Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Engineering animal models of dystonia

Identifieur interne : 000120 ( Pmc/Checkpoint ); précédent : 000119; suivant : 000121

Engineering animal models of dystonia

Auteurs : Janneth Oleas [États-Unis] ; Fumiaki Yokoi [États-Unis] ; Mark P. Deandrade [États-Unis] ; Antonio Pisani [Italie] ; Yuqing Li [États-Unis]

Source :

RBID : PMC:3800691

Abstract

Dystonia is a neurological disorder characterized by abnormal involuntary movements that are prolonged and often cause twisting and turning. Several genetically modified worms, fruit flies, and rodents have been generated as models of genetic dystonias, and in particular DYT1, DYT11, and DYT12 dystonias. Although these models do not show overt dystonic symptoms, the rodent models exhibit pronounced motor deficits in specialized behavioral tasks, such as the rotarod and beam-walking tests. For example, in a rodent model of DYT12 dystonia, which is generally stress triggered, motor deficits are observed only after the animal is stressed. Moreover, in a rodent model of DYT1 dystonia, the motor and electrophysiological deficits can be rescued by trihexyphenidyl, a common anticholinergic medication used to treat dystonic symptoms in human patients. Biochemically, the DYT1 and DYT11 animal models also share some similarities to patients, such as a reduction in striatal D2 dopamine receptor and binding activities. Additionally, conditional knockout mouse models for DYT1 and DYT11 dystonia show that the loss of the causal dystonia related proteins in the striatum lead to motor deficits. Interestingly, loss of the DYT1 dystonia causal protein in Purkinje cells shows an improvement in motor performance, suggesting that gene therapy targeting of the cerebellum or intervention in its downstream pathways may be useful. Finally, recent studies using DYT1 dystonia worm and mouse models led to a potential novel therapeutic agent, which is currently undergoing clinical trials. These results indicate that genetic animal models are an extremely powerful tool to elucidate the pathophysiology and to further develop new therapeutics for dystonia.


