Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Automated structural imaging analysis detects premanifest Huntington's disease neurodegeneration within 1 year.

Identifieur interne : 001462 ( PubMed/Checkpoint ); précédent : 001461; suivant : 001463

Automated structural imaging analysis detects premanifest Huntington's disease neurodegeneration within 1 year.

Auteurs : D S Adnan Majid [États-Unis] ; Diederick Stoffers ; Sarah Sheldon ; Samar Hamza ; Wesley K. Thompson ; Jody Goldstein ; Jody Corey-Bloom ; Adam R. Aron

Source :

RBID : pubmed:21484871

English descriptors

Abstract

Intense efforts are underway to evaluate neuroimaging measures as biomarkers for neurodegeneration in premanifest Huntington's disease (preHD). We used a completely automated longitudinal analysis method to compare structural scans in preHD individuals and controls. Using a 1-year longitudinal design, we analyzed T(1) -weighted structural scans in 35 preHD individuals and 22 age-matched controls. We used the SIENA (Structural Image Evaluation, using Normalization, of Atrophy) software tool to yield overall percentage brain volume change (PBVC) and voxel-level changes in atrophy. We calculated sample sizes for a hypothetical disease-modifying (neuroprotection) study. We found significantly greater yearly atrophy in preHD individuals versus controls (mean PBVC controls, -0.149%; preHD, -0.388%; P = .031, Cohen's d = .617). For a preHD subgroup closest to disease onset, yearly atrophy was more than 3 times that of controls (mean PBVC close-to-onset preHD, -0.510%; P = .019, Cohen's d = .920). This atrophy was evident at the voxel level in periventricular regions, consistent with well-established preHD basal ganglia atrophy. We estimated that a neuroprotection study using SIENA would only need 74 close-to-onset individuals in each arm (treatment vs placebo) to detect a 50% slowing in yearly atrophy with 80% power. Automated whole-brain analysis of structural MRI can reliably detect preHD disease progression in 1 year. These results were attained with a readily available imaging analysis tool, SIENA, which is observer independent, automated, and robust with respect to image quality, slice thickness, and different pulse sequences. This MRI biomarker approach could be used to evaluate neuroprotection in preHD.

