Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Animal models for dystonia.

Identifieur interne : 000B14 ( PubMed/Checkpoint ); précédent : 000B13; suivant : 000B15

Animal models for dystonia.

Auteurs : Bethany K. Wilson [États-Unis] ; Ellen J. Hess

Source :

RBID : pubmed:23893454

English descriptors

Abstract

Symptomatic animal models have clinical features consistent with human disorders and are often used to identify the anatomical and physiological processes involved in the expression of symptoms and to experimentally demonstrate causality where it would be infeasible in the patient population. Rodent and primate models of dystonia have identified basal ganglia abnormalities, including alterations in striatal GABAergic (ie, transmitting or secreting γ-aminobutyric acid) and dopaminergic transmission. Symptomatic animal models have also established the critical role of the cerebellum in dystonia, particularly abnormal glutamate signaling and aberrant Purkinje cell activity. Further, experiments suggest that the basal ganglia and cerebellum are nodes in an integrated network that is dysfunctional in dystonia. The knowledge gained from experiments in symptomatic animal models may serve as the foundation for the development of novel therapeutic interventions to treat dystonia. © 2013 Movement Disorder Society.

DOI: 10.1002/mds.25526
PubMed: 23893454


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23893454

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Animal models for dystonia.</title>
<author>
<name sortKey="Wilson, Bethany K" sort="Wilson, Bethany K" uniqKey="Wilson B" first="Bethany K" last="Wilson">Bethany K. Wilson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hess, Ellen J" sort="Hess, Ellen J" uniqKey="Hess E" first="Ellen J" last="Hess">Ellen J. Hess</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1002/mds.25526</idno>
<idno type="RBID">pubmed:23893454</idno>
<idno type="pmid">23893454</idno>
<idno type="wicri:Area/PubMed/Corpus">000803</idno>
<idno type="wicri:Area/PubMed/Curation">000803</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000B14</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Animal models for dystonia.</title>
<author>
<name sortKey="Wilson, Bethany K" sort="Wilson, Bethany K" uniqKey="Wilson B" first="Bethany K" last="Wilson">Bethany K. Wilson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hess, Ellen J" sort="Hess, Ellen J" uniqKey="Hess E" first="Ellen J" last="Hess">Ellen J. Hess</name>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Animals, Genetically Modified</term>
<term>Basal Ganglia (pathology)</term>
<term>Disease Models, Animal</term>
<term>Dystonia (complications)</term>
<term>Dystonia (genetics)</term>
<term>Dystonia (pathology)</term>
<term>Humans</term>
<term>Neurotransmitter Agents (genetics)</term>
<term>Neurotransmitter Agents (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Neurotransmitter Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="complications" xml:lang="en">
<term>Dystonia</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Dystonia</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Neurotransmitter Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Basal Ganglia</term>
<term>Dystonia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Animals, Genetically Modified</term>
<term>Disease Models, Animal</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Symptomatic animal models have clinical features consistent with human disorders and are often used to identify the anatomical and physiological processes involved in the expression of symptoms and to experimentally demonstrate causality where it would be infeasible in the patient population. Rodent and primate models of dystonia have identified basal ganglia abnormalities, including alterations in striatal GABAergic (ie, transmitting or secreting γ-aminobutyric acid) and dopaminergic transmission. Symptomatic animal models have also established the critical role of the cerebellum in dystonia, particularly abnormal glutamate signaling and aberrant Purkinje cell activity. Further, experiments suggest that the basal ganglia and cerebellum are nodes in an integrated network that is dysfunctional in dystonia. The knowledge gained from experiments in symptomatic animal models may serve as the foundation for the development of novel therapeutic interventions to treat dystonia. © 2013 Movement Disorder Society.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23893454</PMID>
<DateCreated>
<Year>2013</Year>
<Month>07</Month>
<Day>29</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>10</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1531-8257</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov. Disord.</ISOAbbreviation>
</Journal>
<ArticleTitle>Animal models for dystonia.</ArticleTitle>
<Pagination>
<MedlinePgn>982-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mds.25526</ELocationID>
<Abstract>
<AbstractText>Symptomatic animal models have clinical features consistent with human disorders and are often used to identify the anatomical and physiological processes involved in the expression of symptoms and to experimentally demonstrate causality where it would be infeasible in the patient population. Rodent and primate models of dystonia have identified basal ganglia abnormalities, including alterations in striatal GABAergic (ie, transmitting or secreting γ-aminobutyric acid) and dopaminergic transmission. Symptomatic animal models have also established the critical role of the cerebellum in dystonia, particularly abnormal glutamate signaling and aberrant Purkinje cell activity. Further, experiments suggest that the basal ganglia and cerebellum are nodes in an integrated network that is dysfunctional in dystonia. The knowledge gained from experiments in symptomatic animal models may serve as the foundation for the development of novel therapeutic interventions to treat dystonia. © 2013 Movement Disorder Society.</AbstractText>
