Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: role of M1 muscarinic receptors.

Identifieur interne : 000397 ( PubMed/Corpus ); précédent : 000396; suivant : 000398

Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: role of M1 muscarinic receptors.

Auteurs : Marta Maltese ; Giuseppina Martella ; Graziella Madeo ; Irene Fagiolo ; Annalisa Tassone ; Giulia Ponterio ; Giuseppe Sciamanna ; Pierre Burbaud ; P Jeffrey Conn ; Paola Bonsi ; Antonio Pisani

Source :

RBID : pubmed:25195914

English descriptors

Abstract

Broad-spectrum muscarinic receptor antagonists have represented the first available treatment for different movement disorders such as dystonia. However, the specificity of these drugs and their mechanism of action is not entirely clear. We performed a systematic analysis of the effects of anticholinergic drugs on short- and long-term plasticity recorded from striatal medium spiny neurons from DYT1 dystonia knock-in (Tor1a(+/Δgag) ) mice heterozygous for ΔE-torsinA and their controls (Tor1a(+/+) mice). Antagonists were chosen that had previously been proposed to be selective for muscarinic receptor subtypes and included pirenzepine, trihexyphenydil, biperiden, orphenadrine, and a novel selective M1 antagonist, VU0255035. Tor1a(+/Δgag) mice exhibited a significant impairment of corticostriatal synaptic plasticity. Anticholinergics had no significant effects on intrinsic membrane properties and on short-term plasticity of striatal neurons. However, they exhibited a differential ability to restore the corticostriatal plasticity deficits. A complete rescue of both long-term depression (LTD) and synaptic depotentiation (SD) was obtained by applying the M1 -preferring antagonists pirenzepine and trihexyphenidyl as well as VU0255035. Conversely, the nonselective antagonist orphenadrine produced only a partial rescue of synaptic plasticity, whereas biperiden and ethopropazine failed to restore plasticity. The selectivity for M1 receptors was further demonstrated by their ability to counteract the M1 -dependent potentiation of N-methyl-d-aspartate (NMDA) current recorded from striatal neurons. Our study demonstrates that selective M1 muscarinic receptor antagonism offsets synaptic plasticity deficits in the striatum of mice with the DYT1 dystonia mutation, providing a potential mechanistic rationale for the development of improved antimuscarinic therapies for this movement disorder.