DOI: 10.1002/mds.23656
PubMed: 21484871


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21484871

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Automated structural imaging analysis detects premanifest Huntington's disease neurodegeneration within 1 year.</title>
<author>
<name sortKey="Majid, D S Adnan" sort="Majid, D S Adnan" uniqKey="Majid D" first="D S Adnan" last="Majid">D S Adnan Majid</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Psychology, University of California, San Diego (UCSD), San Diego, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Psychology, University of California, San Diego (UCSD), San Diego, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stoffers, Diederick" sort="Stoffers, Diederick" uniqKey="Stoffers D" first="Diederick" last="Stoffers">Diederick Stoffers</name>
</author>
<author>
<name sortKey="Sheldon, Sarah" sort="Sheldon, Sarah" uniqKey="Sheldon S" first="Sarah" last="Sheldon">Sarah Sheldon</name>
</author>
<author>
<name sortKey="Hamza, Samar" sort="Hamza, Samar" uniqKey="Hamza S" first="Samar" last="Hamza">Samar Hamza</name>
</author>
<author>
<name sortKey="Thompson, Wesley K" sort="Thompson, Wesley K" uniqKey="Thompson W" first="Wesley K" last="Thompson">Wesley K. Thompson</name>
</author>
<author>
<name sortKey="Goldstein, Jody" sort="Goldstein, Jody" uniqKey="Goldstein J" first="Jody" last="Goldstein">Jody Goldstein</name>
</author>
<author>
<name sortKey="Corey Bloom, Jody" sort="Corey Bloom, Jody" uniqKey="Corey Bloom J" first="Jody" last="Corey-Bloom">Jody Corey-Bloom</name>
</author>
<author>
<name sortKey="Aron, Adam R" sort="Aron, Adam R" uniqKey="Aron A" first="Adam R" last="Aron">Adam R. Aron</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="doi">10.1002/mds.23656</idno>
<idno type="RBID">pubmed:21484871</idno>
<idno type="pmid">21484871</idno>
<idno type="wicri:Area/PubMed/Corpus">001294</idno>
<idno type="wicri:Area/PubMed/Curation">001294</idno>
<idno type="wicri:Area/PubMed/Checkpoint">001462</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Automated structural imaging analysis detects premanifest Huntington's disease neurodegeneration within 1 year.</title>
<author>
<name sortKey="Majid, D S Adnan" sort="Majid, D S Adnan" uniqKey="Majid D" first="D S Adnan" last="Majid">D S Adnan Majid</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Psychology, University of California, San Diego (UCSD), San Diego, California, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Psychology, University of California, San Diego (UCSD), San Diego, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stoffers, Diederick" sort="Stoffers, Diederick" uniqKey="Stoffers D" first="Diederick" last="Stoffers">Diederick Stoffers</name>
</author>
<author>
<name sortKey="Sheldon, Sarah" sort="Sheldon, Sarah" uniqKey="Sheldon S" first="Sarah" last="Sheldon">Sarah Sheldon</name>
</author>
<author>
<name sortKey="Hamza, Samar" sort="Hamza, Samar" uniqKey="Hamza S" first="Samar" last="Hamza">Samar Hamza</name>
</author>
<author>
<name sortKey="Thompson, Wesley K" sort="Thompson, Wesley K" uniqKey="Thompson W" first="Wesley K" last="Thompson">Wesley K. Thompson</name>
</author>
<author>
<name sortKey="Goldstein, Jody" sort="Goldstein, Jody" uniqKey="Goldstein J" first="Jody" last="Goldstein">Jody Goldstein</name>
</author>
<author>
<name sortKey="Corey Bloom, Jody" sort="Corey Bloom, Jody" uniqKey="Corey Bloom J" first="Jody" last="Corey-Bloom">Jody Corey-Bloom</name>
</author>
<author>
<name sortKey="Aron, Adam R" sort="Aron, Adam R" uniqKey="Aron A" first="Adam R" last="Aron">Adam R. Aron</name>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adult</term>
<term>Brain (pathology)</term>
<term>Case-Control Studies</term>
<term>Cognition Disorders (diagnosis)</term>
<term>Cognition Disorders (etiology)</term>
<term>Disease Progression</term>
<term>Female</term>
<term>Humans</term>
<term>Huntington Disease (complications)</term>
<term>Huntington Disease (diagnosis)</term>
<term>Image Processing, Computer-Assisted</term>
<term>Longitudinal Studies</term>
<term>Magnetic Resonance Imaging (methods)</term>
<term>Male</term>
<term>Middle Aged</term>
<term>Nerve Degeneration (diagnosis)</term>
<term>Nerve Degeneration (etiology)</term>
</keywords>
<keywords scheme="MESH" qualifier="complications" xml:lang="en">
<term>Huntington Disease</term>
</keywords>
<keywords scheme="MESH" qualifier="diagnosis" xml:lang="en">
<term>Cognition Disorders</term>
<term>Huntington Disease</term>
<term>Nerve Degeneration</term>
</keywords>
<keywords scheme="MESH" qualifier="etiology" xml:lang="en">
<term>Cognition Disorders</term>
<term>Nerve Degeneration</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Magnetic Resonance Imaging</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adult</term>
<term>Case-Control Studies</term>
<term>Disease Progression</term>
<term>Female</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Longitudinal Studies</term>
<term>Male</term>
<term>Middle Aged</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Intense efforts are underway to evaluate neuroimaging measures as biomarkers for neurodegeneration in premanifest Huntington's disease (preHD). We used a completely automated longitudinal analysis method to compare structural scans in preHD individuals and controls. Using a 1-year longitudinal design, we analyzed T(1) -weighted structural scans in 35 preHD individuals and 22 age-matched controls. We used the SIENA (Structural Image Evaluation, using Normalization, of Atrophy) software tool to yield overall percentage brain volume change (PBVC) and voxel-level changes in atrophy. We calculated sample sizes for a hypothetical disease-modifying (neuroprotection) study. We found significantly greater yearly atrophy in preHD individuals versus controls (mean PBVC controls, -0.149%; preHD, -0.388%; P = .031, Cohen's d = .617). For a preHD subgroup closest to disease onset, yearly atrophy was more than 3 times that of controls (mean PBVC close-to-onset preHD, -0.510%; P = .019, Cohen's d = .920). This atrophy was evident at the voxel level in periventricular regions, consistent with well-established preHD basal ganglia atrophy. We estimated that a neuroprotection study using SIENA would only need 74 close-to-onset individuals in each arm (treatment vs placebo) to detect a 50% slowing in yearly atrophy with 80% power. Automated whole-brain analysis of structural MRI can reliably detect preHD disease progression in 1 year. These results were attained with a readily available imaging analysis tool, SIENA, which is observer independent, automated, and robust with respect to image quality, slice thickness, and different pulse sequences. This MRI biomarker approach could be used to evaluate neuroprotection in preHD.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">21484871</PMID>
