Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Engineering animal models of dystonia.

Identifieur interne : 000A09 ( PubMed/Checkpoint ); précédent : 000A08; suivant : 000A10

Engineering animal models of dystonia.

Auteurs : Janneth Oleas [États-Unis] ; Fumiaki Yokoi ; Mark P. Deandrade ; Antonio Pisani ; Yuqing Li

Source :

RBID : pubmed:23893455

English descriptors

Abstract

Dystonia is a neurological disorder characterized by abnormal involuntary movements that are prolonged and often cause twisting and turning. Several genetically modified worms, fruit flies, and rodents have been generated as models of genetic dystonias, in particular DYT1, DYT11, and DYT12 dystonias. Although these models do not show overt dystonic symptoms, the rodent models exhibit motor deficits in specialized behavioral tasks, such as the rotarod and beam-walking tests. For example, in a rodent model of DYT12 dystonia, which is generally stress triggered, motor deficits are observed only after the animal is stressed. Moreover, in a rodent model of DYT1 dystonia, the motor and electrophysiological deficits can be rescued by trihexyphenidyl, a common anticholinergic medication used to treat dystonic symptoms in human patients. Biochemically, the DYT1 and DYT11 animal models also share some similarities to patients, such as a reduction in striatal D2 dopamine receptor and binding activities. In addition, conditional knockout mouse models for DYT1 and DYT11 dystonia demonstrate that loss of the causal dystonia-related proteins in the striatum leads to motor deficits. Interestingly, loss of the DYT1 dystonia causal protein in Purkinje cells shows an improvement in motor performance, suggesting that gene therapy targeting of the cerebellum or intervention in its downstream pathways may be useful. Finally, recent studies using DYT1 dystonia worm and mouse models led to a potential novel therapeutic agent, which is currently undergoing clinical trials. These results indicate that genetic animal models are powerful tools to elucidate the pathophysiology and to further develop new therapeutics for dystonia.

