Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Targets for future clinical trials in Huntington's disease: What's in the pipeline?

Identifieur interne : 000011 ( Pmc/Checkpoint ); précédent : 000010; suivant : 000012

Targets for future clinical trials in Huntington's disease: What's in the pipeline?

Auteurs : Edward J. Wild ; Sarah J. Tabrizi

Source :

RBID : PMC:4265300

Abstract

The known genetic cause of Huntington's disease (HD) has fueled considerable progress in understanding its pathobiology and the development of therapeutic approaches aimed at correcting specific changes linked to the causative mutation. Among the most promising is reducing expression of mutant huntingtin protein (mHTT) with RNA interference or antisense oligonucleotides; human trials are now being planned. Zinc-finger transcriptional repression is another innovative method to reduce mHTT expression. Modulation of mHTT phosphorylation, chaperone upregulation, and autophagy enhancement represent attempts to alter cellular homeostasis to favor removal of mHTT. Inhibition of histone deacetylases (HDACs) remains of interest; recent work affirms HDAC4 as a target but questions the assumed centrality of its catalytic activity in HD. Phosphodiesterase inhibition, aimed at restoring synaptic function, has progressed rapidly to human trials. Deranged cellular signaling provides several tractable targets, but specificity and complexity are challenges. Restoring neurotrophic support in HD remains a key potential therapeutic approach. with several approaches being pursued, including brain-derived neurotrophic factor (BDNF) mimesis through tyrosine receptor kinase B (TrkB) agonism and monoclonal antibodies. An increasing understanding of the role of glial cells in HD has led to several new therapeutic avenues, including kynurenine monooxygenase inhibition, immunomodulation by laquinimod, CB2 agonism, and others. The complex metabolic derangements in HD remain under study, but no clear therapeutic strategy has yet emerged. We conclude that many exciting therapeutics are progressing through the development pipeline, and combining a better understanding of HD biology in human patients, with concerted medicinal chemistry efforts, will be crucial for bringing about an era of effective therapies.


Url:
DOI: 10.1002/mds.26007
PubMed: 25155142
PubMed Central: 4265300


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

PMC:4265300

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Targets for future clinical trials in Huntington's disease: What's in the pipeline?</title>
<author>
<name sortKey="Wild, Edward J" sort="Wild, Edward J" uniqKey="Wild E" first="Edward J" last="Wild">Edward J. Wild</name>
</author>
<author>
<name sortKey="Tabrizi, Sarah J" sort="Tabrizi, Sarah J" uniqKey="Tabrizi S" first="Sarah J" last="Tabrizi">Sarah J. Tabrizi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PMC</idno>
<idno type="pmid">25155142</idno>
<idno type="pmc">4265300</idno>
<idno type="url">http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4265300</idno>
<idno type="RBID">PMC:4265300</idno>
<idno type="doi">10.1002/mds.26007</idno>
<date when="2014">2014</date>
<idno type="wicri:Area/Pmc/Corpus">000443</idno>
<idno type="wicri:Area/Pmc/Curation">000443</idno>
<idno type="wicri:Area/Pmc/Checkpoint">000011</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a" type="main">Targets for future clinical trials in Huntington's disease: What's in the pipeline?</title>
<author>
<name sortKey="Wild, Edward J" sort="Wild, Edward J" uniqKey="Wild E" first="Edward J" last="Wild">Edward J. Wild</name>
</author>
<author>
<name sortKey="Tabrizi, Sarah J" sort="Tabrizi, Sarah J" uniqKey="Tabrizi S" first="Sarah J" last="Tabrizi">Sarah J. Tabrizi</name>
