Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Targets for future clinical trials in Huntington's disease: what's in the pipeline?

Identifieur interne : 000411 ( PubMed/Corpus ); précédent : 000410; suivant : 000412

Targets for future clinical trials in Huntington's disease: what's in the pipeline?

Auteurs : Edward J. Wild ; Sarah J. Tabrizi

Source :

RBID : pubmed:25155142

English descriptors

Abstract

The known genetic cause of Huntington's disease (HD) has fueled considerable progress in understanding its pathobiology and the development of therapeutic approaches aimed at correcting specific changes linked to the causative mutation. Among the most promising is reducing expression of mutant huntingtin protein (mHTT) with RNA interference or antisense oligonucleotides; human trials are now being planned. Zinc-finger transcriptional repression is another innovative method to reduce mHTT expression. Modulation of mHTT phosphorylation, chaperone upregulation, and autophagy enhancement represent attempts to alter cellular homeostasis to favor removal of mHTT. Inhibition of histone deacetylases (HDACs) remains of interest; recent work affirms HDAC4 as a target but questions the assumed centrality of its catalytic activity in HD. Phosphodiesterase inhibition, aimed at restoring synaptic function, has progressed rapidly to human trials. Deranged cellular signaling provides several tractable targets, but specificity and complexity are challenges. Restoring neurotrophic support in HD remains a key potential therapeutic approach. with several approaches being pursued, including brain-derived neurotrophic factor (BDNF) mimesis through tyrosine receptor kinase B (TrkB) agonism and monoclonal antibodies. An increasing understanding of the role of glial cells in HD has led to several new therapeutic avenues, including kynurenine monooxygenase inhibition, immunomodulation by laquinimod, CB2 agonism, and others. The complex metabolic derangements in HD remain under study, but no clear therapeutic strategy has yet emerged. We conclude that many exciting therapeutics are progressing through the development pipeline, and combining a better understanding of HD biology in human patients, with concerted medicinal chemistry efforts, will be crucial for bringing about an era of effective therapies.