DOI: 10.1002/mds.25583
PubMed: 23893455


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23893455

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Engineering animal models of dystonia.</title>
<author>
<name sortKey="Oleas, Janneth" sort="Oleas, Janneth" uniqKey="Oleas J" first="Janneth" last="Oleas">Janneth Oleas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida 32610</wicri:regionArea>
<wicri:noRegion>Florida 32610</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yokoi, Fumiaki" sort="Yokoi, Fumiaki" uniqKey="Yokoi F" first="Fumiaki" last="Yokoi">Fumiaki Yokoi</name>
</author>
<author>
<name sortKey="Deandrade, Mark P" sort="Deandrade, Mark P" uniqKey="Deandrade M" first="Mark P" last="Deandrade">Mark P. Deandrade</name>
</author>
<author>
<name sortKey="Pisani, Antonio" sort="Pisani, Antonio" uniqKey="Pisani A" first="Antonio" last="Pisani">Antonio Pisani</name>
</author>
<author>
<name sortKey="Li, Yuqing" sort="Li, Yuqing" uniqKey="Li Y" first="Yuqing" last="Li">Yuqing Li</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="doi">10.1002/mds.25583</idno>
<idno type="RBID">pubmed:23893455</idno>
<idno type="pmid">23893455</idno>
<idno type="wicri:Area/PubMed/Corpus">000802</idno>
<idno type="wicri:Area/PubMed/Curation">000802</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000A09</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Engineering animal models of dystonia.</title>
<author>
<name sortKey="Oleas, Janneth" sort="Oleas, Janneth" uniqKey="Oleas J" first="Janneth" last="Oleas">Janneth Oleas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida 32610</wicri:regionArea>
<wicri:noRegion>Florida 32610</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yokoi, Fumiaki" sort="Yokoi, Fumiaki" uniqKey="Yokoi F" first="Fumiaki" last="Yokoi">Fumiaki Yokoi</name>
</author>
<author>
<name sortKey="Deandrade, Mark P" sort="Deandrade, Mark P" uniqKey="Deandrade M" first="Mark P" last="Deandrade">Mark P. Deandrade</name>
</author>
<author>
<name sortKey="Pisani, Antonio" sort="Pisani, Antonio" uniqKey="Pisani A" first="Antonio" last="Pisani">Antonio Pisani</name>
</author>
<author>
<name sortKey="Li, Yuqing" sort="Li, Yuqing" uniqKey="Li Y" first="Yuqing" last="Li">Yuqing Li</name>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Animals, Genetically Modified</term>
<term>Bioengineering</term>
<term>Brain (metabolism)</term>
<term>Brain (pathology)</term>
<term>Disease Models, Animal</term>
<term>Drug Evaluation, Preclinical</term>
<term>Dystonia (genetics)</term>
<term>Dystonia (pathology)</term>
<term>Humans</term>
<term>Molecular Chaperones (genetics)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Molecular Chaperones</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Dystonia</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Brain</term>
</keywords>
<keywords scheme="MESH" qualifier="pathology" xml:lang="en">
<term>Brain</term>
<term>Dystonia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Animals, Genetically Modified</term>
<term>Bioengineering</term>
<term>Disease Models, Animal</term>
<term>Drug Evaluation, Preclinical</term>
<term>Humans</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Dystonia is a neurological disorder characterized by abnormal involuntary movements that are prolonged and often cause twisting and turning. Several genetically modified worms, fruit flies, and rodents have been generated as models of genetic dystonias, in particular DYT1, DYT11, and DYT12 dystonias. Although these models do not show overt dystonic symptoms, the rodent models exhibit motor deficits in specialized behavioral tasks, such as the rotarod and beam-walking tests. For example, in a rodent model of DYT12 dystonia, which is generally stress triggered, motor deficits are observed only after the animal is stressed. Moreover, in a rodent model of DYT1 dystonia, the motor and electrophysiological deficits can be rescued by trihexyphenidyl, a common anticholinergic medication used to treat dystonic symptoms in human patients. Biochemically, the DYT1 and DYT11 animal models also share some similarities to patients, such as a reduction in striatal D2 dopamine receptor and binding activities. In addition, conditional knockout mouse models for DYT1 and DYT11 dystonia demonstrate that loss of the causal dystonia-related proteins in the striatum leads to motor deficits. Interestingly, loss of the DYT1 dystonia causal protein in Purkinje cells shows an improvement in motor performance, suggesting that gene therapy targeting of the cerebellum or intervention in its downstream pathways may be useful. Finally, recent studies using DYT1 dystonia worm and mouse models led to a potential novel therapeutic agent, which is currently undergoing clinical trials. These results indicate that genetic animal models are powerful tools to elucidate the pathophysiology and to further develop new therapeutics for dystonia.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23893455</PMID>
<DateCreated>
<Year>2013</Year>
<Month>07</Month>
<Day>29</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1531-8257</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov. Disord.</ISOAbbreviation>
</Journal>
<ArticleTitle>Engineering animal models of dystonia.</ArticleTitle>
<Pagination>
<MedlinePgn>990-1000</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mds.25583</ELocationID>
<Abstract>
<AbstractText>Dystonia is a neurological disorder characterized by abnormal involuntary movements that are prolonged and often cause twisting and turning. Several genetically modified worms, fruit flies, and rodents have been generated as models of genetic dystonias, in particular DYT1, DYT11, and DYT12 dystonias. Although these models do not show overt dystonic symptoms, the rodent models exhibit motor deficits in specialized behavioral tasks, such as the rotarod and beam-walking tests. For example, in a rodent model of DYT12 dystonia, which is generally stress triggered, motor deficits are observed only after the animal is stressed. Moreover, in a rodent model of DYT1 dystonia, the motor and electrophysiological deficits can be rescued by trihexyphenidyl, a common anticholinergic medication used to treat dystonic symptoms in human patients. Biochemically, the DYT1 and DYT11 animal models also share some similarities to patients, such as a reduction in striatal D2 dopamine receptor and binding activities. In addition, conditional knockout mouse models for DYT1 and DYT11 dystonia demonstrate that loss of the causal dystonia-related proteins in the striatum leads to motor deficits. Interestingly, loss of the DYT1 dystonia causal protein in Purkinje cells shows an improvement in motor performance, suggesting that gene therapy targeting of the cerebellum or intervention in its downstream pathways may be useful. Finally, recent studies using DYT1 dystonia worm and mouse models led to a potential novel therapeutic agent, which is currently undergoing clinical trials. These results indicate that genetic animal models are powerful tools to elucidate the pathophysiology and to further develop new therapeutics for dystonia.</AbstractText>