<DateCreated>
<Year>2011</Year>
<Month>11</Month>
<Day>04</Day>
</DateCreated>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>29</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>09</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1531-8257</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>26</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov. Disord.</ISOAbbreviation>
</Journal>
<ArticleTitle>Automated structural imaging analysis detects premanifest Huntington's disease neurodegeneration within 1 year.</ArticleTitle>
<Pagination>
<MedlinePgn>1481-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mds.23656</ELocationID>
<Abstract>
<AbstractText>Intense efforts are underway to evaluate neuroimaging measures as biomarkers for neurodegeneration in premanifest Huntington's disease (preHD). We used a completely automated longitudinal analysis method to compare structural scans in preHD individuals and controls. Using a 1-year longitudinal design, we analyzed T(1) -weighted structural scans in 35 preHD individuals and 22 age-matched controls. We used the SIENA (Structural Image Evaluation, using Normalization, of Atrophy) software tool to yield overall percentage brain volume change (PBVC) and voxel-level changes in atrophy. We calculated sample sizes for a hypothetical disease-modifying (neuroprotection) study. We found significantly greater yearly atrophy in preHD individuals versus controls (mean PBVC controls, -0.149%; preHD, -0.388%; P = .031, Cohen's d = .617). For a preHD subgroup closest to disease onset, yearly atrophy was more than 3 times that of controls (mean PBVC close-to-onset preHD, -0.510%; P = .019, Cohen's d = .920). This atrophy was evident at the voxel level in periventricular regions, consistent with well-established preHD basal ganglia atrophy. We estimated that a neuroprotection study using SIENA would only need 74 close-to-onset individuals in each arm (treatment vs placebo) to detect a 50% slowing in yearly atrophy with 80% power. Automated whole-brain analysis of structural MRI can reliably detect preHD disease progression in 1 year. These results were attained with a readily available imaging analysis tool, SIENA, which is observer independent, automated, and robust with respect to image quality, slice thickness, and different pulse sequences. This MRI biomarker approach could be used to evaluate neuroprotection in preHD.</AbstractText>
<CopyrightInformation>Copyright © 2011 Movement Disorder Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Majid</LastName>
<ForeName>D S Adnan</ForeName>
<Initials>DS</Initials>
<AffiliationInfo>
<Affiliation>Department of Psychology, University of California, San Diego (UCSD), San Diego, California, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stoffers</LastName>
<ForeName>Diederick</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sheldon</LastName>
<ForeName>Sarah</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hamza</LastName>
<ForeName>Samar</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thompson</LastName>
<ForeName>Wesley K</ForeName>
<Initials>WK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Goldstein</LastName>
<ForeName>Jody</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Corey-Bloom</LastName>
<ForeName>Jody</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Aron</LastName>
<ForeName>Adam R</ForeName>
<Initials>AR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 DA026452</GrantID>
<Acronym>DA</Acronym>
<Agency>NIDA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DA026452-01A1</GrantID>
<Acronym>DA</Acronym>
<Agency>NIDA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>04</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2002 Oct;17(2):825-41</RefSource>
<PMID Version="1">12377157</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2002 Aug;125(Pt 8):1815-28</RefSource>
<PMID Version="1">12135972</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2002 Sep;17(1):479-89</RefSource>
<PMID Version="1">12482100</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Genet. 2004 Apr;65(4):267-77</RefSource>
<PMID Version="1">15025718</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int Clin Psychopharmacol. 2004 Mar;19(2):51-62</RefSource>
<PMID Version="1">15076012</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2004 Apr 27;62(8):1432-4</RefSource>
<PMID Version="1">15111692</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2004 Jul 13;63(1):66-72</RefSource>
<PMID Version="1">15249612</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2004;23 Suppl 1:S208-19</RefSource>
<PMID Version="1">15501092</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Psychiatr Res. 1975 Nov;12(3):189-98</RefSource>
<PMID Version="1">1202204</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell. 1993 Mar 26;72(6):971-83</RefSource>
<PMID Version="1">8458085</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1996 Mar;11(2):136-42</RefSource>
<PMID Version="1">8684382</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Neurol. 1996 Dec;53(12):1293-6</RefSource>
<PMID Version="1">8970459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1997 Feb;48(2):394-9</RefSource>
<PMID Version="1">9040728</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1998 Jan;13(1):96-9</RefSource>
<PMID Version="1">9452333</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Neurosurg Psychiatry. 2005 May;76(5):650-5</RefSource>
<PMID Version="1">15834021</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2005 Sep 13;65(5):745-7</RefSource>
<PMID Version="1">16157910</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Sci (Lond). 2006 Jan;110(1):73-88</RefSource>
<PMID Version="1">16336206</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biol Psychiatry. 2006 Jan 1;59(1):57-63</RefSource>
