Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson's disease.

Identifieur interne : 000D69 ( PubMed/Corpus ); précédent : 000D68; suivant : 000D70

Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson's disease.

Auteurs : Harrison C. Walker ; He Huang ; Christopher L. Gonzalez ; James E. Bryant ; Jeffrey Killen ; Gary R. Cutter ; Robert C. Knowlton ; Erwin B. Montgomery ; Bart L. Guthrie ; Ray L. Watts

Source :

RBID : pubmed:22648508

English descriptors

Abstract

Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive-compulsive disorder. Despite this, its therapeutic mechanism is unknown. We hypothesized that subthalamic stimulation activates the cerebral cortex at short latencies after stimulus onset during clinically effective stimulation for PD. In 5 subjects (six hemispheres), EEG measured the response of cortex to subthalamic stimulation across a range of stimulation voltages and frequencies. Novel analytical techniques reversed the anode and cathode electrode contacts and summed the resulting pair of event-related potentials to suppress the stimulation artifact. We found that subthalamic brain stimulation at 20 Hz activates the somatosensory cortex at discrete latencies (mean latencies: 1.0 ± 0.4, 5.7 ± 1.1, and 22.2 ± 1.8 ms, denoted as R1, R2, and R3, respectively). The amplitude of the short latency peak (R1) during clinically effective high-frequency stimulation is nonlinearly dependent on stimulation voltage (P < 0.001; repeated-measures analysis of variance), and its latency is less variable than that of R3 (1.02 versus 19.46 ms; P < 0.001, Levene's test). We conclude that clinically effective subthalamic brain stimulation in humans with PD activates the cerebral cortex at 1 ms after stimulus onset, most likely by antidromic activation. These findings suggest that alteration of the precise timing of action potentials in cortical neurons with axonal projections to the subthalamic region may be an important component of the therapeutic mechanism of subthalamic brain stimulation.