Url:
DOI: 10.1002/mds.25583
PubMed: 23893455
PubMed Central: 3800691


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:3800691

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Engineering animal models of dystonia</title>
<author>
<name sortKey="Oleas, Janneth" sort="Oleas, Janneth" uniqKey="Oleas J" first="Janneth" last="Oleas">Janneth Oleas</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yokoi, Fumiaki" sort="Yokoi, Fumiaki" uniqKey="Yokoi F" first="Fumiaki" last="Yokoi">Fumiaki Yokoi</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Deandrade, Mark P" sort="Deandrade, Mark P" uniqKey="Deandrade M" first="Mark P." last="Deandrade">Mark P. Deandrade</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pisani, Antonio" sort="Pisani, Antonio" uniqKey="Pisani A" first="Antonio" last="Pisani">Antonio Pisani</name>
<affiliation wicri:level="1">
<nlm:aff id="A2">Department of Neuroscience, University Tor Vergata/Laboratory of Neurophysiology and Synaptic Plasticity, Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, 00143 Rome, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Neuroscience, University Tor Vergata/Laboratory of Neurophysiology and Synaptic Plasticity, Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, 00143 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Yuqing" sort="Li, Yuqing" uniqKey="Li Y" first="Yuqing" last="Li">Yuqing Li</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">23893455</idno>
<idno type="pmc">3800691</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800691</idno>
<idno type="RBID">PMC:3800691</idno>
<idno type="doi">10.1002/mds.25583</idno>
<date when="2013">2013</date>
<idno type="wicri:Area/Pmc/Corpus">000349</idno>
<idno type="wicri:Area/Pmc/Curation">000349</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000120</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Engineering animal models of dystonia</title>
<author>
<name sortKey="Oleas, Janneth" sort="Oleas, Janneth" uniqKey="Oleas J" first="Janneth" last="Oleas">Janneth Oleas</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yokoi, Fumiaki" sort="Yokoi, Fumiaki" uniqKey="Yokoi F" first="Fumiaki" last="Yokoi">Fumiaki Yokoi</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Deandrade, Mark P" sort="Deandrade, Mark P" uniqKey="Deandrade M" first="Mark P." last="Deandrade">Mark P. Deandrade</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pisani, Antonio" sort="Pisani, Antonio" uniqKey="Pisani A" first="Antonio" last="Pisani">Antonio Pisani</name>
<affiliation wicri:level="1">
<nlm:aff id="A2">Department of Neuroscience, University Tor Vergata/Laboratory of Neurophysiology and Synaptic Plasticity, Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, 00143 Rome, Italy</nlm:aff>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>Department of Neuroscience, University Tor Vergata/Laboratory of Neurophysiology and Synaptic Plasticity, Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, 00143 Rome</wicri:regionArea>
<placeName>
<settlement type="city">Rome</settlement>
<region nuts="2">Latium</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Yuqing" sort="Li, Yuqing" uniqKey="Li Y" first="Yuqing" last="Li">Yuqing Li</name>
<affiliation wicri:level="2">
<nlm:aff id="A1">Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA</nlm:aff>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Movement disorders : official journal of the Movement Disorder Society</title>
<idno type="ISSN">0885-3185</idno>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2013">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p id="P3">Dystonia is a neurological disorder characterized by abnormal involuntary movements that are prolonged and often cause twisting and turning. Several genetically modified worms, fruit flies, and rodents have been generated as models of genetic dystonias, and in particular DYT1, DYT11, and DYT12 dystonias. Although these models do not show overt dystonic symptoms, the rodent models exhibit pronounced motor deficits in specialized behavioral tasks, such as the rotarod and beam-walking tests. For example, in a rodent model of DYT12 dystonia, which is generally stress triggered, motor deficits are observed only after the animal is stressed. Moreover, in a rodent model of DYT1 dystonia, the motor and electrophysiological deficits can be rescued by trihexyphenidyl, a common anticholinergic medication used to treat dystonic symptoms in human patients. Biochemically, the DYT1 and DYT11 animal models also share some similarities to patients, such as a reduction in striatal D2 dopamine receptor and binding activities. Additionally, conditional knockout mouse models for DYT1 and DYT11 dystonia show that the loss of the causal dystonia related proteins in the striatum lead to motor deficits. Interestingly, loss of the DYT1 dystonia causal protein in Purkinje cells shows an improvement in motor performance, suggesting that gene therapy targeting of the cerebellum or intervention in its downstream pathways may be useful. Finally, recent studies using DYT1 dystonia worm and mouse models led to a potential novel therapeutic agent, which is currently undergoing clinical trials. These results indicate that genetic animal models are an extremely powerful tool to elucidate the pathophysiology and to further develop new therapeutics for dystonia.</p>
</div>
</front>
</TEI>
<pmc article-type="research-article">
<pmc-comment>The publisher of this article does not allow downloading of the full text in XML form.</pmc-comment>
<pmc-dir>properties manuscript</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-journal-id">8610688</journal-id>
<journal-id journal-id-type="pubmed-jr-id">5937</journal-id>
<journal-id journal-id-type="nlm-ta">Mov Disord</journal-id>
<journal-id journal-id-type="iso-abbrev">Mov. Disord.</journal-id>
<journal-title-group>
<journal-title>Movement disorders : official journal of the Movement Disorder Society</journal-title>
</journal-title-group>
<issn pub-type="ppub">0885-3185</issn>
<issn pub-type="epub">1531-8257</issn>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">23893455</article-id>
<article-id pub-id-type="pmc">3800691</article-id>
<article-id pub-id-type="doi">10.1002/mds.25583</article-id>