DOI: 10.1002/mds.26007
PubMed: 25155142

Links to Exploration step

pubmed:25155142

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Targets for future clinical trials in Huntington's disease: what's in the pipeline?</title>
<author>
<name sortKey="Wild, Edward J" sort="Wild, Edward J" uniqKey="Wild E" first="Edward J" last="Wild">Edward J. Wild</name>
<affiliation>
<nlm:affiliation>Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tabrizi, Sarah J" sort="Tabrizi, Sarah J" uniqKey="Tabrizi S" first="Sarah J" last="Tabrizi">Sarah J. Tabrizi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25155142</idno>
<idno type="pmid">25155142</idno>
<idno type="doi">10.1002/mds.26007</idno>
<idno type="wicri:Area/PubMed/Corpus">000411</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Targets for future clinical trials in Huntington's disease: what's in the pipeline?</title>
<author>
<name sortKey="Wild, Edward J" sort="Wild, Edward J" uniqKey="Wild E" first="Edward J" last="Wild">Edward J. Wild</name>
<affiliation>
<nlm:affiliation>Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, UK.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Tabrizi, Sarah J" sort="Tabrizi, Sarah J" uniqKey="Tabrizi S" first="Sarah J" last="Tabrizi">Sarah J. Tabrizi</name>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Clinical Trials as Topic (methods)</term>
<term>Clinical Trials as Topic (trends)</term>
<term>Gene Silencing</term>
<term>Genetic Therapy (methods)</term>
<term>Histone Deacetylases (genetics)</term>
<term>Humans</term>
<term>Huntington Disease (genetics)</term>
<term>Huntington Disease (therapy)</term>
<term>Nerve Tissue Proteins (genetics)</term>
<term>Nerve Tissue Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Histone Deacetylases</term>
<term>Nerve Tissue Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Huntington Disease</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nerve Tissue Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Clinical Trials as Topic</term>
<term>Genetic Therapy</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Huntington Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="trends" xml:lang="en">
<term>Clinical Trials as Topic</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Silencing</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The known genetic cause of Huntington's disease (HD) has fueled considerable progress in understanding its pathobiology and the development of therapeutic approaches aimed at correcting specific changes linked to the causative mutation. Among the most promising is reducing expression of mutant huntingtin protein (mHTT) with RNA interference or antisense oligonucleotides; human trials are now being planned. Zinc-finger transcriptional repression is another innovative method to reduce mHTT expression. Modulation of mHTT phosphorylation, chaperone upregulation, and autophagy enhancement represent attempts to alter cellular homeostasis to favor removal of mHTT. Inhibition of histone deacetylases (HDACs) remains of interest; recent work affirms HDAC4 as a target but questions the assumed centrality of its catalytic activity in HD. Phosphodiesterase inhibition, aimed at restoring synaptic function, has progressed rapidly to human trials. Deranged cellular signaling provides several tractable targets, but specificity and complexity are challenges. Restoring neurotrophic support in HD remains a key potential therapeutic approach. with several approaches being pursued, including brain-derived neurotrophic factor (BDNF) mimesis through tyrosine receptor kinase B (TrkB) agonism and monoclonal antibodies. An increasing understanding of the role of glial cells in HD has led to several new therapeutic avenues, including kynurenine monooxygenase inhibition, immunomodulation by laquinimod, CB2 agonism, and others. The complex metabolic derangements in HD remain under study, but no clear therapeutic strategy has yet emerged. We conclude that many exciting therapeutics are progressing through the development pipeline, and combining a better understanding of HD biology in human patients, with concerted medicinal chemistry efforts, will be crucial for bringing about an era of effective therapies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">25155142</PMID>
<DateCreated>
<Year>2014</Year>
<Month>09</Month>
<Day>13</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>05</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>07</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1531-8257</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2014</Year>
<Month>Sep</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov. Disord.</ISOAbbreviation>
</Journal>
<ArticleTitle>Targets for future clinical trials in Huntington's disease: what's in the pipeline?</ArticleTitle>
<Pagination>
<MedlinePgn>1434-45</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mds.26007</ELocationID>
<Abstract>