<CopyrightInformation>© 2013 Movement Disorder Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Oleas</LastName>
<ForeName>Janneth</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yokoi</LastName>
<ForeName>Fumiaki</ForeName>
<Initials>F</Initials>
</Author>
<Author ValidYN="Y">
<LastName>DeAndrade</LastName>
<ForeName>Mark P</ForeName>
<Initials>MP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pisani</LastName>
<ForeName>Antonio</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Yuqing</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>NS37409</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>NS47466</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>NS47692</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>NS54246</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>NS57098</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>NS65273</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>NS72872</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>NS74423</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 NS057098</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50 NS037409</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS054246</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R03 NS074423</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 NS042356</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 NS047692</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 NS065273</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 NS072872</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C108175">TOR1A protein, human</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Brain Behav. 2011 Jul;10(5):542-50</RefSource>
<PMID Version="1">21418141</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genetics. 2011 Aug;188(4):773-82</RefSource>
<PMID Version="1">21828278</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol Neurosurg Psychiatry. 2011 Oct;82(10):1103-6</RefSource>
<PMID Version="1">21386109</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(9):e24261</RefSource>
<PMID Version="1">21912682</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(9):e24539</RefSource>
<PMID Version="1">21931745</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(10):e26183</RefSource>
<PMID Version="1">22022556</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2011 Dec 1;20(23):4644-54</RefSource>
<PMID Version="1">21890494</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2012 Jan 15;226(2):465-72</RefSource>
<PMID Version="1">21995941</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2012 Feb 1;227(1):12-20</RefSource>
<PMID Version="1">22040906</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2012 Jan;123(1):65-70</RefSource>
<PMID Version="1">22078259</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2012 Feb 15;21(4):916-25</RefSource>
<PMID Version="1">22080833</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Synapse. 2012 May;66(5):453-64</RefSource>
<PMID Version="1">22213465</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(2):e32245</RefSource>
<PMID Version="1">22393392</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2012;7(3):e33669</RefSource>
<PMID Version="1">22438980</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2012 May 1;230(2):389-98</RefSource>
<PMID Version="1">22391119</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurol. 2012 May;8(5):275-83</RefSource>
<PMID Version="1">22430107</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2012 Jul;47(1):61-74</RefSource>
<PMID Version="1">22472189</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Synapse. 2012 Sep;66(9):807-22</RefSource>
<PMID Version="1">22588999</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2012 Sep;47(3):416-27</RefSource>
<PMID Version="1">22579992</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2012 Oct;48(1):66-78</RefSource>
<PMID Version="1">22659308</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2012 Aug 29;32(35):11991-2004</RefSource>
<PMID Version="1">22933784</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Physiol. 2013 Jul 1;591(Pt 13):3433-49</RefSource>
<PMID Version="1">23652595</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2013 Jun 15;28(7):863-73</RefSource>
<PMID Version="1">23649720</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2002 May;17(3):608-9</RefSource>
<PMID Version="1">12112218</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2002 Oct;52(4):489-92</RefSource>
<PMID Version="1">12325078</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2003 Feb 1;12(3):307-19</RefSource>
<PMID Version="1">12554684</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2003 Jun;18(6):605-22</RefSource>
<PMID Version="1">12784263</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurol. 2003 Aug;16(4):443-9</RefSource>
<PMID Version="1">12869801</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2004 Jul 22;43(2):169-75</RefSource>
<PMID Version="1">15260953</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 2004 Aug;56(2):283-6</RefSource>
<PMID Version="1">15293281</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2004 Sep 15;13(18):2019-30</RefSource>
<PMID Version="1">15269177</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2004 Nov;115(11):2542-57</RefSource>
<PMID Version="1">15465444</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Neurol. 1976;14:1-5</RefSource>