<article-id pub-id-type="manuscript">NIHMS513931</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Article</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Engineering animal models of dystonia</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Oleas</surname>
<given-names>Janneth</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Yokoi</surname>
<given-names>Fumiaki</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>DeAndrade</surname>
<given-names>Mark P.</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Pisani</surname>
<given-names>Antonio</given-names>
</name>
<xref ref-type="aff" rid="A2">2</xref>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Li</surname>
<given-names>Yuqing</given-names>
</name>
<xref ref-type="aff" rid="A1">1</xref>
<xref ref-type="corresp" rid="CR1">*</xref>
</contrib>
</contrib-group>
<aff id="A1">
<label>1</label>
Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA</aff>
<aff id="A2">
<label>2</label>
Department of Neuroscience, University Tor Vergata/Laboratory of Neurophysiology and Synaptic Plasticity, Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico, 00143 Rome, Italy</aff>
<author-notes>
<corresp id="CR1">
<label>*</label>
Corresponding author – Telephone: +1-352-273-6546; Fax: +1-352-273-5989;
<email>yuqing.li@neurology.ufl.edu</email>
</corresp>
<fn id="FN1">
<p id="P1">Author Roles</p>
<p id="P2">J.O., F.Y., M.P.D., A.P., and Y.L. wrote and edited this review article.</p>
</fn>
</author-notes>
<pub-date pub-type="nihms-submitted">
<day>20</day>
<month>9</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="ppub">
<day>15</day>
<month>6</month>
<year>2013</year>
</pub-date>
<pub-date pub-type="pmc-release">
<day>15</day>
<month>6</month>
<year>2014</year>
</pub-date>
<volume>28</volume>
<issue>7</issue>
<fpage>990</fpage>
<lpage>1000</lpage>
<abstract>
<p id="P3">Dystonia is a neurological disorder characterized by abnormal involuntary movements that are prolonged and often cause twisting and turning. Several genetically modified worms, fruit flies, and rodents have been generated as models of genetic dystonias, and in particular DYT1, DYT11, and DYT12 dystonias. Although these models do not show overt dystonic symptoms, the rodent models exhibit pronounced motor deficits in specialized behavioral tasks, such as the rotarod and beam-walking tests. For example, in a rodent model of DYT12 dystonia, which is generally stress triggered, motor deficits are observed only after the animal is stressed. Moreover, in a rodent model of DYT1 dystonia, the motor and electrophysiological deficits can be rescued by trihexyphenidyl, a common anticholinergic medication used to treat dystonic symptoms in human patients. Biochemically, the DYT1 and DYT11 animal models also share some similarities to patients, such as a reduction in striatal D2 dopamine receptor and binding activities. Additionally, conditional knockout mouse models for DYT1 and DYT11 dystonia show that the loss of the causal dystonia related proteins in the striatum lead to motor deficits. Interestingly, loss of the DYT1 dystonia causal protein in Purkinje cells shows an improvement in motor performance, suggesting that gene therapy targeting of the cerebellum or intervention in its downstream pathways may be useful. Finally, recent studies using DYT1 dystonia worm and mouse models led to a potential novel therapeutic agent, which is currently undergoing clinical trials. These results indicate that genetic animal models are an extremely powerful tool to elucidate the pathophysiology and to further develop new therapeutics for dystonia.</p>
</abstract>
<funding-group>
<award-group>
<funding-source country="United States">National Institute of Neurological Disorders and Stroke : NINDS</funding-source>
<award-id>R21 NS072872 || NS</award-id>
</award-group>
<award-group>
<funding-source country="United States">National Institute of Neurological Disorders and Stroke : NINDS</funding-source>
<award-id>R21 NS065273 || NS</award-id>
</award-group>
<award-group>
<funding-source country="United States">National Institute of Neurological Disorders and Stroke : NINDS</funding-source>
<award-id>R21 NS047692 || NS</award-id>
</award-group>
<award-group>
<funding-source country="United States">National Institute of Neurological Disorders and Stroke : NINDS</funding-source>
<award-id>R21 NS042356 || NS</award-id>
</award-group>
<award-group>
<funding-source country="United States">National Institute of Neurological Disorders and Stroke : NINDS</funding-source>
<award-id>R03 NS074423 || NS</award-id>
</award-group>
<award-group>
<funding-source country="United States">National Institute of Neurological Disorders and Stroke : NINDS</funding-source>
<award-id>R01 NS054246 || NS</award-id>
</award-group>
<award-group>
<funding-source country="United States">National Institute of Neurological Disorders and Stroke : NINDS</funding-source>
<award-id>P50 NS037409 || NS</award-id>
</award-group>
<award-group>
<funding-source country="United States">National Institute of Neurological Disorders and Stroke : NINDS</funding-source>
<award-id>P30 NS057098 || NS</award-id>
</award-group>
</funding-group>
</article-meta>
</front>
</pmc>
<affiliations>
<list>
<country>
<li>Italie</li>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
<li>Latium</li>
</region>
<settlement>
<li>Rome</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Oleas, Janneth" sort="Oleas, Janneth" uniqKey="Oleas J" first="Janneth" last="Oleas">Janneth Oleas</name>
</region>
<name sortKey="Deandrade, Mark P" sort="Deandrade, Mark P" uniqKey="Deandrade M" first="Mark P." last="Deandrade">Mark P. Deandrade</name>
<name sortKey="Li, Yuqing" sort="Li, Yuqing" uniqKey="Li Y" first="Yuqing" last="Li">Yuqing Li</name>
<name sortKey="Yokoi, Fumiaki" sort="Yokoi, Fumiaki" uniqKey="Yokoi F" first="Fumiaki" last="Yokoi">Fumiaki Yokoi</name>
</country>
<country name="Italie">
<region name="Latium">
<name sortKey="Pisani, Antonio" sort="Pisani, Antonio" uniqKey="Pisani A" first="Antonio" last="Pisani">Antonio Pisani</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000120 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000120 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:3800691
   |texte=   Engineering animal models of dystonia
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:23893455" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024