DOI: 10.1002/mds.25025
PubMed: 22648508

Links to Exploration step

pubmed:22648508

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson's disease.</title>
<author>
<name sortKey="Walker, Harrison C" sort="Walker, Harrison C" uniqKey="Walker H" first="Harrison C" last="Walker">Harrison C. Walker</name>
<affiliation>
<nlm:affiliation>Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA. hcwalker@uab.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, He" sort="Huang, He" uniqKey="Huang H" first="He" last="Huang">He Huang</name>
</author>
<author>
<name sortKey="Gonzalez, Christopher L" sort="Gonzalez, Christopher L" uniqKey="Gonzalez C" first="Christopher L" last="Gonzalez">Christopher L. Gonzalez</name>
</author>
<author>
<name sortKey="Bryant, James E" sort="Bryant, James E" uniqKey="Bryant J" first="James E" last="Bryant">James E. Bryant</name>
</author>
<author>
<name sortKey="Killen, Jeffrey" sort="Killen, Jeffrey" uniqKey="Killen J" first="Jeffrey" last="Killen">Jeffrey Killen</name>
</author>
<author>
<name sortKey="Cutter, Gary R" sort="Cutter, Gary R" uniqKey="Cutter G" first="Gary R" last="Cutter">Gary R. Cutter</name>
</author>
<author>
<name sortKey="Knowlton, Robert C" sort="Knowlton, Robert C" uniqKey="Knowlton R" first="Robert C" last="Knowlton">Robert C. Knowlton</name>
</author>
<author>
<name sortKey="Montgomery, Erwin B" sort="Montgomery, Erwin B" uniqKey="Montgomery E" first="Erwin B" last="Montgomery">Erwin B. Montgomery</name>
</author>
<author>
<name sortKey="Guthrie, Bart L" sort="Guthrie, Bart L" uniqKey="Guthrie B" first="Bart L" last="Guthrie">Bart L. Guthrie</name>
</author>
<author>
<name sortKey="Watts, Ray L" sort="Watts, Ray L" uniqKey="Watts R" first="Ray L" last="Watts">Ray L. Watts</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="doi">10.1002/mds.25025</idno>
<idno type="RBID">pubmed:22648508</idno>
<idno type="pmid">22648508</idno>
<idno type="wicri:Area/PubMed/Corpus">000D69</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson's disease.</title>
<author>
<name sortKey="Walker, Harrison C" sort="Walker, Harrison C" uniqKey="Walker H" first="Harrison C" last="Walker">Harrison C. Walker</name>
<affiliation>
<nlm:affiliation>Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA. hcwalker@uab.edu.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, He" sort="Huang, He" uniqKey="Huang H" first="He" last="Huang">He Huang</name>
</author>
<author>
<name sortKey="Gonzalez, Christopher L" sort="Gonzalez, Christopher L" uniqKey="Gonzalez C" first="Christopher L" last="Gonzalez">Christopher L. Gonzalez</name>
</author>
<author>
<name sortKey="Bryant, James E" sort="Bryant, James E" uniqKey="Bryant J" first="James E" last="Bryant">James E. Bryant</name>
</author>
<author>
<name sortKey="Killen, Jeffrey" sort="Killen, Jeffrey" uniqKey="Killen J" first="Jeffrey" last="Killen">Jeffrey Killen</name>
</author>
<author>
<name sortKey="Cutter, Gary R" sort="Cutter, Gary R" uniqKey="Cutter G" first="Gary R" last="Cutter">Gary R. Cutter</name>
</author>
<author>
<name sortKey="Knowlton, Robert C" sort="Knowlton, Robert C" uniqKey="Knowlton R" first="Robert C" last="Knowlton">Robert C. Knowlton</name>
</author>
<author>
<name sortKey="Montgomery, Erwin B" sort="Montgomery, Erwin B" uniqKey="Montgomery E" first="Erwin B" last="Montgomery">Erwin B. Montgomery</name>
</author>
<author>
<name sortKey="Guthrie, Bart L" sort="Guthrie, Bart L" uniqKey="Guthrie B" first="Bart L" last="Guthrie">Bart L. Guthrie</name>
</author>
<author>
<name sortKey="Watts, Ray L" sort="Watts, Ray L" uniqKey="Watts R" first="Ray L" last="Watts">Ray L. Watts</name>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aged</term>
<term>Analysis of Variance</term>
<term>Cerebral Cortex (physiopathology)</term>
<term>Deep Brain Stimulation (methods)</term>
<term>Electroencephalography</term>
<term>Evoked Potentials (physiology)</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Motor Activity (physiology)</term>
<term>Nonlinear Dynamics</term>
<term>Parkinson Disease (pathology)</term>
<term>Parkinson Disease (therapy)</term>
<term>Reaction Time (physiology)</term>
<term>Regression Analysis</term>
<term>Subthalamus (physiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Deep Brain Stimulation</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Evoked Potentials</term>
<term>Motor Activity</term>
<term>Reaction Time</term>
<term>Subthalamus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Cerebral Cortex</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Parkinson Disease</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Aged</term>
<term>Analysis of Variance</term>
<term>Electroencephalography</term>
<term>Female</term>
<term>Humans</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Nonlinear Dynamics</term>
<term>Regression Analysis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive-compulsive disorder. Despite this, its therapeutic mechanism is unknown. We hypothesized that subthalamic stimulation activates the cerebral cortex at short latencies after stimulus onset during clinically effective stimulation for PD. In 5 subjects (six hemispheres), EEG measured the response of cortex to subthalamic stimulation across a range of stimulation voltages and frequencies. Novel analytical techniques reversed the anode and cathode electrode contacts and summed the resulting pair of event-related potentials to suppress the stimulation artifact. We found that subthalamic brain stimulation at 20 Hz activates the somatosensory cortex at discrete latencies (mean latencies: 1.0 ± 0.4, 5.7 ± 1.1, and 22.2 ± 1.8 ms, denoted as R1, R2, and R3, respectively). The amplitude of the short latency peak (R1) during clinically effective high-frequency stimulation is nonlinearly dependent on stimulation voltage (P < 0.001; repeated-measures analysis of variance), and its latency is less variable than that of R3 (1.02 versus 19.46 ms; P < 0.001, Levene's test). We conclude that clinically effective subthalamic brain stimulation in humans with PD activates the cerebral cortex at 1 ms after stimulus onset, most likely by antidromic activation. These findings suggest that alteration of the precise timing of action potentials in cortical neurons with axonal projections to the subthalamic region may be an important component of the therapeutic mechanism of subthalamic brain stimulation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">22648508</PMID>