<PMID Version="1">16112655</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Nucl Med. 2006 Feb;47(2):215-22</RefSource>
<PMID Version="1">16455626</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Bull. 2007 Apr 30;72(2-3):152-8</RefSource>
<PMID Version="1">17352939</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Psychiatry. 2007 Sep;164(9):1428-34</RefSource>
<PMID Version="1">17728429</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurotherapeutics. 2008 Apr;5(2):226-36</RefSource>
<PMID Version="1">18394565</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Rev. 2008 Jun;58(1):209-25</RefSource>
<PMID Version="1">18486229</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>CNS Neurosci Ther. 2009 Winter;15(1):1-11</RefSource>
<PMID Version="1">19228174</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2009 Mar;45(1 Suppl):S173-86</RefSource>
<PMID Version="1">19059349</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Rev. 2009 Mar;59(2):410-31</RefSource>
<PMID Version="1">19118572</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2009 Apr;216(2):525-9</RefSource>
<PMID Version="1">19320010</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Drug Discov Today. 2009 May;14(9-10):453-64</RefSource>
<PMID Version="1">19429504</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cochrane Database Syst Rev. 2009;(3):CD006455</RefSource>
<PMID Version="1">19588392</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2009 Oct 1;47(4):1659-65</RefSource>
<PMID Version="1">19523522</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2009 Sep;8(9):776-7</RefSource>
<PMID Version="1">19646925</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Am J Med Genet B Neuropsychiatr Genet. 2010 Mar 5;153B(2):397-408</RefSource>
<PMID Version="1">19548255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2010 May 15;51(1):63-75</RefSource>
<PMID Version="1">20139010</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2010 Apr 13;74(15):1208-16</RefSource>
<PMID Version="1">20385893</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Bull. 2010 May 31;82(3-4):201-7</RefSource>
<PMID Version="1">20385209</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2004 May;5(5):373-84</RefSource>
<PMID Version="1">15100720</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>IEEE Trans Med Imaging. 2001 Jan;20(1):45-57</RefSource>
<PMID Version="1">11293691</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comput Assist Tomogr. 2001 May-Jun;25(3):466-75</RefSource>
<PMID Version="1">11351200</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Med Image Anal. 2001 Jun;5(2):143-56</RefSource>
<PMID Version="1">11516708</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2002 Jan;15(1):1-25</RefSource>
<PMID Version="1">11747097</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Brain Mapp. 2002 Nov;17(3):143-55</RefSource>
<PMID Version="1">12391568</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000328">Adult</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000473">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D016022">Case-Control Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D003072">Cognition Disorders</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000175">diagnosis</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000209">etiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018450">Disease Progression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005260">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006816">Huntington Disease</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000150">complications</QualifierName>
<QualifierName MajorTopicYN="Y" UI="Q000175">diagnosis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D007091">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008137">Longitudinal Studies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008279">Magnetic Resonance Imaging</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000379">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008875">Middle Aged</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009410">Nerve Degeneration</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000175">diagnosis</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000209">etiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS263145</OtherID>
<OtherID Source="NLM">PMC3136652</OtherID>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>9</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2010</Year>
<Month>11</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>1</Month>
<Day>3</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2011</Year>
<Month>4</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/mds.23656</ArticleId>
<ArticleId IdType="pubmed">21484871</ArticleId>
<ArticleId IdType="pmc">PMC3136652</ArticleId>
<ArticleId IdType="mid">NIHMS263145</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Aron, Adam R" sort="Aron, Adam R" uniqKey="Aron A" first="Adam R" last="Aron">Adam R. Aron</name>
<name sortKey="Corey Bloom, Jody" sort="Corey Bloom, Jody" uniqKey="Corey Bloom J" first="Jody" last="Corey-Bloom">Jody Corey-Bloom</name>
<name sortKey="Goldstein, Jody" sort="Goldstein, Jody" uniqKey="Goldstein J" first="Jody" last="Goldstein">Jody Goldstein</name>
<name sortKey="Hamza, Samar" sort="Hamza, Samar" uniqKey="Hamza S" first="Samar" last="Hamza">Samar Hamza</name>
<name sortKey="Sheldon, Sarah" sort="Sheldon, Sarah" uniqKey="Sheldon S" first="Sarah" last="Sheldon">Sarah Sheldon</name>
<name sortKey="Stoffers, Diederick" sort="Stoffers, Diederick" uniqKey="Stoffers D" first="Diederick" last="Stoffers">Diederick Stoffers</name>
<name sortKey="Thompson, Wesley K" sort="Thompson, Wesley K" uniqKey="Thompson W" first="Wesley K" last="Thompson">Wesley K. Thompson</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Majid, D S Adnan" sort="Majid, D S Adnan" uniqKey="Majid D" first="D S Adnan" last="Majid">D S Adnan Majid</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001462 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 001462 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:21484871
   |texte=   Automated structural imaging analysis detects premanifest Huntington's disease neurodegeneration within 1 year.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:21484871" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024