<PMID Version="1">941763</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Ann Neurol. 1989 Nov;26(5):612-20</RefSource>
<PMID Version="1">2817837</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1993 Apr;120(2):302-10</RefSource>
<PMID Version="1">8491286</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1993 Dec;43(12):2596-602</RefSource>
<PMID Version="1">8255463</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nucleic Acids Res. 1995 Dec 25;23(24):5080-1</RefSource>
<PMID Version="1">8559668</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 1997 Apr;48(4):1066-9</RefSource>
<PMID Version="1">9109901</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 1997 Sep;17(1):40-8</RefSource>
<PMID Version="1">9288096</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biol Chem. 1997 Dec 19;272(51):32534-8</RefSource>
<PMID Version="1">9405466</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Adv Neurol. 1998;78:93-105</RefSource>
<PMID Version="1">9750906</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1998 Dec 11;282(5396):2012-8</RefSource>
<PMID Version="1">9851916</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Science. 1998 Dec 11;282(5396):2028-33</RefSource>
<PMID Version="1">9851919</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2004 Dec;19(12):1506-10</RefSource>
<PMID Version="1">15390049</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2005 Jan 1;14(1):125-33</RefSource>
<PMID Version="1">15548549</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2005 Jan 25;64(2):347-9</RefSource>
<PMID Version="1">15668438</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2005 Apr 13;25(15):3801-12</RefSource>
<PMID Version="1">15829632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2005 Jun 1;25(22):5351-5</RefSource>
<PMID Version="1">15930383</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>FEBS Lett. 2005 Aug 29;579(21):4822-8</RefSource>
<PMID Version="1">16099459</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2005 Nov;8(11):1491-3</RefSource>
<PMID Version="1">16205719</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 1999 Nov;160(1):268-78</RefSource>
<PMID Version="1">10630211</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genomics. 1999 Dec 15;62(3):377-84</RefSource>
<PMID Version="1">10644435</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell Biol. 2000 May;20(9):3308-15</RefSource>
<PMID Version="1">10757814</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Biochem Biophys Res Commun. 2000 Apr 21;270(3):978-82</RefSource>
<PMID Version="1">10772936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Cell Biol. 2000 Jul 10;150(1):F13-9</RefSource>
<PMID Version="1">10893253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2000 Oct 10;55(7):991-5</RefSource>
<PMID Version="1">11061257</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurol. 2000 Oct;13(5):533-9</RefSource>
<PMID Version="1">11073359</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genesis. 2000 Nov-Dec;28(3-4):93-8</RefSource>
<PMID Version="1">11105049</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Genes Cells. 2001 Jul;6(7):575-97</RefSource>
<PMID Version="1">11473577</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurogenetics. 2001 Jul;3(3):133-43</RefSource>
<PMID Version="1">11523564</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Genet. 2001 Sep;29(1):66-9</RefSource>
<PMID Version="1">11528394</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Development. 2001 Nov;128(22):4645-56</RefSource>
<PMID Version="1">11714689</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Int J Neurol. 1991-1992;25-26:70-80</RefSource>
<PMID Version="1">11980065</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Genet. 2005;39:153-71</RefSource>
<PMID Version="1">16285856</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2005 Dec;196(2):452-63</RefSource>
<PMID Version="1">16242683</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuron. 2005 Dec 22;48(6):923-32</RefSource>
<PMID Version="1">16364897</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>NeuroRx. 2005 Jul;2(3):504-12</RefSource>
<PMID Version="1">16389314</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Annu Rev Neurosci. 2006;29:387-415</RefSource>
<PMID Version="1">16776591</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biochem. 2006 Jul;140(1):141-6</RefSource>
<PMID Version="1">16815860</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurobiol. 2006 Oct;66(12):1338-53</RefSource>
<PMID Version="1">16967506</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2006 Oct 10;103(41):15254-9</RefSource>
<PMID Version="1">17015831</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2006 Nov;24(2):318-25</RefSource>
<PMID Version="1">16934985</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2006 Nov 14;67(9):1677-80</RefSource>
<PMID Version="1">17101905</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Res. 2006 Dec;56(4):470-4</RefSource>
<PMID Version="1">17046090</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2006 Dec;21(12):2073-7</RefSource>
<PMID Version="1">17013905</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2007 Jan 17;27(3):616-26</RefSource>
<PMID Version="1">17234593</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2007 Mar;130(Pt 3):828-35</RefSource>
<PMID Version="1">17282997</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2007 Aug;102(3):783-8</RefSource>
<PMID Version="1">17550429</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2007 Aug;27(2):190-206</RefSource>
<PMID Version="1">17601741</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2008 Jan;131(Pt 1):146-54</RefSource>
<PMID Version="1">17947338</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurotherapeutics. 2008 Jan;5(1):26-36</RefSource>
<PMID Version="1">18164481</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biochem. 2008 Jan;143(1):39-47</RefSource>
<PMID Version="1">17956903</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2008 Mar;9(3):222-34</RefSource>
<PMID Version="1">18285800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Neurol. 2008 Apr;210(2):719-30</RefSource>
<PMID Version="1">18299128</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Curr Opin Neurol. 2008 Aug;21(4):484-90</RefSource>
