Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice.

Identifieur interne : 000432 ( PubMed/Corpus ); précédent : 000431; suivant : 000433

Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice.

Auteurs : J Mark Cooper ; P B Oscar Wiklander ; Joel Z. Nordin ; Raya Al-Shawi ; Matthew J. Wood ; Mansi Vithlani ; Anthony H V. Schapira ; J Paul Simons ; Samir El-Andaloussi ; Lydia Alvarez-Erviti

Source :

RBID : pubmed:25112864

English descriptors

Abstract

Alpha-synuclein (α-Syn) aggregates are the main component of Lewy bodies, which are the characteristic pathological feature in Parkinson's disease (PD) brain. Evidence that α-Syn aggregation can be propagated between neurones has led to the suggestion that this mechanism is responsible for the stepwise progression of PD pathology. Decreasing α-Syn expression is predicted to attenuate this process and is thus an attractive approach to delay or halt PD progression. We have used α-Syn small interfering RNA (siRNA) to reduce total and aggregated α-Syn levels in mouse brains. To achieve widespread delivery of siRNAs to the brain we have peripherally injected modified exosomes expressing Ravies virus glycoprotein loaded with siRNA. Normal mice were analyzed 3 or 7 days after injection. To evaluate whether this approach can decrease α-Syn aggregates, we repeated the treatment using transgenic mice expressing the human phosphorylation-mimic S129D α-Syn, which exhibits aggregation. In normal mice we detected significantly reduced α-Syn messenger RNA (mRNA) and protein levels throughout the brain 3 and 7 days after treatment with RVG-exosomes loaded with siRNA to α-Syn. In S129D α-Syn transgenic mice we found a decreased α-Syn mRNA and protein levels throughout the brain 7 days after injection. This resulted in significant reductions in intraneuronal protein aggregates, including in dopaminergic neurones of the substantia nigra. This study highlights the therapeutic potential of RVG-exosome delivery of siRNA to delay and reverse brain α-Syn pathological conditions.