<AbstractText>The known genetic cause of Huntington's disease (HD) has fueled considerable progress in understanding its pathobiology and the development of therapeutic approaches aimed at correcting specific changes linked to the causative mutation. Among the most promising is reducing expression of mutant huntingtin protein (mHTT) with RNA interference or antisense oligonucleotides; human trials are now being planned. Zinc-finger transcriptional repression is another innovative method to reduce mHTT expression. Modulation of mHTT phosphorylation, chaperone upregulation, and autophagy enhancement represent attempts to alter cellular homeostasis to favor removal of mHTT. Inhibition of histone deacetylases (HDACs) remains of interest; recent work affirms HDAC4 as a target but questions the assumed centrality of its catalytic activity in HD. Phosphodiesterase inhibition, aimed at restoring synaptic function, has progressed rapidly to human trials. Deranged cellular signaling provides several tractable targets, but specificity and complexity are challenges. Restoring neurotrophic support in HD remains a key potential therapeutic approach. with several approaches being pursued, including brain-derived neurotrophic factor (BDNF) mimesis through tyrosine receptor kinase B (TrkB) agonism and monoclonal antibodies. An increasing understanding of the role of glial cells in HD has led to several new therapeutic avenues, including kynurenine monooxygenase inhibition, immunomodulation by laquinimod, CB2 agonism, and others. The complex metabolic derangements in HD remain under study, but no clear therapeutic strategy has yet emerged. We conclude that many exciting therapeutics are progressing through the development pipeline, and combining a better understanding of HD biology in human patients, with concerted medicinal chemistry efforts, will be crucial for bringing about an era of effective therapies.</AbstractText>
<CopyrightInformation>© 2014 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wild</LastName>
<ForeName>Edward J</ForeName>
<Initials>EJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tabrizi</LastName>
<ForeName>Sarah J</ForeName>
<Initials>SJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>08</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C086055">HTT protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009419">Nerve Tissue Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.98</RegistryNumber>
<NameOfSubstance UI="D006655">Histone Deacetylases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 2012 Nov;367(18):1753-4</RefSource>
<PMID Version="1">23113488</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):E3136-45</RefSource>
<PMID Version="1">23054839</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Drug Metab Dispos. 2012 Dec;40(12):2297-306</RefSource>
<PMID Version="1">22942319</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Dec 12;32(50):18259-68</RefSource>
<PMID Version="1">23238740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Drug Discov. 2013 Jan;12(1):64-82</RefSource>
<PMID Version="1">23237916</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2366-70</RefSource>
<PMID Version="1">23341618</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2013 Feb 6;33(6):2313-25</RefSource>
<PMID Version="1">23392662</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):3077-82</RefSource>
<PMID Version="1">23365139</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Genet. 2013 May;132(5):481-93</RefSource>
<PMID Version="1">23494242</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2013 May;125(3):410-9</RefSource>
<PMID Version="1">23373812</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2013 May;12(5):435-42</RefSource>
<PMID Version="1">23541756</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Expert Opin Biol Ther. 2013 Jun;13(6):875-88</RefSource>
<PMID Version="1">23451977</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2013 Jun 15;22(12):2462-70</RefSource>
<PMID Version="1">23446639</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2013 Oct;127(1):22-35</RefSource>
<PMID Version="1">23800350</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2013 Nov 27;33(48):18712-27</RefSource>
<PMID Version="1">24285878</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Biol. 2013 Nov;11(11):e1001717</RefSource>
<PMID Version="1">24302884</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2014 Jan 8;81(1):49-60</RefSource>
<PMID Version="1">24411731</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurol. 2014 Apr;10(4):204-16</RefSource>
<PMID Version="1">24614516</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2014 May;20(5):536-41</RefSource>
<PMID Version="1">24784230</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2014 Jun 1;23(11):2995-3007</RefSource>
<PMID Version="1">24436303</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2004 Dec;17(3):455-61</RefSource>
<PMID Version="1">15571981</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2005 Jan 6;433(7021):73-7</RefSource>
<PMID Version="1">15635412</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2005 Apr 19;102(16):5820-5</RefSource>
<PMID Version="1">15811941</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2005 May;37(5):526-31</RefSource>
<PMID Version="1">15806102</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2005 Oct 1;14(19):2871-80</RefSource>
<PMID Version="1">16115812</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2005 Nov;23(11):1399-405</RefSource>
<PMID Version="1">16273073</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2006 Jan 15;15(2):273-85</RefSource>
<PMID Version="1">16330479</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene. 2006 Jan 17;366(1):27-38</RefSource>
<PMID Version="1">16298089</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2006 May;116(5):1410-24</RefSource>
<PMID Version="1">16604191</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Pharmacol Toxicol. 2010;50:259-93</RefSource>
<PMID Version="1">20055705</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2009 Dec 24;64(6):828-40</RefSource>
<PMID Version="1">20064390</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 Mar 17;30(11):4072-80</RefSource>
<PMID Version="1">20237277</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2010 Apr 9;285(15):11061-7</RefSource>