<DateCreated>
<Year>2012</Year>
<Month>06</Month>
<Day>25</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>10</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1531-8257</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>27</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov. Disord.</ISOAbbreviation>
</Journal>
<ArticleTitle>Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson's disease.</ArticleTitle>
<Pagination>
<MedlinePgn>864-73</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mds.25025</ELocationID>
<Abstract>
<AbstractText>Subthalamic deep brain stimulation (DBS) is superior to medical therapy for the motor symptoms of advanced Parkinson's disease (PD), and additional evidence suggests that it improves refractory symptoms of essential tremor, primary generalized dystonia, and obsessive-compulsive disorder. Despite this, its therapeutic mechanism is unknown. We hypothesized that subthalamic stimulation activates the cerebral cortex at short latencies after stimulus onset during clinically effective stimulation for PD. In 5 subjects (six hemispheres), EEG measured the response of cortex to subthalamic stimulation across a range of stimulation voltages and frequencies. Novel analytical techniques reversed the anode and cathode electrode contacts and summed the resulting pair of event-related potentials to suppress the stimulation artifact. We found that subthalamic brain stimulation at 20 Hz activates the somatosensory cortex at discrete latencies (mean latencies: 1.0 ± 0.4, 5.7 ± 1.1, and 22.2 ± 1.8 ms, denoted as R1, R2, and R3, respectively). The amplitude of the short latency peak (R1) during clinically effective high-frequency stimulation is nonlinearly dependent on stimulation voltage (P < 0.001; repeated-measures analysis of variance), and its latency is less variable than that of R3 (1.02 versus 19.46 ms; P < 0.001, Levene's test). We conclude that clinically effective subthalamic brain stimulation in humans with PD activates the cerebral cortex at 1 ms after stimulus onset, most likely by antidromic activation. These findings suggest that alteration of the precise timing of action potentials in cortical neurons with axonal projections to the subthalamic region may be an important component of the therapeutic mechanism of subthalamic brain stimulation.</AbstractText>
<CopyrightInformation>Copyright © 2012 Movement Disorder Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Walker</LastName>
<ForeName>Harrison C</ForeName>
<Initials>HC</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0017, USA. hcwalker@uab.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>He</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gonzalez</LastName>
<ForeName>Christopher L</ForeName>
<Initials>CL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bryant</LastName>
<ForeName>James E</ForeName>
<Initials>JE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Killen</LastName>
<ForeName>Jeffrey</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cutter</LastName>
<ForeName>Gary R</ForeName>
<Initials>GR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Knowlton</LastName>
<ForeName>Robert C</ForeName>
<Initials>RC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Montgomery</LastName>
<ForeName>Erwin B</ForeName>
<Initials>EB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Guthrie</LastName>
<ForeName>Bart L</ForeName>
<Initials>BL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Watts</LastName>
<ForeName>Ray L</ForeName>
<Initials>RL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K23 NS067053</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K23-NS067053-01</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 1987 Aug;84(15):5492-5</RefSource>
<PMID Version="1">3474665</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 1981;6(11):2367-77</RefSource>
<PMID Version="1">7329552</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anesth Analg. 1994 Oct;79(4):687-93</RefSource>
<PMID Version="1">7943776</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2005 Mar;21(5):1394-402</RefSource>
<PMID Version="1">15813949</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2005 Nov 15;28(3):598-606</RefSource>
<PMID Version="1">16081302</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2006 May 15;31(1):301-7</RefSource>
<PMID Version="1">16466936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Neurophysiol. 2006 Jun;23(3):186-9</RefSource>
<PMID Version="1">16751718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 2006 Aug 31;355(9):896-908</RefSource>
<PMID Version="1">16943402</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2006 Oct;129(Pt 10):2667-78</RefSource>
<PMID Version="1">16844713</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2007 Mar 1;579(Pt 2):403-12</RefSource>
<PMID Version="1">17170044</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosurg. 2007 Jul;107(1):29-36</RefSource>
<PMID Version="1">17639870</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2007 Oct;13(7):438-42</RefSource>
<PMID Version="1">17292654</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 Dec;98(6):3525-37</RefSource>
<PMID Version="1">17928554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Biobehav Rev. 2008;32(3):388-407</RefSource>
<PMID Version="1">17706780</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2008 May;27(10):2599-610</RefSource>
