifier="surgery" xml:lang="en">
<term>Brain</term>
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Parkinson Disease</term>
<term>Tremor</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electrodes, Implanted</term>
<term>Humans</term>
<term>Microelectrodes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The vast majority of centers use electrophysiological mapping techniques to finalize target selection during the implantation of deep brain stimulation (DBS) leads for the treatment of Parkinson's disease and tremor. This review discusses the techniques used for physiological mapping and addresses the questions of how various mapping strategies modify target selection and outcome following subthalamic nucleus (STN), globus pallidus internus (GPi), and ventralis intermedius (Vim) deep brain stimulation. Mapping strategies vary greatly across centers, but can be broadly categorized into those that use microelectrode or semimicroelectrode techniques to optimize position prior to implantation and macrostimulation through a macroelectrode or the DBS lead, and those that rely solely on macrostimulation and its threshold for clinical effects (benefits and side effects). Microelectrode criteria for implantation into the STN or GPi include length of the nucleus recorded, presence of movement-responsive neurons, and/or distance from the borders with adjacent structures. However, the threshold for the production of clinical benefits relative to side effects is, in most centers, the final, and sometimes only, determinant of DBS electrode position. Macrostimulation techniques for mapping, the utility of microelectrode mapping is reflected in its modification of electrode position in 17% to 87% of patients undergoing STN DBS, with average target adjustments of 1 to 4 mm. Nevertheless, with the absence of class I data, and in consideration of the large number of variables that impact clinical outcome, it is not possible to conclude that one technique is superior to the other in so far as motor Unified Parkinson's Disease Rating Scale outcome is concerned. Moreover, mapping technique is only one out of many variables that determine the outcome. The increase in surgical risk of intracranial hemorrhage correlated to the number of microelectrode trajectories must be considered against the risk of suboptimal benefits related to omission of this technique.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">16810720</PMID>
<DateCreated>
<Year>2006</Year>
<Month>08</Month>
<Day>07</Day>
</DateCreated>
<DateCompleted>
<Year>2006</Year>
<Month>09</Month>
<Day>14</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0885-3185</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>21 Suppl 14</Volume>
<PubDate>
<Year>2006</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov. Disord.</ISOAbbreviation>
</Journal>
<ArticleTitle>Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor.</ArticleTitle>
<Pagination>
<MedlinePgn>S259-83</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The vast majority of centers use electrophysiological mapping techniques to finalize target selection during the implantation of deep brain stimulation (DBS) leads for the treatment of Parkinson's disease and tremor. This review discusses the techniques used for physiological mapping and addresses the questions of how various mapping strategies modify target selection and outcome following subthalamic nucleus (STN), globus pallidus internus (GPi), and ventralis intermedius (Vim) deep brain stimulation. Mapping strategies vary greatly across centers, but can be broadly categorized into those that use microelectrode or semimicroelectrode techniques to optimize position prior to implantation and macrostimulation through a macroelectrode or the DBS lead, and those that rely solely on macrostimulation and its threshold for clinical effects (benefits and side effects). Microelectrode criteria for implantation into the STN or GPi include length of the nucleus recorded, presence of movement-responsive neurons, and/or distance from the borders with adjacent structures. However, the threshold for the production of clinical benefits relative to side effects is, in most centers, the final, and sometimes only, determinant of DBS electrode position. Macrostimulation techniques for mapping, the utility of microelectrode mapping is reflected in its modification of electrode position in 17% to 87% of patients undergoing STN DBS, with average target adjustments of 1 to 4 mm. Nevertheless, with the absence of class I data, and in consideration of the large number of variables that impact clinical outcome, it is not possible to conclude that one technique is superior to the other in so far as motor Unified Parkinson's Disease Rating Scale outcome is concerned. Moreover, mapping technique is only one out of many variables that determine the outcome. The increase in surgical risk of intracranial hemorrhage correlated to the number of microelectrode trajectories must be considered against the risk of suboptimal benefits related to omission of this technique.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gross</LastName>
<ForeName>Robert E</ForeName>
<Initials>RE</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, USA. robert_gross@emory.org</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Krack</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rodriguez-Oroz</LastName>
<ForeName>Maria C</ForeName>
<Initials>MC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rezai</LastName>
<ForeName>Ali R</ForeName>
<Initials>AR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Benabid</LastName>
<ForeName>Alim-Louis</ForeName>
<Initials>AL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000601">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001931">Brain Mapping</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D046690">Deep Brain Stimulation</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004567">Electrodes, Implanted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005917">Globus Pallidus</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008839">Microelectrodes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010300">Parkinson Disease</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000150">complications</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000601">surgery</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000628">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020531">Subthalamic Nucleus</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000033">anatomy & histology</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014202">Tremor</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000209">etiology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000628">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020651">Ventral Thalamic Nuclei</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>134</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/mds.20960</ArticleId>
<ArticleId IdType="pubmed">16810720</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B79 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 002B79 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:16810720
   |texte=   Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson's disease and tremor.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:16810720" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024