<PMID Version="1">18607211</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cell. 2008 Jul 25;31(2):294-301</RefSource>
<PMID Version="1">18657511</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2008 Sep 1;17(17):2712-22</RefSource>
<PMID Version="1">18552369</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2008 Sep;131(Pt 9):2499-509</RefSource>
<PMID Version="1">18669484</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 2008 Dec 2;157(3):588-95</RefSource>
<PMID Version="1">18940237</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Nucl Med Mol Imaging. 2009 Feb;36(2):269-74</RefSource>
<PMID Version="1">18719906</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mol Cells. 2009 Jan 31;27(1):89-97</RefSource>
<PMID Version="1">19214438</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2009 Apr;34(1):133-45</RefSource>
<PMID Version="1">19187797</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Gene Ther. 2009 May;16(5):581-8</RefSource>
<PMID Version="1">19225549</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2009 Aug;132(Pt 8):2005-25</RefSource>
<PMID Version="1">19578124</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2009 Aug 5;29(31):9740-7</RefSource>
<PMID Version="1">19657027</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain. 2009 Sep;132(Pt 9):2336-49</RefSource>
<PMID Version="1">19641103</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurosci Res. 2009 Nov;65(3):228-35</RefSource>
<PMID Version="1">19619587</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurochem. 2010 Apr;113(1):228-35</RefSource>
<PMID Version="1">20132487</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Dis Model Mech. 2010 May-Jun;3(5-6):386-96</RefSource>
<PMID Version="1">20223934</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2010 Jun;38(3):434-45</RefSource>
<PMID Version="1">20227500</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2010 Sep;39(3):318-26</RefSource>
<PMID Version="1">20460154</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Hum Mol Genet. 2010 Sep 15;19(18):3502-15</RefSource>
<PMID Version="1">20584926</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Biochem. 2010 Oct;148(4):459-66</RefSource>
<PMID Version="1">20627944</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Behav Brain Res. 2011 Jan 20;216(2):659-65</RefSource>
<PMID Version="1">20850480</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Pharmacol Biochem Behav. 2011 Feb;97(4):647-55</RefSource>
<PMID Version="1">21078339</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Cell Metab. 2011 Feb 2;13(2):195-204</RefSource>
<PMID Version="1">21284986</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>BMC Genomics. 2011;12:83</RefSource>
<PMID Version="1">21276248</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Neurosci. 2011 Mar;14(3):357-65</RefSource>
<PMID Version="1">21297628</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Hum Genet. 2011 Apr;19(4):438-44</RefSource>
<PMID Version="1">21157498</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2011 May;42(2):202-9</RefSource>
<PMID Version="1">20965251</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurobiol Dis. 2011 May;42(2):162-70</RefSource>
<PMID Version="1">21168494</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>PLoS One. 2011;6(3):e18357</RefSource>
<PMID Version="1">21479250</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6638-43</RefSource>
<PMID Version="1">21464304</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2011 Jun;33(11):2114-28</RefSource>
<PMID Version="1">21645105</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D030801">Animals, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="Y" UI="D057005">Bioengineering</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D001921">Brain</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000378">metabolism</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000473">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004195">Disease Models, Animal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004353">Drug Evaluation, Preclinical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D004421">Dystonia</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000235">genetics</QualifierName>
<QualifierName MajorTopicYN="N" UI="Q000473">pathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D018832">Molecular Chaperones</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000235">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS513931</OtherID>
<OtherID Source="NLM">PMC3800691</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">DYT1</Keyword>
<Keyword MajorTopicYN="N">DYT11</Keyword>
<Keyword MajorTopicYN="N">DYT12</Keyword>
<Keyword MajorTopicYN="N">animal model</Keyword>
<Keyword MajorTopicYN="N">dystonia</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>12</Month>
<Day>7</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>5</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>5</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/mds.25583</ArticleId>
<ArticleId IdType="pubmed">23893455</ArticleId>
<ArticleId IdType="pmc">PMC3800691</ArticleId>
<ArticleId IdType="mid">NIHMS513931</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Deandrade, Mark P" sort="Deandrade, Mark P" uniqKey="Deandrade M" first="Mark P" last="Deandrade">Mark P. Deandrade</name>
<name sortKey="Li, Yuqing" sort="Li, Yuqing" uniqKey="Li Y" first="Yuqing" last="Li">Yuqing Li</name>
<name sortKey="Pisani, Antonio" sort="Pisani, Antonio" uniqKey="Pisani A" first="Antonio" last="Pisani">Antonio Pisani</name>
<name sortKey="Yokoi, Fumiaki" sort="Yokoi, Fumiaki" uniqKey="Yokoi F" first="Fumiaki" last="Yokoi">Fumiaki Yokoi</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Oleas, Janneth" sort="Oleas, Janneth" uniqKey="Oleas J" first="Janneth" last="Oleas">Janneth Oleas</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A09 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000A09 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23893455
   |texte=   Engineering animal models of dystonia.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23893455" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024