</author>
</analytic>
<series>
<title level="j">Movement Disorders</title>
<idno type="ISSN">0885-3185</idno>
<idno type="eISSN">1531-8257</idno>
<imprint>
<date when="2014">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>The known genetic cause of Huntington's disease (HD) has fueled considerable progress in understanding its pathobiology and the development of therapeutic approaches aimed at correcting specific changes linked to the causative mutation. Among the most promising is reducing expression of mutant huntingtin protein (mHTT) with RNA interference or antisense oligonucleotides; human trials are now being planned. Zinc-finger transcriptional repression is another innovative method to reduce mHTT expression. Modulation of mHTT phosphorylation, chaperone upregulation, and autophagy enhancement represent attempts to alter cellular homeostasis to favor removal of mHTT. Inhibition of histone deacetylases (HDACs) remains of interest; recent work affirms HDAC4 as a target but questions the assumed centrality of its catalytic activity in HD. Phosphodiesterase inhibition, aimed at restoring synaptic function, has progressed rapidly to human trials. Deranged cellular signaling provides several tractable targets, but specificity and complexity are challenges. Restoring neurotrophic support in HD remains a key potential therapeutic approach. with several approaches being pursued, including brain-derived neurotrophic factor (BDNF) mimesis through tyrosine receptor kinase B (TrkB) agonism and monoclonal antibodies. An increasing understanding of the role of glial cells in HD has led to several new therapeutic avenues, including kynurenine monooxygenase inhibition, immunomodulation by laquinimod, CB2 agonism, and others. The complex metabolic derangements in HD remain under study, but no clear therapeutic strategy has yet emerged. We conclude that many exciting therapeutics are progressing through the development pipeline, and combining a better understanding of HD biology in human patients, with concerted medicinal chemistry efforts, will be crucial for bringing about an era of effective therapies.</p>
</div>
</front>
<back>
<div1 type="bibliography">
<listBibl>
<biblStruct>
<analytic>
<author>
<name sortKey="Ross, Ca" uniqKey="Ross C">CA Ross</name>
</author>
<author>
<name sortKey="Tabrizi, Sj" uniqKey="Tabrizi S">SJ Tabrizi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Magen, I" uniqKey="Magen I">I Magen</name>
</author>
<author>
<name sortKey="Hornstein, E" uniqKey="Hornstein E">E Hornstein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Garriga Canut, M" uniqKey="Garriga Canut M">M Garriga-Canut</name>
</author>
<author>
<name sortKey="Agustin Pav N, C" uniqKey="Agustin Pav N C">C Agustín-Pavón</name>
</author>
<author>
<name sortKey="Herrmann, F" uniqKey="Herrmann F">F Herrmann</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennett, Cf" uniqKey="Bennett C">CF Bennett</name>
</author>
<author>
<name sortKey="Swayze, Ee" uniqKey="Swayze E">EE Swayze</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez, T" uniqKey="Martinez T">T Martínez</name>
</author>
<author>
<name sortKey="Wright, N" uniqKey="Wright N">N Wright</name>
</author>
<author>
<name sortKey="L Pez Fraga, M" uniqKey="L Pez Fraga M">M López-Fraga</name>
</author>
<author>
<name sortKey="Jimenez, A" uniqKey="Jimenez A">A Jiménez</name>
</author>
<author>
<name sortKey="Pa Eda, C" uniqKey="Pa Eda C">C Pañeda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Harper, Sq" uniqKey="Harper S">SQ Harper</name>
</author>
<author>
<name sortKey="Staber, Pd" uniqKey="Staber P">PD Staber</name>
</author>
<author>