DOI: 10.1002/mds.25978
PubMed: 25112864

Links to Exploration step

pubmed:25112864

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice.</title>
<author>
<name sortKey="Cooper, J Mark" sort="Cooper, J Mark" uniqKey="Cooper J" first="J Mark" last="Cooper">J Mark Cooper</name>
<affiliation>
<nlm:affiliation>Department of Clinical Neuroscience, Institute of Neurology, University College London, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wiklander, P B Oscar" sort="Wiklander, P B Oscar" uniqKey="Wiklander P" first="P B Oscar" last="Wiklander">P B Oscar Wiklander</name>
</author>
<author>
<name sortKey="Nordin, Joel Z" sort="Nordin, Joel Z" uniqKey="Nordin J" first="Joel Z" last="Nordin">Joel Z. Nordin</name>
</author>
<author>
<name sortKey="Al Shawi, Raya" sort="Al Shawi, Raya" uniqKey="Al Shawi R" first="Raya" last="Al-Shawi">Raya Al-Shawi</name>
</author>
<author>
<name sortKey="Wood, Matthew J" sort="Wood, Matthew J" uniqKey="Wood M" first="Matthew J" last="Wood">Matthew J. Wood</name>
</author>
<author>
<name sortKey="Vithlani, Mansi" sort="Vithlani, Mansi" uniqKey="Vithlani M" first="Mansi" last="Vithlani">Mansi Vithlani</name>
</author>
<author>
<name sortKey="Schapira, Anthony H V" sort="Schapira, Anthony H V" uniqKey="Schapira A" first="Anthony H V" last="Schapira">Anthony H V. Schapira</name>
</author>
<author>
<name sortKey="Simons, J Paul" sort="Simons, J Paul" uniqKey="Simons J" first="J Paul" last="Simons">J Paul Simons</name>
</author>
<author>
<name sortKey="El Andaloussi, Samir" sort="El Andaloussi, Samir" uniqKey="El Andaloussi S" first="Samir" last="El-Andaloussi">Samir El-Andaloussi</name>
</author>
<author>
<name sortKey="Alvarez Erviti, Lydia" sort="Alvarez Erviti, Lydia" uniqKey="Alvarez Erviti L" first="Lydia" last="Alvarez-Erviti">Lydia Alvarez-Erviti</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25112864</idno>
<idno type="pmid">25112864</idno>
<idno type="doi">10.1002/mds.25978</idno>
<idno type="wicri:Area/PubMed/Corpus">000432</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice.</title>
<author>
<name sortKey="Cooper, J Mark" sort="Cooper, J Mark" uniqKey="Cooper J" first="J Mark" last="Cooper">J Mark Cooper</name>
<affiliation>
<nlm:affiliation>Department of Clinical Neuroscience, Institute of Neurology, University College London, London, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Wiklander, P B Oscar" sort="Wiklander, P B Oscar" uniqKey="Wiklander P" first="P B Oscar" last="Wiklander">P B Oscar Wiklander</name>
</author>
<author>
<name sortKey="Nordin, Joel Z" sort="Nordin, Joel Z" uniqKey="Nordin J" first="Joel Z" last="Nordin">Joel Z. Nordin</name>
</author>
<author>
<name sortKey="Al Shawi, Raya" sort="Al Shawi, Raya" uniqKey="Al Shawi R" first="Raya" last="Al-Shawi">Raya Al-Shawi</name>
</author>
<author>
<name sortKey="Wood, Matthew J" sort="Wood, Matthew J" uniqKey="Wood M" first="Matthew J" last="Wood">Matthew J. Wood</name>
</author>
<author>
<name sortKey="Vithlani, Mansi" sort="Vithlani, Mansi" uniqKey="Vithlani M" first="Mansi" last="Vithlani">Mansi Vithlani</name>
</author>
<author>
<name sortKey="Schapira, Anthony H V" sort="Schapira, Anthony H V" uniqKey="Schapira A" first="Anthony H V" last="Schapira">Anthony H V. Schapira</name>
</author>
<author>
<name sortKey="Simons, J Paul" sort="Simons, J Paul" uniqKey="Simons J" first="J Paul" last="Simons">J Paul Simons</name>
</author>
<author>
<name sortKey="El Andaloussi, Samir" sort="El Andaloussi, Samir" uniqKey="El Andaloussi S" first="Samir" last="El-Andaloussi">Samir El-Andaloussi</name>
</author>
<author>
<name sortKey="Alvarez Erviti, Lydia" sort="Alvarez Erviti, Lydia" uniqKey="Alvarez Erviti L" first="Lydia" last="Alvarez-Erviti">Lydia Alvarez-Erviti</name>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Brain (metabolism)</term>
<term>Cell Line, Tumor</term>
<term>Dendritic Cells (metabolism)</term>
<term>Exosomes (physiology)</term>
<term>Gene Expression Regulation (drug effects)</term>
<term>Gene Expression Regulation (physiology)</term>
<term>Genetic Vectors (genetics)</term>
<term>Glycoproteins (administration & dosage)</term>
<term>Glycoproteins (genetics)</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Transgenic</term>
<term>Mutation (genetics)</term>
<term>Neuroblastoma (pathology)</term>
<term>Peptide Fragments (administration & dosage)</term>
<term>Peptide Fragments (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>RNA, Small Interfering (administration & dosage)</term>
<term>Time Factors</term>
<term>Transfection</term>
<term>Viral Proteins (administration & dosage)</term>
<term>Viral Proteins (genetics)</term>
<term>alpha-Synuclein (genetics)</term>
<term>alpha-Synuclein (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Glycoproteins</term>
<term>Peptide Fragments</term>
<term>RNA, Small Interfering</term>
<term>Viral Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genetic Vectors</term>
<term>Glycoproteins</term>
<term>Mutation</term>
<term>Peptide Fragments</term>
<term>Viral Proteins</term>
<term>alpha-Synuclein</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Brain</term>
<term>Dendritic Cells</term>
<term>RNA, Messenger</term>
<term>alpha-Synuclein</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Neuroblastoma</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Exosomes</term>
<term>Gene Expression Regulation</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line, Tumor</term>
<term>Humans</term>
<term>Mice</term>
<term>Mice, Inbred C57BL</term>
<term>Mice, Transgenic</term>
<term>Time Factors</term>