<CopyrightInformation>© 2013 Movement Disorder Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wilson</LastName>
<ForeName>Bethany K</ForeName>
<Initials>BK</Initials>
<AffiliationInfo>
<Affiliation>Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hess</LastName>
<ForeName>Ellen J</ForeName>
<Initials>EJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 NS33592</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 NS059645</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 NS077905</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 NS077905</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM008605</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM8605</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018377">Neurotransmitter Agents</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1995 Oct;38(4):571-9</RefSource>
<PMID Version="1">7574453</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1995 Aug;134(2):253-60</RefSource>
<PMID Version="1">7556545</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 1995 Jul;4(7):1209-12</RefSource>
<PMID Version="1">8528210</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1996 May 1;16(9):3019-25</RefSource>
<PMID Version="1">8622131</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Can J Neurol Sci. 1996 Feb;23(1):53-6</RefSource>
<PMID Version="1">8673963</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1995 Nov;10(6):731-40</RefSource>
<PMID Version="1">8749992</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 1996 Jul;5(7):1023-8</RefSource>
<PMID Version="1">8817341</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neurol Scand. 1996 Sep;94(3):172-6</RefSource>
<PMID Version="1">8899050</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1997 May;12(3):408-11</RefSource>
<PMID Version="1">9159737</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1997 May;12(3):443-7</RefSource>
<PMID Version="1">9159745</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1997 May;77(5):2842-6</RefSource>
<PMID Version="1">9163399</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1997 Sep;12(5):704-8</RefSource>
<PMID Version="1">9380052</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1997 Nov;49(5):1432-8</RefSource>
<PMID Version="1">9371934</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1998 Jan 5;780(1):102-7</RefSource>
<PMID Version="1">9473611</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1998 Mar;13(2):319-23</RefSource>
<PMID Version="1">9539347</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1998 May;13(3):497-508</RefSource>
<PMID Version="1">9613744</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 1998 Aug;85(3):773-83</RefSource>
<PMID Version="1">9639271</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Genet. 1998 Jun;102(6):644-6</RefSource>
<PMID Version="1">9703425</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1998 Sep;44(3):303-12</RefSource>
<PMID Version="1">9749595</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 1998 Sep;86(2):533-45</RefSource>
<PMID Version="1">9881867</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuropediatrics. 1999 Apr;30(2):66-71</RefSource>
<PMID Version="1">10401687</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1956 Sep;105(2):195-249</RefSource>
<PMID Version="1">13385374</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosurg. 1959 Jan;16(1):55-67</RefSource>
<PMID Version="1">13621265</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2005 Jan 25;64(2):347-9</RefSource>
<PMID Version="1">15668438</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 2005 Feb 3;352(5):459-67</RefSource>
<PMID Version="1">15689584</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2005 Apr;57(4):596-600</RefSource>
<PMID Version="1">15786454</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2005 Oct;128(Pt 10):2291-6</RefSource>
<PMID Version="1">16049044</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2005 Nov;8(11):1491-3</RefSource>
<PMID Version="1">16205719</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Mol Brain Res. 2005 Nov 30;141(2):181-92</RefSource>
<PMID Version="1">16246457</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2006 Mar;9(3):389-97</RefSource>
<PMID Version="1">16474392</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2006 Sep 1;141(3):1281-7</RefSource>
<PMID Version="1">16766129</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Genet Metab. 2006 Sep-Oct;89(1-2):116-20</RefSource>
<PMID Version="1">16650784</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mutat. 2006 Sep;27(9):870-8</RefSource>
<PMID Version="1">16917893</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosurg Rev. 2006 Oct;29(4):333-8; discussion 338</RefSource>
<PMID Version="1">16924460</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2006 Nov 28;67(10):1740-1</RefSource>
<PMID Version="1">17130402</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cereb Blood Flow Metab. 2008 Jun;28(6):1127-38</RefSource>
<PMID Version="1">18231115</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2008 Sep;131(Pt 9):2499-509</RefSource>
<PMID Version="1">18669484</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2008 Dec;14(8):613-9</RefSource>
<PMID Version="1">18329318</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Acta Neurol Scand. 2009 Jan;119(1):49-54</RefSource>
<PMID Version="1">18540899</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2009 Jan;101(1):234-45</RefSource>