<PMID Version="1">20147746</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2010 May;13(5):567-76</RefSource>
<PMID Version="1">20383138</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16982-7</RefSource>
<PMID Version="1">20833817</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2010;5(10):e13417</RefSource>
<PMID Version="1">20976216</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2010 Dec;9(12):1164-72</RefSource>
<PMID Version="1">20970382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Pharmacol Exp Ther. 2011 Jan;336(1):64-76</RefSource>
<PMID Version="1">20923867</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2011 Jan;10(1):83-98</RefSource>
<PMID Version="1">21163446</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Biotechnol. 2011 Apr;29(4):341-5</RefSource>
<PMID Version="1">21423189</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Biol. 2011 Jun 7;21(11):961-6</RefSource>
<PMID Version="1">21636279</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2011 Jun 10;145(6):863-74</RefSource>
<PMID Version="1">21640374</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Gene Ther. 2011 Aug;11(4):321-30</RefSource>
<PMID Version="1">21557723</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(6):e20696</RefSource>
<PMID Version="1">21677773</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Chem Biol. 2011 Jul;7(7):453-60</RefSource>
<PMID Version="1">21623356</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2012 Aug 31;150(5):883-94</RefSource>
<PMID Version="1">22939618</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2012 Aug 31;150(5):895-908</RefSource>
<PMID Version="1">22939619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuroimmunol. 2012 Oct 15;251(1-2):14-24</RefSource>
<PMID Version="1">22749337</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 2001 Jul 20;293(5529):493-8</RefSource>
<PMID Version="1">11408619</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2001 Oct;8(5):807-21</RefSource>
<PMID Version="1">11592850</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2003 Mar 1;12(5):497-508</RefSource>
<PMID Version="1">12588797</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):2041-6</RefSource>
<PMID Version="1">12576549</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2003 Apr 25;970(1-2):47-57</RefSource>
<PMID Version="1">12706247</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2003 Oct 15;23(28):9418-27</RefSource>
<PMID Version="1">14561870</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2004 Feb 6;279(6):4988-99</RefSource>
<PMID Version="1">14627700</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ther. 2004 May;9(5):682-8</RefSource>
<PMID Version="1">15120329</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2004 Jun;36(6):585-95</RefSource>
<PMID Version="1">15146184</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2004 Jul 1;13(13):1389-405</RefSource>
<PMID Version="1">15115766</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 2004 Jul 9;118(1):127-38</RefSource>
<PMID Version="1">15242649</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2004 Oct;17(1):77-88</RefSource>
<PMID Version="1">15350968</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1983 Jan 21;219(4582):316-8</RefSource>
<PMID Version="1">6849138</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Sci. 1992 Mar;108(1):80-7</RefSource>
<PMID Version="1">1385624</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1995 Jun 2;81(5):811-23</RefSource>
<PMID Version="1">7774020</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neuropathol Exp Neurol. 1997 Apr;56(4):440-54</RefSource>
<PMID Version="1">9100675</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1998 Oct 30;273(44):28873-7</RefSource>
<PMID Version="1">9786889</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nature. 2011 Jul 14;475(7355):217-21</RefSource>
<PMID Version="1">21706032</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2011 Aug 11;1406:84-105</RefSource>
<PMID Version="1">21742312</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Physiol. 2011 Oct;226(10):2484-93</RefSource>
<PMID Version="1">21792905</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(9):e24308</RefSource>
<PMID Version="1">21909428</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ther. 2011 Dec;19(12):2169-77</RefSource>
<PMID Version="1">21952166</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ther. 2011 Dec;19(12):2178-85</RefSource>
<PMID Version="1">21971427</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2014 Jul 15;268:48-54</RefSource>
<PMID Version="1">24698799</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Gene Ther. 2014 May;25(5):461-74</RefSource>
<PMID Version="1">24484067</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Med Chem. 2014 Jul 10;57(13):5479-88</RefSource>
<PMID Version="1">24432836</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2014 Oct 10;1584:116-28</RefSource>
<PMID Version="1">24727531</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2000 Nov;26(3):300-6</RefSource>
<PMID Version="1">11062468</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2006 Oct;8(10):1163-70</RefSource>
<PMID Version="1">16980958</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Cell Biol. 2006 Oct;8(10):1155-62</RefSource>
<PMID Version="1">16980959</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Histochem Cytochem. 2006 Nov;54(11):1205-13</RefSource>
<PMID Version="1">16864896</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene Ther. 2007 Jan;14(2):118-28</RefSource>