DOI: 10.1002/mds.26009
PubMed: 25195914

Links to Exploration step

pubmed:25195914

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: role of M1 muscarinic receptors.</title>
<author>
<name sortKey="Maltese, Marta" sort="Maltese, Marta" uniqKey="Maltese M" first="Marta" last="Maltese">Marta Maltese</name>
<affiliation>
<nlm:affiliation>Department of Systems Medicine, University of Rome "Tor Vergata", Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martella, Giuseppina" sort="Martella, Giuseppina" uniqKey="Martella G" first="Giuseppina" last="Martella">Giuseppina Martella</name>
</author>
<author>
<name sortKey="Madeo, Graziella" sort="Madeo, Graziella" uniqKey="Madeo G" first="Graziella" last="Madeo">Graziella Madeo</name>
</author>
<author>
<name sortKey="Fagiolo, Irene" sort="Fagiolo, Irene" uniqKey="Fagiolo I" first="Irene" last="Fagiolo">Irene Fagiolo</name>
</author>
<author>
<name sortKey="Tassone, Annalisa" sort="Tassone, Annalisa" uniqKey="Tassone A" first="Annalisa" last="Tassone">Annalisa Tassone</name>
</author>
<author>
<name sortKey="Ponterio, Giulia" sort="Ponterio, Giulia" uniqKey="Ponterio G" first="Giulia" last="Ponterio">Giulia Ponterio</name>
</author>
<author>
<name sortKey="Sciamanna, Giuseppe" sort="Sciamanna, Giuseppe" uniqKey="Sciamanna G" first="Giuseppe" last="Sciamanna">Giuseppe Sciamanna</name>
</author>
<author>
<name sortKey="Burbaud, Pierre" sort="Burbaud, Pierre" uniqKey="Burbaud P" first="Pierre" last="Burbaud">Pierre Burbaud</name>
</author>
<author>
<name sortKey="Conn, P Jeffrey" sort="Conn, P Jeffrey" uniqKey="Conn P" first="P Jeffrey" last="Conn">P Jeffrey Conn</name>
</author>
<author>
<name sortKey="Bonsi, Paola" sort="Bonsi, Paola" uniqKey="Bonsi P" first="Paola" last="Bonsi">Paola Bonsi</name>
</author>
<author>
<name sortKey="Pisani, Antonio" sort="Pisani, Antonio" uniqKey="Pisani A" first="Antonio" last="Pisani">Antonio Pisani</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25195914</idno>
<idno type="pmid">25195914</idno>
<idno type="doi">10.1002/mds.26009</idno>
<idno type="wicri:Area/PubMed/Corpus">000397</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: role of M1 muscarinic receptors.</title>
<author>
<name sortKey="Maltese, Marta" sort="Maltese, Marta" uniqKey="Maltese M" first="Marta" last="Maltese">Marta Maltese</name>
<affiliation>
<nlm:affiliation>Department of Systems Medicine, University of Rome "Tor Vergata", Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Martella, Giuseppina" sort="Martella, Giuseppina" uniqKey="Martella G" first="Giuseppina" last="Martella">Giuseppina Martella</name>
</author>
<author>
<name sortKey="Madeo, Graziella" sort="Madeo, Graziella" uniqKey="Madeo G" first="Graziella" last="Madeo">Graziella Madeo</name>
</author>
<author>
<name sortKey="Fagiolo, Irene" sort="Fagiolo, Irene" uniqKey="Fagiolo I" first="Irene" last="Fagiolo">Irene Fagiolo</name>
</author>
<author>
<name sortKey="Tassone, Annalisa" sort="Tassone, Annalisa" uniqKey="Tassone A" first="Annalisa" last="Tassone">Annalisa Tassone</name>
</author>
<author>
<name sortKey="Ponterio, Giulia" sort="Ponterio, Giulia" uniqKey="Ponterio G" first="Giulia" last="Ponterio">Giulia Ponterio</name>
</author>
<author>
<name sortKey="Sciamanna, Giuseppe" sort="Sciamanna, Giuseppe" uniqKey="Sciamanna G" first="Giuseppe" last="Sciamanna">Giuseppe Sciamanna</name>
</author>
<author>
<name sortKey="Burbaud, Pierre" sort="Burbaud, Pierre" uniqKey="Burbaud P" first="Pierre" last="Burbaud">Pierre Burbaud</name>
</author>
<author>
<name sortKey="Conn, P Jeffrey" sort="Conn, P Jeffrey" uniqKey="Conn P" first="P Jeffrey" last="Conn">P Jeffrey Conn</name>
</author>
<author>
<name sortKey="Bonsi, Paola" sort="Bonsi, Paola" uniqKey="Bonsi P" first="Paola" last="Bonsi">Paola Bonsi</name>
</author>
<author>
<name sortKey="Pisani, Antonio" sort="Pisani, Antonio" uniqKey="Pisani A" first="Antonio" last="Pisani">Antonio Pisani</name>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Biophysics</term>
<term>Cholinergic Antagonists (pharmacology)</term>
<term>Corpus Striatum (cytology)</term>
<term>Electric Stimulation</term>
<term>Excitatory Postsynaptic Potentials (drug effects)</term>
<term>In Vitro Techniques</term>
<term>Long-Term Potentiation (drug effects)</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
<term>Molecular Chaperones (genetics)</term>
<term>Mutation (genetics)</term>
<term>Neurons (drug effects)</term>
<term>Patch-Clamp Techniques</term>
<term>Synapses (drug effects)</term>
<term>Synapses (genetics)</term>
<term>Thalamus (cytology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Molecular Chaperones</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Cholinergic Antagonists</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Corpus Striatum</term>
<term>Thalamus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Excitatory Postsynaptic Potentials</term>
<term>Long-Term Potentiation</term>
<term>Neurons</term>
<term>Synapses</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mutation</term>
<term>Synapses</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biophysics</term>
<term>Electric Stimulation</term>
<term>In Vitro Techniques</term>
<term>Mice</term>
<term>Mice, Transgenic</term>
<term>Patch-Clamp Techniques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Broad-spectrum muscarinic receptor antagonists have represented the first available treatment for different movement disorders such as dystonia. However, the specificity of these drugs and their mechanism of action is not entirely clear. We performed a systematic analysis of the effects of anticholinergic drugs on short- and long-term plasticity recorded from striatal medium spiny neurons from DYT1 dystonia knock-in (Tor1a(+/Δgag) ) mice heterozygous for ΔE-torsinA and their controls (Tor1a(+/+) mice). Antagonists were chosen that had previously been proposed to be selective for muscarinic receptor subtypes and included pirenzepine, trihexyphenydil, biperiden, orphenadrine, and a novel selective M1 antagonist, VU0255035. Tor1a(+/Δgag) mice exhibited a significant impairment of corticostriatal synaptic plasticity. Anticholinergics had no significant effects on intrinsic membrane properties and on short-term plasticity of striatal neurons. However, they exhibited a differential ability to restore the corticostriatal plasticity deficits. A complete rescue of both long-term depression (LTD) and synaptic depotentiation (SD) was obtained by applying the M1 -preferring antagonists pirenzepine and trihexyphenidyl as well as VU0255035. Conversely, the nonselective antagonist orphenadrine produced only a partial rescue of synaptic plasticity, whereas biperiden and ethopropazine failed to restore plasticity. The selectivity for M1 receptors was further demonstrated by their ability to counteract the M1 -dependent potentiation of N-methyl-d-aspartate (NMDA) current recorded from striatal neurons. Our study demonstrates that selective M1 muscarinic receptor antagonism offsets synaptic plasticity deficits in the striatum of mice with the DYT1 dystonia mutation, providing a potential mechanistic rationale for the development of improved antimuscarinic therapies for this movement disorder.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">25195914</PMID>