<PMID Version="1">18987121</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Aug 5;29(31):9740-7</RefSource>
<PMID Version="1">19657027</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2010 Mar;133(Pt 3):690-700</RefSource>
<PMID Version="1">20207699</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2010 May 4;107(18):8452-6</RefSource>
<PMID Version="1">20404184</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2010 Jul 6;75(1):64-71</RefSource>
<PMID Version="1">20505134</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2011 Jan;10(1):54-62</RefSource>
<PMID Version="1">21112253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2011 Mar;14(3):357-65</RefSource>
<PMID Version="1">21297628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2011 Mar 17;177:183-94</RefSource>
<PMID Version="1">21241782</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2011 May;42(2):202-9</RefSource>
<PMID Version="1">20965251</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2011 May;42(2):185-201</RefSource>
<PMID Version="1">21303695</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6638-43</RefSource>
<PMID Version="1">21464304</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroimage. 2011 Jun 1;56(3):1011-20</RefSource>
<PMID Version="1">21349339</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2012 Apr;71(4):520-30</RefSource>
<PMID Version="1">22522443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2012 Jun 29;1464:82-8</RefSource>
<PMID Version="1">22595488</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2012 Oct;48(1):66-78</RefSource>
<PMID Version="1">22659308</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Childs Nerv Syst. 1995 Feb;11(2):86-8</RefSource>
<PMID Version="1">7758017</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1995 Jun;37(6):746-57</RefSource>
<PMID Version="1">7778848</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurotoxicol Teratol. 1995 May-Jun;17(3):333-9</RefSource>
<PMID Version="1">7623740</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Invest. 2012 Feb;122(2):507-18</RefSource>
<PMID Version="1">22214848</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Pharmacol Exp Ther. 2012 Mar;340(3):733-41</RefSource>
<PMID Version="1">22171094</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2013 Feb;50:151-9</RefSource>
<PMID Version="1">23009754</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2013 Mar;241:95-104</RefSource>
<PMID Version="1">23195594</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2013 Jan;49:200-10</RefSource>
<PMID Version="1">22850483</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1999 Nov;82(5):2049-60</RefSource>
<PMID Version="1">10561386</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1999 Nov;160(1):268-78</RefSource>
<PMID Version="1">10630211</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2000 Mar;12(3):1033-7</RefSource>
<PMID Version="1">10762334</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2000 May;15(3):524-30</RefSource>
<PMID Version="1">10830419</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Med Res. 2000 May-Jun;31(3):290-9</RefSource>
<PMID Version="1">11036180</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol. 2001 Jan;248(1):10-7</RefSource>
<PMID Version="1">11266013</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2002 Apr;15(8):1353-62</RefSource>
<PMID Version="1">11994129</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Pharmacol. 2002 May 17;443(1-3):59-70</RefSource>
<PMID Version="1">12044793</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 2002 Aug;145(4):457-67</RefSource>
<PMID Version="1">12172657</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2002 Aug 13;59(3):445-8</RefSource>
<PMID Version="1">12177384</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2002 Sep 1;22(17):7825-33</RefSource>
<PMID Version="1">12196606</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2002;114(4):1005-17</RefSource>
<PMID Version="1">12379255</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2002 Dec;52(6):853-6</RefSource>
<PMID Version="1">12447944</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Lett. 2002 Dec 19;335(1):34-8</RefSource>
<PMID Version="1">12457736</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2003 Jan;18(1):60-9</RefSource>
<PMID Version="1">12518301</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Neurol. 2004;94:53-60</RefSource>
<PMID Version="1">14509654</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2004 Feb;19(2):228-30</RefSource>
<PMID Version="1">14978684</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Clin Neurophysiol. 2004 Jan-Feb;21(1):18-30</RefSource>
<PMID Version="1">15097291</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2004 Apr 27;62(8):1384-90</RefSource>
<PMID Version="1">15111678</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosurg Focus. 2004 Jul 15;17(1):E2</RefSource>
<PMID Version="1">15264771</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroreport. 2004 Aug 26;15(12):1887-90</RefSource>
<PMID Version="1">15305130</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1969 Jun;24(2):298-309</RefSource>
<PMID Version="1">5784137</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1969 Oct;25(2):268-81</RefSource>
<PMID Version="1">5345013</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1970 Nov;20(11):103-6</RefSource>
<PMID Version="1">5529471</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1970 Nov;20(11):107-13</RefSource>
<PMID Version="1">5529472</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Trans Am Neurol Assoc. 1967;92:27-30</RefSource>
<PMID Version="1">4999962</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc R Soc Med. 1973 Sep;66(9):877-9</RefSource>