<term>Transfection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Alpha-synuclein (α-Syn) aggregates are the main component of Lewy bodies, which are the characteristic pathological feature in Parkinson's disease (PD) brain. Evidence that α-Syn aggregation can be propagated between neurones has led to the suggestion that this mechanism is responsible for the stepwise progression of PD pathology. Decreasing α-Syn expression is predicted to attenuate this process and is thus an attractive approach to delay or halt PD progression. We have used α-Syn small interfering RNA (siRNA) to reduce total and aggregated α-Syn levels in mouse brains. To achieve widespread delivery of siRNAs to the brain we have peripherally injected modified exosomes expressing Ravies virus glycoprotein loaded with siRNA. Normal mice were analyzed 3 or 7 days after injection. To evaluate whether this approach can decrease α-Syn aggregates, we repeated the treatment using transgenic mice expressing the human phosphorylation-mimic S129D α-Syn, which exhibits aggregation. In normal mice we detected significantly reduced α-Syn messenger RNA (mRNA) and protein levels throughout the brain 3 and 7 days after treatment with RVG-exosomes loaded with siRNA to α-Syn. In S129D α-Syn transgenic mice we found a decreased α-Syn mRNA and protein levels throughout the brain 7 days after injection. This resulted in significant reductions in intraneuronal protein aggregates, including in dopaminergic neurones of the substantia nigra. This study highlights the therapeutic potential of RVG-exosome delivery of siRNA to delay and reverse brain α-Syn pathological conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">25112864</PMID>
<DateCreated>
<Year>2014</Year>
<Month>10</Month>
<Day>06</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>06</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>01</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1531-8257</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2014</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov. Disord.</ISOAbbreviation>
</Journal>
<ArticleTitle>Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice.</ArticleTitle>
<Pagination>
<MedlinePgn>1476-85</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mds.25978</ELocationID>
<Abstract>
<AbstractText>Alpha-synuclein (α-Syn) aggregates are the main component of Lewy bodies, which are the characteristic pathological feature in Parkinson's disease (PD) brain. Evidence that α-Syn aggregation can be propagated between neurones has led to the suggestion that this mechanism is responsible for the stepwise progression of PD pathology. Decreasing α-Syn expression is predicted to attenuate this process and is thus an attractive approach to delay or halt PD progression. We have used α-Syn small interfering RNA (siRNA) to reduce total and aggregated α-Syn levels in mouse brains. To achieve widespread delivery of siRNAs to the brain we have peripherally injected modified exosomes expressing Ravies virus glycoprotein loaded with siRNA. Normal mice were analyzed 3 or 7 days after injection. To evaluate whether this approach can decrease α-Syn aggregates, we repeated the treatment using transgenic mice expressing the human phosphorylation-mimic S129D α-Syn, which exhibits aggregation. In normal mice we detected significantly reduced α-Syn messenger RNA (mRNA) and protein levels throughout the brain 3 and 7 days after treatment with RVG-exosomes loaded with siRNA to α-Syn. In S129D α-Syn transgenic mice we found a decreased α-Syn mRNA and protein levels throughout the brain 7 days after injection. This resulted in significant reductions in intraneuronal protein aggregates, including in dopaminergic neurones of the substantia nigra. This study highlights the therapeutic potential of RVG-exosome delivery of siRNA to delay and reverse brain α-Syn pathological conditions.</AbstractText>
<CopyrightInformation>© 2014 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cooper</LastName>
<ForeName>J Mark</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Clinical Neuroscience, Institute of Neurology, University College London, London, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wiklander</LastName>
<ForeName>P B Oscar</ForeName>
<Initials>PB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nordin</LastName>
<ForeName>Joel Z</ForeName>
<Initials>JZ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Al-Shawi</LastName>
<ForeName>Raya</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wood</LastName>
<ForeName>Matthew J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vithlani</LastName>
<ForeName>Mansi</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schapira</LastName>
<ForeName>Anthony H V</ForeName>
<Initials>AH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Simons</LastName>
<ForeName>J Paul</ForeName>
<Initials>JP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>El-Andaloussi</LastName>
<ForeName>Samir</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alvarez-Erviti</LastName>
<ForeName>Lydia</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>089698</GrantID>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>F-1101</GrantID>
<Agency>Parkinson's UK</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>G-0910</GrantID>
<Agency>Parkinson's UK</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>G-1109</GrantID>
<Agency>Parkinson's UK</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>MR/J009660/1</GrantID>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>WT089698</GrantID>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006023">Glycoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014764">Viral Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D051844">alpha-Synuclein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C583075">rabies virus glycoprotein peptide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2014 Mar;75(3):351-62</RefSource>
<PMID Version="1">24243558</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2000 Jan;25(1):239-52</RefSource>
