Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

More than meets the eye-myelinated axons crowd the subthalamic nucleus.

Identifieur interne : 000922 ( PubMed/Checkpoint ); précédent : 000921; suivant : 000923

More than meets the eye-myelinated axons crowd the subthalamic nucleus.

Auteurs : Abraham Mathai [États-Unis] ; Thomas Wichmann ; Yoland Smith

Source :

RBID : pubmed:23852565

English descriptors

Abstract

High frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a successful treatment for patients with advanced Parkinson's disease (PD). Although its exact mechanism of action is unknown, it is currently believed that the beneficial effects of the stimulation are mediated either by alleviating pathological basal ganglia output patterns of activity or by activation of the axons of passage that arise from the cerebral cortex and other sources. In this study, we show that the anatomical composition of the primate STN provides a substrate through which DBS may elicit widespread changes in brain activity via stimulation of fibers of passage. Using quantitative high-resolution electron microscopy, we found that the primate STN is traversed by numerous myelinated axons, which occupy as much as 45% of its sensorimotor territory and 36% of its associative region. In comparison, myelinated axons occupy only 27% of the surface areas of the sensorimotor and associative regions of the internal segment of the globus pallidus (GPi), another target for therapeutic DBS in PD. We also noted that myelinated axons in the STN, on average, have a larger diameter than those in GPi, which may render them more susceptible to electrical stimulation. Because axons are more excitable than other neuronal elements, our findings support the hypothesis that STN DBS, even when carried out entirely within the confines of the nucleus, mediates some of its effects by activating myelinated axons of passage.