<name sortKey="He, X" uniqKey="He X">X He</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Carroll, Jb" uniqKey="Carroll J">JB Carroll</name>
</author>
<author>
<name sortKey="Warby, Sc" uniqKey="Warby S">SC Warby</name>
</author>
<author>
<name sortKey="Southwell, Al" uniqKey="Southwell A">AL Southwell</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stanek, Lm" uniqKey="Stanek L">LM Stanek</name>
</author>
<author>
<name sortKey="Sardi, Sp" uniqKey="Sardi S">SP Sardi</name>
</author>
<author>
<name sortKey="Mastis, Bm" uniqKey="Mastis B">BM Mastis</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kordasiewicz, Hb" uniqKey="Kordasiewicz H">HB Kordasiewicz</name>
</author>
<author>
<name sortKey="Stanek, Lm" uniqKey="Stanek L">LM Stanek</name>
</author>
<author>
<name sortKey="Wancewicz, Ev" uniqKey="Wancewicz E">EV Wancewicz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lu, X H" uniqKey="Lu X">X-H Lu</name>
</author>
<author>
<name sortKey="Yang, Xw" uniqKey="Yang X">XW Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aronin, N" uniqKey="Aronin N">N Aronin</name>
</author>
<author>
<name sortKey="Moore, M" uniqKey="Moore M">M Moore</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, Tm" uniqKey="Miller T">TM Miller</name>
</author>
<author>
<name sortKey="Pestronk, A" uniqKey="Pestronk A">A Pestronk</name>
</author>
<author>
<name sortKey="David, W" uniqKey="David W">W David</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Nasir, J" uniqKey="Nasir J">J Nasir</name>
</author>
<author>
<name sortKey="Floresco, Sb" uniqKey="Floresco S">SB Floresco</name>
</author>
<author>
<name sortKey="O Kusky, Jr" uniqKey="O Kusky J">JR O'Kusky</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dragatsis, I" uniqKey="Dragatsis I">I Dragatsis</name>
</author>
<author>
<name sortKey="Levine, Ms" uniqKey="Levine M">MS Levine</name>
</author>
<author>
<name sortKey="Zeitlin, S" uniqKey="Zeitlin S">S Zeitlin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marques, Jt" uniqKey="Marques J">JT Marques</name>
</author>
<author>
<name sortKey="Williams, Brg" uniqKey="Williams B">BRG Williams</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mingozzi, F" uniqKey="Mingozzi F">F Mingozzi</name>
</author>
<author>
<name sortKey="High, Ka" uniqKey="High K">KA High</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Boudreau, Rl" uniqKey="Boudreau R">RL Boudreau</name>
</author>
<author>
<name sortKey="Spengler, Rm" uniqKey="Spengler R">RM Spengler</name>
</author>
<author>
<name sortKey="Davidson, Bl" uniqKey="Davidson B">BL Davidson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dirin, M" uniqKey="Dirin M">M Dirin</name>
</author>
<author>
<name sortKey="Winkler, J" uniqKey="Winkler J">J Winkler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mcbride, Jl" uniqKey="Mcbride J">JL McBride</name>
</author>
<author>
<name sortKey="Pitzer, Mr" uniqKey="Pitzer M">MR Pitzer</name>
</author>
<author>
<name sortKey="Boudreau, Rl" uniqKey="Boudreau R">RL Boudreau</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Grondin, R" uniqKey="Grondin R">R Grondin</name>
</author>
<author>
<name sortKey="Kaytor, Md" uniqKey="Kaytor M">MD Kaytor</name>
</author>
<author>
<name sortKey="Ai, Y" uniqKey="Ai Y">Y Ai</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Stiles, Dk" uniqKey="Stiles D">DK Stiles</name>
</author>
<author>
<name sortKey="Zhang, Z" uniqKey="Zhang Z">Z Zhang</name>
</author>
<author>
<name sortKey="Ge, P" uniqKey="Ge P">P Ge</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bennett, Cf" uniqKey="Bennett C">CF Bennett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Evers, Mm" uniqKey="Evers M">MM Evers</name>
</author>
<author>
<name sortKey="Pepers, Ba" uniqKey="Pepers B">BA Pepers</name>