<PMID Version="1">16943855</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):17204-9</RefSource>
<PMID Version="1">17940007</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 2007 Dec 28;282(52):37350-8</RefSource>
<PMID Version="1">17962183</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Pathol. 2008 Apr;18(2):225-38</RefSource>
<PMID Version="1">18093249</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2008 Apr 22;153(1):329-37</RefSource>
<PMID Version="1">18353560</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2008 Jun;30(3):375-87</RefSource>
<PMID Version="1">18424161</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Exp Med. 2008 Aug 4;205(8):1869-77</RefSource>
<PMID Version="1">18625748</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Neurosci. 2008 Sep;39(1):8-20</RefSource>
<PMID Version="1">18602275</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2008 Dec 15;17(24):3837-46</RefSource>
<PMID Version="1">18772195</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Pharmacol Exp Ther. 2009 Mar;328(3):785-95</RefSource>
<PMID Version="1">19056933</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2009 Jun;217(2):312-9</RefSource>
<PMID Version="1">19289118</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2009;4(6):e5747</RefSource>
<PMID Version="1">19484127</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FASEB J. 2009 Jun;23(6):1893-906</RefSource>
<PMID Version="1">19171786</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2009 Jul;12(7):864-71</RefSource>
<PMID Version="1">19525941</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ther. 2011 Dec;19(12):2152-62</RefSource>
<PMID Version="1">22031240</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(11):e27746</RefSource>
<PMID Version="1">22140466</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Med. 2012 Jan;18(1):153-8</RefSource>
<PMID Version="1">22179319</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2012 Jan;233(1):463-71</RefSource>
<PMID Version="1">22119622</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2012 Mar;45(3):999-1009</RefSource>
<PMID Version="1">22198502</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(2):e31080</RefSource>
<PMID Version="1">22347433</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3528-33</RefSource>
<PMID Version="1">22331905</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS Genet. 2012;8(2):e1002481</RefSource>
<PMID Version="1">22383888</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 2012 Mar 15;366(11):1000-9</RefSource>
<PMID Version="1">22417253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2012 Apr;135(Pt 4):1197-209</RefSource>
<PMID Version="1">22252996</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2012 Apr;135(Pt 4):1180-96</RefSource>
<PMID Version="1">22396390</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2012 May;46(2):351-61</RefSource>
<PMID Version="1">22590724</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2012 Jun 21;74(6):964-6</RefSource>
<PMID Version="1">22726826</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2012 Jun 21;74(6):1031-44</RefSource>
<PMID Version="1">22726834</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Pathol. 2012 Aug;181(2):642-51</RefSource>
<PMID Version="1">22749771</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neuropathol. 2012 Sep;124(3):411-24</RefSource>
<PMID Version="1">22766690</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2014;9(2):e87923</RefSource>
<PMID Version="1">24503862</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2014 Mar;137(Pt 3):819-33</RefSource>
<PMID Version="1">24459107</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Ther. 2014 Mar;22(3):487-97</RefSource>
<PMID Version="1">24356252</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D002986">Clinical Trials as Topic</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000639">trends</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020868">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D015316">Genetic Therapy</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006655">Histone Deacetylases</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006816">Huntington Disease</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000628">therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009419">Nerve Tissue Proteins</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">PMC4265300</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">HDAC inhibition</Keyword>
<Keyword MajorTopicYN="N">Huntington's disease</Keyword>
<Keyword MajorTopicYN="N">MAPK</Keyword>
<Keyword MajorTopicYN="N">gene silencing</Keyword>
<Keyword MajorTopicYN="N">glial cells</Keyword>
<Keyword MajorTopicYN="N">kynurenine monooxygenase</Keyword>
<Keyword MajorTopicYN="N">phosphodiesterase inhibition</Keyword>
<Keyword MajorTopicYN="N">therapeutics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>7</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>7</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>7</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2014</Year>
<Month>8</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25155142</ArticleId>
<ArticleId IdType="doi">10.1002/mds.26007</ArticleId>
<ArticleId IdType="pmc">PMC4265300</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000411 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000411 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25155142
   |texte=   Targets for future clinical trials in Huntington's disease: what's in the pipeline?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25155142" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024