DOI: 10.1002/mds.25603
PubMed: 23852565


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23852565

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">More than meets the eye-myelinated axons crowd the subthalamic nucleus.</title>
<author>
<name sortKey="Mathai, Abraham" sort="Mathai, Abraham" uniqKey="Mathai A" first="Abraham" last="Mathai">Abraham Mathai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wichmann, Thomas" sort="Wichmann, Thomas" uniqKey="Wichmann T" first="Thomas" last="Wichmann">Thomas Wichmann</name>
</author>
<author>
<name sortKey="Smith, Yoland" sort="Smith, Yoland" uniqKey="Smith Y" first="Yoland" last="Smith">Yoland Smith</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23852565</idno>
<idno type="pmid">23852565</idno>
<idno type="doi">10.1002/mds.25603</idno>
<idno type="wicri:Area/PubMed/Corpus">000839</idno>
<idno type="wicri:Area/PubMed/Curation">000839</idno>
<idno type="wicri:Area/PubMed/Checkpoint">000922</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">More than meets the eye-myelinated axons crowd the subthalamic nucleus.</title>
<author>
<name sortKey="Mathai, Abraham" sort="Mathai, Abraham" uniqKey="Mathai A" first="Abraham" last="Mathai">Abraham Mathai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wichmann, Thomas" sort="Wichmann, Thomas" uniqKey="Wichmann T" first="Thomas" last="Wichmann">Thomas Wichmann</name>
</author>
<author>
<name sortKey="Smith, Yoland" sort="Smith, Yoland" uniqKey="Smith Y" first="Yoland" last="Smith">Yoland Smith</name>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Globus Pallidus (cytology)</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Macaca mulatta</term>
<term>Male</term>
<term>Microscopy, Electron, Transmission</term>
<term>Nerve Fibers, Myelinated (ultrastructure)</term>
<term>Neural Pathways (ultrastructure)</term>
<term>Subthalamic Nucleus (ultrastructure)</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Globus Pallidus</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Nerve Fibers, Myelinated</term>
<term>Neural Pathways</term>
<term>Subthalamic Nucleus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Image Processing, Computer-Assisted</term>
<term>Macaca mulatta</term>
<term>Male</term>
<term>Microscopy, Electron, Transmission</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a successful treatment for patients with advanced Parkinson's disease (PD). Although its exact mechanism of action is unknown, it is currently believed that the beneficial effects of the stimulation are mediated either by alleviating pathological basal ganglia output patterns of activity or by activation of the axons of passage that arise from the cerebral cortex and other sources. In this study, we show that the anatomical composition of the primate STN provides a substrate through which DBS may elicit widespread changes in brain activity via stimulation of fibers of passage. Using quantitative high-resolution electron microscopy, we found that the primate STN is traversed by numerous myelinated axons, which occupy as much as 45% of its sensorimotor territory and 36% of its associative region. In comparison, myelinated axons occupy only 27% of the surface areas of the sensorimotor and associative regions of the internal segment of the globus pallidus (GPi), another target for therapeutic DBS in PD. We also noted that myelinated axons in the STN, on average, have a larger diameter than those in GPi, which may render them more susceptible to electrical stimulation. Because axons are more excitable than other neuronal elements, our findings support the hypothesis that STN DBS, even when carried out entirely within the confines of the nucleus, mediates some of its effects by activating myelinated axons of passage.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="MEDLINE">
<PMID Version="1">23852565</PMID>
<DateCreated>
<Year>2013</Year>
<Month>11</Month>
<Day>14</Day>
</DateCreated>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>02</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1531-8257</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>28</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Movement disorders : official journal of the Movement Disorder Society</Title>
<ISOAbbreviation>Mov. Disord.</ISOAbbreviation>
</Journal>
<ArticleTitle>More than meets the eye-myelinated axons crowd the subthalamic nucleus.</ArticleTitle>
<Pagination>
<MedlinePgn>1811-5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/mds.25603</ELocationID>
<Abstract>
<AbstractText>High frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a successful treatment for patients with advanced Parkinson's disease (PD). Although its exact mechanism of action is unknown, it is currently believed that the beneficial effects of the stimulation are mediated either by alleviating pathological basal ganglia output patterns of activity or by activation of the axons of passage that arise from the cerebral cortex and other sources. In this study, we show that the anatomical composition of the primate STN provides a substrate through which DBS may elicit widespread changes in brain activity via stimulation of fibers of passage. Using quantitative high-resolution electron microscopy, we found that the primate STN is traversed by numerous myelinated axons, which occupy as much as 45% of its sensorimotor territory and 36% of its associative region. In comparison, myelinated axons occupy only 27% of the surface areas of the sensorimotor and associative regions of the internal segment of the globus pallidus (GPi), another target for therapeutic DBS in PD. We also noted that myelinated axons in the STN, on average, have a larger diameter than those in GPi, which may render them more susceptible to electrical stimulation. Because axons are more excitable than other neuronal elements, our findings support the hypothesis that STN DBS, even when carried out entirely within the confines of the nucleus, mediates some of its effects by activating myelinated axons of passage.</AbstractText>
<CopyrightInformation>© 2013 International Parkinson and Movement Disorder Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mathai</LastName>
<ForeName>Abraham</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA; Morris K. Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wichmann</LastName>
<ForeName>Thomas</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Yoland</ForeName>
<Initials>Y</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>OD P51OD011132</GrantID>
<Acronym>OD</Acronym>
<Agency>NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50 NS071669</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P50 NS071669</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P51 RR000165</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P51RR000165</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS037948</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM008605</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mov Disord</MedlineTA>