</author>
<author>
<name sortKey="Van Deutekom, Jc" uniqKey="Van Deutekom J">JC van Deutekom</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lombardi, Ms" uniqKey="Lombardi M">MS Lombardi</name>
</author>
<author>
<name sortKey="Jaspers, L" uniqKey="Jaspers L">L Jaspers</name>
</author>
<author>
<name sortKey="Spronkmans, C" uniqKey="Spronkmans C">C Spronkmans</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Alvarez Erviti, L" uniqKey="Alvarez Erviti L">L Alvarez-Erviti</name>
</author>
<author>
<name sortKey="Seow, Y" uniqKey="Seow Y">Y Seow</name>
</author>
<author>
<name sortKey="Yin, H" uniqKey="Yin H">H Yin</name>
</author>
<author>
<name sortKey="Betts, C" uniqKey="Betts C">C Betts</name>
</author>
<author>
<name sortKey="Lakhal, S" uniqKey="Lakhal S">S Lakhal</name>
</author>
<author>
<name sortKey="Wood, Mja" uniqKey="Wood M">MJA Wood</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Difiglia, M" uniqKey="Difiglia M">M DiFiglia</name>
</author>
<author>
<name sortKey="Sena Esteves, M" uniqKey="Sena Esteves M">M Sena-Esteves</name>
</author>
<author>
<name sortKey="Chase, K" uniqKey="Chase K">K Chase</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lima, Wf" uniqKey="Lima W">WF Lima</name>
</author>
<author>
<name sortKey="Prakash, Tp" uniqKey="Prakash T">TP Prakash</name>
</author>
<author>
<name sortKey="Murray, Hm" uniqKey="Murray H">HM Murray</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Yu, D" uniqKey="Yu D">D Yu</name>
</author>
<author>
<name sortKey="Pendergraff, H" uniqKey="Pendergraff H">H Pendergraff</name>
</author>
<author>
<name sortKey="Liu, J" uniqKey="Liu J">J Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Wang, N" uniqKey="Wang N">N Wang</name>
</author>
<author>
<name sortKey="Gray, M" uniqKey="Gray M">M Gray</name>
</author>
<author>
<name sortKey="Lu, X H" uniqKey="Lu X">X-H Lu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Niewoehner, J" uniqKey="Niewoehner J">J Niewoehner</name>
</author>
<author>
<name sortKey="Bohrmann, B" uniqKey="Bohrmann B">B Bohrmann</name>
</author>
<author>
<name sortKey="Collin, L" uniqKey="Collin L">L Collin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Papworth, M" uniqKey="Papworth M">M Papworth</name>
</author>
<author>
<name sortKey="Kolasinska, P" uniqKey="Kolasinska P">P Kolasinska</name>
</author>
<author>
<name sortKey="Minczuk, M" uniqKey="Minczuk M">M Minczuk</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ba Ez Coronel, M" uniqKey="Ba Ez Coronel M">M Bañez-Coronel</name>
</author>
<author>
<name sortKey="Porta, S" uniqKey="Porta S">S Porta</name>
</author>
<author>
<name sortKey="Kagerbauer, B" uniqKey="Kagerbauer B">B Kagerbauer</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sathasivam, K" uniqKey="Sathasivam K">K Sathasivam</name>
</author>
<author>
<name sortKey="Neueder, A" uniqKey="Neueder A">A Neueder</name>
</author>
<author>
<name sortKey="Gipson, Ta" uniqKey="Gipson T">TA Gipson</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zeitler, Jrp" uniqKey="Zeitler J">JRP Zeitler</name>
</author>
<author>
<name sortKey="Froelich, S" uniqKey="Froelich S">S Froelich</name>
</author>
<author>
<name sortKey="Yu, Q" uniqKey="Yu Q">Q Yu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Li, H" uniqKey="Li H">H Li</name>
</author>
<author>
<name sortKey="Haurigot, V" uniqKey="Haurigot V">V Haurigot</name>
</author>
<author>
<name sortKey="Doyon, Y" uniqKey="Doyon Y">Y Doyon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ross, Ca" uniqKey="Ross C">CA Ross</name>
</author>
<author>
<name sortKey="Aylward, Eh" uniqKey="Aylward E">EH Aylward</name>
</author>
<author>
<name sortKey="Wild, Ej" uniqKey="Wild E">EJ Wild</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gu, X" uniqKey="Gu X">X Gu</name>