<PMID Version="1">10707987</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2000 Mar 31;101(1):57-66</RefSource>
<PMID Version="1">10778856</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2002 Feb;4(2):160-4</RefSource>
<PMID Version="1">11813001</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Aging. 2003 Mar-Apr;24(2):197-211</RefSource>
<PMID Version="1">12498954</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2003 Oct 31;302(5646):841</RefSource>
<PMID Version="1">14593171</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet. 2004 Sep 25-Oct 1;364(9440):1167-9</RefSource>
<PMID Version="1">15451224</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2004 Oct 20;24(42):9434-40</RefSource>
<PMID Version="1">15496679</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Biotechnol. 1997 Oct;15(10):410-8</RefSource>
<PMID Version="1">9351285</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2006 Oct 6;281(40):29739-52</RefSource>
<PMID Version="1">16847063</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2006 Oct 5;52(1):33-8</RefSource>
<PMID Version="1">17015225</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2007 Jun;9(6):654-9</RefSource>
<PMID Version="1">17486113</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Aug 22;27(34):9220-32</RefSource>
<PMID Version="1">17715357</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17204-9</RefSource>
<PMID Version="1">17940007</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2009 Mar 1;18(5):872-87</RefSource>
<PMID Version="1">19074459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pharm Res. 2009 May;26(5):1059-63</RefSource>
<PMID Version="1">19104914</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochim Biophys Acta. 2009 Jul;1792(7):730-40</RefSource>
<PMID Version="1">18718530</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2010 Jun 10;66(5):646-61</RefSource>
<PMID Version="1">20547124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2011 Apr;29(4):341-5</RefSource>
<PMID Version="1">21423189</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cold Spring Harb Perspect Med. 2012 Apr;2(4):a009431</RefSource>
<PMID Version="1">22474617</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2012 Nov 16;338(6109):949-53</RefSource>
<PMID Version="1">23161999</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Death Dis. 2013;4:e545</RefSource>
<PMID Version="1">23492776</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2013 Aug;56:47-58</RefSource>
<PMID Version="1">23567651</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="CommentIn">
<RefSource>Mov Disord. 2014 Oct;29(12):1463-5</RefSource>
<PMID Version="1">25214445</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D045744">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003713">Dendritic Cells</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D055354">Exosomes</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005786">Gene Expression Regulation</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000187">drug effects</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000502">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005822">Genetic Vectors</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006023">Glycoproteins</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000008">administration & dosage</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D051379">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008810">Mice, Inbred C57BL</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008822">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009154">Mutation</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000235">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009447">Neuroblastoma</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000473">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D010446">Peptide Fragments</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000008">administration & dosage</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D012333">RNA, Messenger</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D034741">RNA, Small Interfering</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000008">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013997">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014162">Transfection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D014764">Viral Proteins</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000008">administration & dosage</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D051844">alpha-Synuclein</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000235">genetics</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">EMS60085</OtherID>
<OtherID Source="NLM">PMC4204174</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">RVG-exosomes</Keyword>
<Keyword MajorTopicYN="N">siRNA</Keyword>
<Keyword MajorTopicYN="N">transgenic mice</Keyword>
<Keyword MajorTopicYN="N">α-Syn</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>3</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>7</Month>
<Day>2</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>7</Month>
<Day>6</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2014</Year>
<Month>8</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25112864</ArticleId>
<ArticleId IdType="doi">10.1002/mds.25978</ArticleId>
<ArticleId IdType="pmc">PMC4204174</ArticleId>
<ArticleId IdType="mid">EMS60085</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000432 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000432 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25112864
   |texte=   Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25112864" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024