<NlmUniqueID>8610688</NlmUniqueID>
<ISSNLinking>0885-3185</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1998 Feb;118(4):489-500</RefSource>
<PMID Version="1">9504844</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Comp Neurol. 1996 Mar 18;366(4):580-99</RefSource>
<PMID Version="1">8833111</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Nat Rev Neurosci. 2007 Aug;8(8):623-35</RefSource>
<PMID Version="1">17637800</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurophysiol. 2007 Dec;98(6):3525-37</RefSource>
<PMID Version="1">17928554</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 2008 Feb 15;23(3):416-21</RefSource>
<PMID Version="1">18067188</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2010 Oct;32(7):1070-9</RefSource>
<PMID Version="1">21039946</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurol. 2009 Aug;256(8):1321-9</RefSource>
<PMID Version="1">19363633</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>N Engl J Med. 2008 Nov 13;359(20):2121-34</RefSource>
<PMID Version="1">19005196</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2010 Oct;32(7):1080-91</RefSource>
<PMID Version="1">21039947</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Arch Neurol. 2011 Feb;68(2):165</RefSource>
<PMID Version="1">20937936</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2011 Mar 8;76(10):870-8</RefSource>
<PMID Version="1">21383323</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Parkinsonism Relat Disord. 2012 Jan;18 Suppl 1:S165-7</RefSource>
<PMID Version="1">22166422</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neurology. 2012 Jul 3;79(1):55-65</RefSource>
<PMID Version="1">22722632</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet Neurol. 2013 Jan;12(1):37-44</RefSource>
<PMID Version="1">23168021</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 2013 Mar 13;33(11):4804-14</RefSource>
<PMID Version="1">23486951</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Hirnforsch. 1976;17(1):31-41</RefSource>
<PMID Version="1">965719</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 2000 Dec;12(12):4573-7</RefSource>
<PMID Version="1">11122371</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Clin Neurophysiol. 2004 Nov;115(11):2431-41</RefSource>
<PMID Version="1">15465430</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Brain Res. 1975 Nov 21;98(3):417-40</RefSource>
<PMID Version="1">1102064</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Hirnforsch. 1975;16(5):401-13</RefSource>
<PMID Version="1">1214059</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Exp Brain Res. 1978 Nov 15;33(3-4):395-403</RefSource>
<PMID Version="1">83239</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Eur J Neurosci. 1993 Apr 1;5(4):382-9</RefSource>
<PMID Version="1">8261116</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Lancet. 1995 Jan 14;345(8942):91-5</RefSource>
<PMID Version="1">7815888</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Stereotact Funct Neurosurg. 1994;62(1-4):76-84</RefSource>
<PMID Version="1">7631092</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Mov Disord. 1995 Sep;10(5):672-4</RefSource>
<PMID Version="1">8552123</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neurosci. 1996 Apr 15;16(8):2671-83</RefSource>
<PMID Version="1">8786443</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>Neuroscience. 1996 Jul;73(2):335-57</RefSource>
<PMID Version="1">8783253</PMID>
</CommentsCorrections>
<CommentsCorrections RefType="Cites">
<RefSource>J Neural Transm Suppl. 2006;(70):401-8</RefSource>
<PMID Version="1">17017559</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D000818">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D005917">Globus Pallidus</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000166">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D006801">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D007091">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008253">Macaca mulatta</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D008297">Male</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D046529">Microscopy, Electron, Transmission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009413">Nerve Fibers, Myelinated</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000648">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D009434">Neural Pathways</DescriptorName>
<QualifierName MajorTopicYN="N" UI="Q000648">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName MajorTopicYN="N" UI="D020531">Subthalamic Nucleus</DescriptorName>
<QualifierName MajorTopicYN="Y" UI="Q000648">ultrastructure</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherID Source="NLM">NIHMS494246</OtherID>
<OtherID Source="NLM">PMC3825839</OtherID>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Parkinson's disease</Keyword>
<Keyword MajorTopicYN="N">antidromic</Keyword>
<Keyword MajorTopicYN="N">deep brain stimulation</Keyword>
<Keyword MajorTopicYN="N">fibers of passage</Keyword>
<Keyword MajorTopicYN="N">globus pallidus</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>12</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>4</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>5</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="aheadofprint">
<Year>2013</Year>
<Month>7</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23852565</ArticleId>
<ArticleId IdType="doi">10.1002/mds.25603</ArticleId>
<ArticleId IdType="pmc">PMC3825839</ArticleId>
<ArticleId IdType="mid">NIHMS494246</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Smith, Yoland" sort="Smith, Yoland" uniqKey="Smith Y" first="Yoland" last="Smith">Yoland Smith</name>
<name sortKey="Wichmann, Thomas" sort="Wichmann, Thomas" uniqKey="Wichmann T" first="Thomas" last="Wichmann">Thomas Wichmann</name>
</noCountry>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Mathai, Abraham" sort="Mathai, Abraham" uniqKey="Mathai A" first="Abraham" last="Mathai">Abraham Mathai</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/PubMed/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000922 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd -nk 000922 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    PubMed
   |étape=   Checkpoint
   |type=    RBID
   |clé=     pubmed:23852565
   |texte=   More than meets the eye-myelinated axons crowd the subthalamic nucleus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Checkpoint/RBID.i   -Sk "pubmed:23852565" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024