</author>
<author>
<name sortKey="Greiner, Er" uniqKey="Greiner E">ER Greiner</name>
</author>
<author>
<name sortKey="Mishra, R" uniqKey="Mishra R">R Mishra</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Atwal, Rs" uniqKey="Atwal R">RS Atwal</name>
</author>
<author>
<name sortKey="Desmond, Cr" uniqKey="Desmond C">CR Desmond</name>
</author>
<author>
<name sortKey="Caron, N" uniqKey="Caron N">N Caron</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zala, D" uniqKey="Zala D">D Zala</name>
</author>
<author>
<name sortKey="Colin, E" uniqKey="Colin E">E Colin</name>
</author>
<author>
<name sortKey="Rangone, H" uniqKey="Rangone H">H Rangone</name>
</author>
<author>
<name sortKey="Liot, G" uniqKey="Liot G">G Liot</name>
</author>
<author>
<name sortKey="Humbert, S" uniqKey="Humbert S">S Humbert</name>
</author>
<author>
<name sortKey="Saudou, F" uniqKey="Saudou F">F Saudou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Maglione, V" uniqKey="Maglione V">V Maglione</name>
</author>
<author>
<name sortKey="Marchi, P" uniqKey="Marchi P">P Marchi</name>
</author>
<author>
<name sortKey="Di Pardo, A" uniqKey="Di Pardo A">A Di Pardo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Di Pardo, A" uniqKey="Di Pardo A">A Di Pardo</name>
</author>
<author>
<name sortKey="Maglione, V" uniqKey="Maglione V">V Maglione</name>
</author>
<author>
<name sortKey="Alpaugh, M" uniqKey="Alpaugh M">M Alpaugh</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hansson, O" uniqKey="Hansson O">O Hansson</name>
</author>
<author>
<name sortKey="Nylandsted, J" uniqKey="Nylandsted J">J Nylandsted</name>
</author>
<author>
<name sortKey="Castilho, Rf" uniqKey="Castilho R">RF Castilho</name>
</author>
<author>
<name sortKey="Leist, M" uniqKey="Leist M">M Leist</name>
</author>
<author>
<name sortKey="Jaattela, M" uniqKey="Jaattela M">M Jaattela</name>
</author>
<author>
<name sortKey="Brundin, P" uniqKey="Brundin P">P Brundin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hay, Dg" uniqKey="Hay D">DG Hay</name>
</author>
<author>
<name sortKey="Sathasivam, K" uniqKey="Sathasivam K">K Sathasivam</name>
</author>
<author>
<name sortKey="Tobaben, S" uniqKey="Tobaben S">S Tobaben</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Labbadia, J" uniqKey="Labbadia J">J Labbadia</name>
</author>
<author>
<name sortKey="Novoselov, Ss" uniqKey="Novoselov S">SS Novoselov</name>
</author>
<author>
<name sortKey="Bett, Js" uniqKey="Bett J">JS Bett</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kitamura, A" uniqKey="Kitamura A">A Kitamura</name>
</author>
<author>
<name sortKey="Kubota, H" uniqKey="Kubota H">H Kubota</name>
</author>
<author>
<name sortKey="Pack, Cg" uniqKey="Pack C">CG Pack</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tam, S" uniqKey="Tam S">S Tam</name>
</author>
<author>
<name sortKey="Geller, R" uniqKey="Geller R">R Geller</name>
</author>
<author>
<name sortKey="Spiess, C" uniqKey="Spiess C">C Spiess</name>
</author>
<author>
<name sortKey="Frydman, J" uniqKey="Frydman J">J Frydman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sontag, Em" uniqKey="Sontag E">EM Sontag</name>
</author>
<author>
<name sortKey="Joachimiak, La" uniqKey="Joachimiak L">LA Joachimiak</name>
</author>
<author>
<name sortKey="Tan, Z" uniqKey="Tan Z">Z Tan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Martinez Vicente, M" uniqKey="Martinez Vicente M">M Martinez-Vicente</name>
</author>
<author>
<name sortKey="Talloczy, Z" uniqKey="Talloczy Z">Z Talloczy</name>
</author>
<author>
<name sortKey="Wong, E" uniqKey="Wong E">E Wong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ravikumar, B" uniqKey="Ravikumar B">B Ravikumar</name>