<PMID Version="1">18547246</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2008 Jun 12;453(7197):869-78</RefSource>
<PMID Version="1">18548064</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2008 Jul;212(1):226-9</RefSource>
<PMID Version="1">18501351</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stereotact Funct Neurosurg. 2008;86(4):253-8</RefSource>
<PMID Version="1">18552522</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Neurophysiol. 2008 Oct;25(5):265-73</RefSource>
<PMID Version="1">18791473</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2008 Oct;131(Pt 10):2710-9</RefSource>
<PMID Version="1">18697909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 2008 Nov 13;359(20):2121-34</RefSource>
<PMID Version="1">19005196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2008 Nov 15;23(15):2111-21</RefSource>
<PMID Version="1">18785230</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2009 Jan;30(1):112-21</RefSource>
<PMID Version="1">18041743</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>JAMA. 2009 Jan 7;301(1):63-73</RefSource>
<PMID Version="1">19126811</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2009 Apr 17;324(5925):354-9</RefSource>
<PMID Version="1">19299587</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosurgery. 2009 Aug;65(2):302-9; discussion 309-10</RefSource>
<PMID Version="1">19625909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Chin Med J (Engl). 2009 Oct 20;122(20):2419-22</RefSource>
<PMID Version="1">20079152</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stereotact Funct Neurosurg. 2010;88(1):16-23</RefSource>
<PMID Version="1">19940545</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2010 Feb;103(2):962-7</RefSource>
<PMID Version="1">19955287</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurol. 2010 May;17(5):746-53</RefSource>
<PMID Version="1">20345927</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cereb Cortex. 2010 Aug;20(8):1926-36</RefSource>
<PMID Version="1">20019146</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2011 Mar;105(3):1112-21</RefSource>
<PMID Version="1">21177996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Physiol Rev. 2011 Apr;91(2):555-602</RefSource>
<PMID Version="1">21527732</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2011 Aug 15;26(10):1835-43</RefSource>
<PMID Version="1">21674623</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 1995 Jun;2(2):148-56</RefSource>
<PMID Version="1">9343597</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2000 Jul;84(1):289-300</RefSource>
<PMID Version="1">10899204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2001 Mar;112(3):431-7</RefSource>
<PMID Version="1">11222963</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Res. 2002 Jun;43(2):111-7</RefSource>
<PMID Version="1">12067746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2002 Sep 10;59(5):706-13</RefSource>
<PMID Version="1">12221161</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2002 Sep;17(5):969-83</RefSource>
<PMID Version="1">12360546</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Mar 1;23(5):1916-23</RefSource>
<PMID Version="1">12629196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2004 Apr;91(4):1457-69</RefSource>
<PMID Version="1">14668299</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci Methods. 2004 Mar 15;134(1):9-21</RefSource>
<PMID Version="1">15102499</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosurg. 2004 Jul;101(1):48-54</RefSource>
<PMID Version="1">15255251</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Anesth Analg. 1990 Jun;70(6):618-23</RefSource>
<PMID Version="1">2344056</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000368">Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000704">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002540">Cerebral Cortex</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000503">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D046690">Deep Brain Stimulation</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004569">Electroencephalography</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005071">Evoked Potentials</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008875">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009043">Motor Activity</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017711">Nonlinear Dynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010300">Parkinson Disease</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000473">pathology</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000628">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D011930">Reaction Time</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012044">Regression Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020530">Subthalamus</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000502">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS454294</OtherID>
<OtherID Source="NLM">PMC3636546</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>10</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>3</Month>
<Day>5</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>3</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2012</Year>
<Month>5</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>11</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/mds.25025</ArticleId>
<ArticleId IdType="pubmed">22648508</ArticleId>
<ArticleId IdType="pmc">PMC3636546</ArticleId>
<ArticleId IdType="mid">NIHMS454294</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D69 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000D69 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:22648508
   |texte=   Short latency activation of cortex during clinically effective subthalamic deep brain stimulation for Parkinson's disease.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:22648508" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024