<DateCreated>
<Year>2014</Year>
<Month>11</Month>
<Day>01</Day>
</DateCreated>
<DateCompleted>
<Year>2015</Year>
<Month>06</Month>
<Day>22</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1531-8257</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov. Disord.</ISOAbbreviation>
</Journal>
<ArticleTitle>Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: role of M1 muscarinic receptors.</ArticleTitle>
<Pagination>
<MedlinePgn>1655-65</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mds.26009</ELocationID>
<Abstract>
<AbstractText>Broad-spectrum muscarinic receptor antagonists have represented the first available treatment for different movement disorders such as dystonia. However, the specificity of these drugs and their mechanism of action is not entirely clear. We performed a systematic analysis of the effects of anticholinergic drugs on short- and long-term plasticity recorded from striatal medium spiny neurons from DYT1 dystonia knock-in (Tor1a(+/Δgag) ) mice heterozygous for ΔE-torsinA and their controls (Tor1a(+/+) mice). Antagonists were chosen that had previously been proposed to be selective for muscarinic receptor subtypes and included pirenzepine, trihexyphenydil, biperiden, orphenadrine, and a novel selective M1 antagonist, VU0255035. Tor1a(+/Δgag) mice exhibited a significant impairment of corticostriatal synaptic plasticity. Anticholinergics had no significant effects on intrinsic membrane properties and on short-term plasticity of striatal neurons. However, they exhibited a differential ability to restore the corticostriatal plasticity deficits. A complete rescue of both long-term depression (LTD) and synaptic depotentiation (SD) was obtained by applying the M1 -preferring antagonists pirenzepine and trihexyphenidyl as well as VU0255035. Conversely, the nonselective antagonist orphenadrine produced only a partial rescue of synaptic plasticity, whereas biperiden and ethopropazine failed to restore plasticity. The selectivity for M1 receptors was further demonstrated by their ability to counteract the M1 -dependent potentiation of N-methyl-d-aspartate (NMDA) current recorded from striatal neurons. Our study demonstrates that selective M1 muscarinic receptor antagonism offsets synaptic plasticity deficits in the striatum of mice with the DYT1 dystonia mutation, providing a potential mechanistic rationale for the development of improved antimuscarinic therapies for this movement disorder.</AbstractText>
<CopyrightInformation>© 2014 International Parkinson and Movement Disorder Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Maltese</LastName>
<ForeName>Marta</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Systems Medicine, University of Rome "Tor Vergata", Italy; IRCCS Fondazione Santa Lucia, Rome, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Martella</LastName>
<ForeName>Giuseppina</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Madeo</LastName>
<ForeName>Graziella</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fagiolo</LastName>
<ForeName>Irene</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tassone</LastName>
<ForeName>Annalisa</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ponterio</LastName>
<ForeName>Giulia</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sciamanna</LastName>
<ForeName>Giuseppe</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Burbaud</LastName>
<ForeName>Pierre</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Conn</LastName>
<ForeName>P Jeffrey</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bonsi</LastName>
<ForeName>Paola</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pisani</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 MH073676</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS065867</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U01 MH087965</GrantID>
<Acronym>MH</Acronym>
<Agency>NIMH NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>09</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018680">Cholinergic Antagonists</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C491548">Dyt1 protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2005 Dec 22;48(6):923-32</RefSource>
<PMID Version="1">16364897</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Neurosci. 2007 Oct;30(10):545-53</RefSource>
<PMID Version="1">17904652</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2006 Jun;9(6):832-42</RefSource>
<PMID Version="1">16699510</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2006 Oct;5(10):864-72</RefSource>
<PMID Version="1">16987733</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2006 Dec;21(12):2181-6</RefSource>
<PMID Version="1">17078060</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Jan 10;27(2):391-400</RefSource>
<PMID Version="1">17215400</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Drug Discov. 2007 Sep;6(9):721-33</RefSource>
<PMID Version="1">17762886</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2007 Nov;10(11):1458-66</RefSource>
<PMID Version="1">17906621</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 Dec;98(6):3688-95</RefSource>
<PMID Version="1">17913995</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cochrane Database Syst Rev. 2003;(2):CD003735</RefSource>
<PMID Version="1">12804486</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2003 Jul;54(1):102-9</RefSource>
<PMID Version="1">12838525</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Neurol. 2003 Oct;60(10):1365-8</RefSource>
<PMID Version="1">14568805</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2004 Oct;56(4):595-9</RefSource>
<PMID Version="1">15455393</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 1984 Jul;12(3):711-8</RefSource>
<PMID Version="1">6382048</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1993 Nov;13(11):4908-23</RefSource>