</author>
<author>
<name sortKey="Vacher, C" uniqKey="Vacher C">C Vacher</name>
</author>
<author>
<name sortKey="Berger, Z" uniqKey="Berger Z">Z Berger</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Renna, M" uniqKey="Renna M">M Renna</name>
</author>
<author>
<name sortKey="Jimenez Sanchez, M" uniqKey="Jimenez Sanchez M">M Jimenez-Sanchez</name>
</author>
<author>
<name sortKey="Sarkar, S" uniqKey="Sarkar S">S Sarkar</name>
</author>
<author>
<name sortKey="Rubinsztein, Dc" uniqKey="Rubinsztein D">DC Rubinsztein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Tsvetkov, As" uniqKey="Tsvetkov A">AS Tsvetkov</name>
</author>
<author>
<name sortKey="Miller, J" uniqKey="Miller J">J Miller</name>
</author>
<author>
<name sortKey="Arrasate, M" uniqKey="Arrasate M">M Arrasate</name>
</author>
<author>
<name sortKey="Wong, Js" uniqKey="Wong J">JS Wong</name>
</author>
<author>
<name sortKey="Pleiss, Ma" uniqKey="Pleiss M">MA Pleiss</name>
</author>
<author>
<name sortKey="Finkbeiner, S" uniqKey="Finkbeiner S">S Finkbeiner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Smith, Mr" uniqKey="Smith M">MR Smith</name>
</author>
<author>
<name sortKey="Syed, A" uniqKey="Syed A">A Syed</name>
</author>
<author>
<name sortKey="Lukacsovich, T" uniqKey="Lukacsovich T">T Lukacsovich</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, M" uniqKey="Jiang M">M Jiang</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Fu, J" uniqKey="Fu J">J Fu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Reilmann, R" uniqKey="Reilmann R">R Reilmann</name>
</author>
<author>
<name sortKey="Squitieri, F" uniqKey="Squitieri F">F Squitieri</name>
</author>
<author>
<name sortKey="Priller, J" uniqKey="Priller J">J Priller</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Hockly, E" uniqKey="Hockly E">E Hockly</name>
</author>
<author>
<name sortKey="Richon, Vm" uniqKey="Richon V">VM Richon</name>
</author>
<author>
<name sortKey="Woodman, B" uniqKey="Woodman B">B Woodman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jia, H" uniqKey="Jia H">H Jia</name>
</author>
<author>
<name sortKey="Pallos, J" uniqKey="Pallos J">J Pallos</name>
</author>
<author>
<name sortKey="Jacques, V" uniqKey="Jacques V">V Jacques</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mielcarek, M" uniqKey="Mielcarek M">M Mielcarek</name>
</author>
<author>
<name sortKey="Landles, C" uniqKey="Landles C">C Landles</name>
</author>
<author>
<name sortKey="Weiss, A" uniqKey="Weiss A">A Weiss</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Moumne, L" uniqKey="Moumne L">L Moumné</name>
</author>
<author>
<name sortKey="Campbell, K" uniqKey="Campbell K">K Campbell</name>
</author>
<author>
<name sortKey="Howland, D" uniqKey="Howland D">D Howland</name>
</author>
<author>
<name sortKey="Ouyang, Y" uniqKey="Ouyang Y">Y Ouyang</name>
</author>
<author>
<name sortKey="Bates, Gp" uniqKey="Bates G">GP Bates</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bobrowska, A" uniqKey="Bobrowska A">A Bobrowska</name>
</author>
<author>
<name sortKey="Paganetti, P" uniqKey="Paganetti P">P Paganetti</name>
</author>
<author>
<name sortKey="Matthias, P" uniqKey="Matthias P">P Matthias</name>
</author>
<author>
<name sortKey="Bates, Gp" uniqKey="Bates G">GP Bates</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Benn, Cl" uniqKey="Benn C">CL Benn</name>
</author>
<author>
<name sortKey="Butler, R" uniqKey="Butler R">R Butler</name>
</author>
<author>
<name sortKey="Mariner, L" uniqKey="Mariner L">L Mariner</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Dominguez, C" uniqKey="Dominguez C">C Dominguez</name>
</author>
<author>