<PMID Version="1">4616241</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Appl Neurophysiol. 1975;38(2):81-90</RefSource>
<PMID Version="1">769688</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Neurol. 1976;14:329-38</RefSource>
<PMID Version="1">821320</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Neurol. 1976;14:353-65</RefSource>
<PMID Version="1">133598</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1978 Jun 9;148(1):143-52</RefSource>
<PMID Version="1">656921</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 1980;5(3):543-9</RefSource>
<PMID Version="1">7374955</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 1981 Nov 5;305(19):1106-11</RefSource>
<PMID Version="1">6117011</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1985 Jun;108 ( Pt 2):463-83</RefSource>
<PMID Version="1">4005532</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Neurosurg Psychiatry. 1985 Jul;48(7):650-7</RefSource>
<PMID Version="1">4031909</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Neurol. 1988;50:113-22</RefSource>
<PMID Version="1">3041756</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Neurol. 1988;50:561-70</RefSource>
<PMID Version="1">3041761</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Sci. 1989 May;90(3):307-14</RefSource>
<PMID Version="1">2786926</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1989;4(3):219-32</RefSource>
<PMID Version="1">2779593</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1989 Nov;9(11):4033-41</RefSource>
<PMID Version="1">2585066</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pharmacol Biochem Behav. 1990 May;36(1):151-5</RefSource>
<PMID Version="1">2161543</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 1991 Feb;65(2):330-51</RefSource>
<PMID Version="1">2016644</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Pharmacol. 1991 Jan 10;192(2):207-19</RefSource>
<PMID Version="1">1851702</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1995 Jul;10(4):522-5</RefSource>
<PMID Version="1">7565841</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurotoxicol Teratol. 1995 Jul-Aug;17(4):413-8</RefSource>
<PMID Version="1">7565487</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1995 Dec;45(12):2178-83</RefSource>
<PMID Version="1">8848189</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2000;97(3):521-30</RefSource>
<PMID Version="1">10828534</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2000 Sep 12;55(5):673-7</RefSource>
<PMID Version="1">10980732</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 2000 Oct 13;880(1-2):191-7</RefSource>
<PMID Version="1">11033006</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res Bull. 1992 Sep-Oct;29(3-4):419-25</RefSource>
<PMID Version="1">1356600</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1992 Oct;118(1):95-104</RefSource>
<PMID Version="1">1397181</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1992 Oct;42(10):1980-8</RefSource>
<PMID Version="1">1357595</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1993 Apr;120(2):302-10</RefSource>
<PMID Version="1">8491286</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1993 Oct;13(10):4181-92</RefSource>
<PMID Version="1">7692009</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1994 May;44(5):957-8</RefSource>
<PMID Version="1">8190304</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 1994 Aug;117 ( Pt 4):859-76</RefSource>
<PMID Version="1">7922471</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Nucl Med. 1994 Dec;35(12):1921-7</RefSource>
<PMID Version="1">7989970</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 1994 Nov;8(3):236-42</RefSource>
<PMID Version="1">7874165</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Toxicol Clin Toxicol. 1995;33(4):363-7</RefSource>
<PMID Version="1">7629905</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D030801">Animals, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001479">Basal Ganglia</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000473">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D004195">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D004421">Dystonia</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000150">complications</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000473">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018377">Neurotransmitter Agents</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000235">genetics</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS476580</OtherID>
<OtherID Source="NLM">PMC3728703</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">basal ganglia</Keyword>
<Keyword MajorTopicYN="N">cerebellum</Keyword>
<Keyword MajorTopicYN="N">mouse model</Keyword>
<Keyword MajorTopicYN="N">primate model</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>1</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>3</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>4</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/mds.25526</ArticleId>
<ArticleId IdType="pubmed">23893454</ArticleId>
<ArticleId IdType="pmc">PMC3728703</ArticleId>
<ArticleId IdType="mid">NIHMS476580</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Hess, Ellen J" sort="Hess, Ellen J" uniqKey="Hess E" first="Ellen J" last="Hess">Ellen J. Hess</name>
</noCountry>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Wilson, Bethany K" sort="Wilson, Bethany K" uniqKey="Wilson B" first="Bethany K" last="Wilson">Bethany K. Wilson</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B14 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000B14 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23893454
   |texte=   Animal models for dystonia.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23893454" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024