<PMID Version="1">7693897</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1994 May;14(5 Pt 2):3351-63</RefSource>
<PMID Version="1">8182478</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1994 Sep;14(9):5325-37</RefSource>
<PMID Version="1">7916043</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1996 Apr 15;16(8):2592-604</RefSource>
<PMID Version="1">8786435</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neural Transm Gen Sect. 1995;102(3):237-46</RefSource>
<PMID Version="1">8788072</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Psychol. 1997;48:649-84</RefSource>
<PMID Version="1">9046571</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 1998 Sep;10(9):2887-95</RefSource>
<PMID Version="1">9758158</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1999 May 1;19(9):3629-38</RefSource>
<PMID Version="1">10212321</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropharmacology. 1999 Feb;38(2):323-6</RefSource>
<PMID Version="1">10218876</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2005 Aug 10;25(32):7449-58</RefSource>
<PMID Version="1">16093396</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2002 Mar 1;22(5):1709-17</RefSource>
<PMID Version="1">11880500</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurobiol. 2002 Dec;53(4):590-605</RefSource>
<PMID Version="1">12436423</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurochem Res. 2003 Apr;28(3-4):437-42</RefSource>
<PMID Version="1">12675128</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2008 Jun 11;28(24):6258-63</RefSource>
<PMID Version="1">18550768</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trends Pharmacol Sci. 2009 Mar;30(3):148-55</RefSource>
<PMID Version="1">19201489</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2009 Apr;34(1):133-45</RefSource>
<PMID Version="1">19187797</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Pharmacol. 2009 Aug;76(2):356-68</RefSource>
<PMID Version="1">19407080</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2009 Sep;132(Pt 9):2336-49</RefSource>
<PMID Version="1">19641103</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2010 May 19;30(20):6999-7016</RefSource>
<PMID Version="1">20484642</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2011 May;42(2):162-70</RefSource>
<PMID Version="1">21168494</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2012 Jan 15;226(2):465-72</RefSource>
<PMID Version="1">21995941</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Pharmacol Exp Ther. 2012 Mar;340(3):595-603</RefSource>
<PMID Version="1">22135383</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2012 Jul;47(1):61-74</RefSource>
<PMID Version="1">22472189</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2012 Aug 1;108(3):771-81</RefSource>
<PMID Version="1">22572945</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Aug 29;32(35):11991-2004</RefSource>
<PMID Version="1">22933784</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2012 Sep 1;27(10):1205-15</RefSource>
<PMID Version="1">22865512</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2014 May;65:124-32</RefSource>
<PMID Version="1">24503369</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>ACS Chem Neurosci. 2014 Apr 16;5(4):318-24</RefSource>
<PMID Version="1">24528004</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropharmacology. 2014 Jun;81:176-87</RefSource>
<PMID Version="1">24534110</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2006 May 4;50(3):443-52</RefSource>
<PMID Version="1">16675398</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001703">Biophysics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018680">Cholinergic Antagonists</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000494">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003342">Corpus Striatum</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000166">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004558">Electric Stimulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D019706">Excitatory Postsynaptic Potentials</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000187">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D066298">In Vitro Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D017774">Long-Term Potentiation</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000187">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D051379">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008822">Mice, Transgenic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018832">Molecular Chaperones</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000235">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009154">Mutation</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009474">Neurons</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000187">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018408">Patch-Clamp Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013569">Synapses</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000187">drug effects</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D013788">Thalamus</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000166">cytology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS621782</OtherID>
<OtherID Source="NLM">PMC4216601</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">dystonia</Keyword>
<Keyword MajorTopicYN="N">muscarinic receptor antagonists</Keyword>
<Keyword MajorTopicYN="N">striatum</Keyword>
<Keyword MajorTopicYN="N">synaptic plasticity</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>7</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>8</Month>
<Day>6</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>8</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2014</Year>
<Month>9</Month>
<Day>4</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25195914</ArticleId>
<ArticleId IdType="doi">10.1002/mds.26009</ArticleId>
<ArticleId IdType="pmc">PMC4216601</ArticleId>
<ArticleId IdType="mid">NIHMS621782</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/PubMed/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000397 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd -nk 000397 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    PubMed
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25195914
   |texte=   Anticholinergic drugs rescue synaptic plasticity in DYT1 dystonia: role of M1 muscarinic receptors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Corpus/RBID.i   -Sk "pubmed:25195914" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024