<name sortKey="Mu Oz Sanjuan, I" uniqKey="Mu Oz Sanjuan I">I Muñoz-Sanjuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mielcarek, M" uniqKey="Mielcarek M">M Mielcarek</name>
</author>
<author>
<name sortKey="Benn, Cl" uniqKey="Benn C">CL Benn</name>
</author>
<author>
<name sortKey="Franklin, Sa" uniqKey="Franklin S">SA Franklin</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gines, S" uniqKey="Gines S">S Gines</name>
</author>
<author>
<name sortKey="Seong, Is" uniqKey="Seong I">IS Seong</name>
</author>
<author>
<name sortKey="Fossale, E" uniqKey="Fossale E">E Fossale</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Sugars, Kl" uniqKey="Sugars K">KL Sugars</name>
</author>
<author>
<name sortKey="Brown, R" uniqKey="Brown R">R Brown</name>
</author>
<author>
<name sortKey="Cook, Lj" uniqKey="Cook L">LJ Cook</name>
</author>
<author>
<name sortKey="Swartz, J" uniqKey="Swartz J">J Swartz</name>
</author>
<author>
<name sortKey="Rubinsztein, Dc" uniqKey="Rubinsztein D">DC Rubinsztein</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Coskran, Tm" uniqKey="Coskran T">TM Coskran</name>
</author>
<author>
<name sortKey="Morton, D" uniqKey="Morton D">D Morton</name>
</author>
<author>
<name sortKey="Menniti, Fs" uniqKey="Menniti F">FS Menniti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Threlfell, S" uniqKey="Threlfell S">S Threlfell</name>
</author>
<author>
<name sortKey="Sammut, S" uniqKey="Sammut S">S Sammut</name>
</author>
<author>
<name sortKey="Menniti, Fs" uniqKey="Menniti F">FS Menniti</name>
</author>
<author>
<name sortKey="Schmidt, Cj" uniqKey="Schmidt C">CJ Schmidt</name>
</author>
<author>
<name sortKey="West, Ar" uniqKey="West A">AR West</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Threlfell, S" uniqKey="Threlfell S">S Threlfell</name>
</author>
<author>
<name sortKey="West, Ar" uniqKey="West A">AR West</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kleiman, Rj" uniqKey="Kleiman R">RJ Kleiman</name>
</author>
<author>
<name sortKey="Kimmel, Lh" uniqKey="Kimmel L">LH Kimmel</name>
</author>
<author>
<name sortKey="Bove, Se" uniqKey="Bove S">SE Bove</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Piccart, E" uniqKey="Piccart E">E Piccart</name>
</author>
<author>
<name sortKey="De Backer, J F" uniqKey="De Backer J">J-F De Backer</name>
</author>
<author>
<name sortKey="Gall, D" uniqKey="Gall D">D Gall</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giampa, C" uniqKey="Giampa C">C Giampà</name>
</author>
<author>
<name sortKey="Laurenti, D" uniqKey="Laurenti D">D Laurenti</name>
</author>
<author>
<name sortKey="Anzilotti, S" uniqKey="Anzilotti S">S Anzilotti</name>
</author>
<author>
<name sortKey="Bernardi, G" uniqKey="Bernardi G">G Bernardi</name>
</author>
<author>
<name sortKey="Menniti, Fs" uniqKey="Menniti F">FS Menniti</name>
</author>
<author>
<name sortKey="Fusco, Fr" uniqKey="Fusco F">FR Fusco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zaleska, M" uniqKey="Zaleska M">M Zaleska</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Demarch, Z" uniqKey="Demarch Z">Z DeMarch</name>
</author>
<author>
<name sortKey="Giampa, C" uniqKey="Giampa C">C Giampà</name>
</author>
<author>
<name sortKey="Patassini, S" uniqKey="Patassini S">S Patassini</name>
</author>
<author>
<name sortKey="Bernardi, G" uniqKey="Bernardi G">G Bernardi</name>
</author>
<author>
<name sortKey="Fusco, Fr" uniqKey="Fusco F">FR Fusco</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gianfriddo, M" uniqKey="Gianfriddo M">M Gianfriddo</name>
</author>
<author>
<name sortKey="Melani, A" uniqKey="Melani A">A Melani</name>
</author>
<author>
<name sortKey="Turchi, D" uniqKey="Turchi D">D Turchi</name>
</author>
<author>
<name sortKey="Giovannini, Mg" uniqKey="Giovannini M">MG Giovannini</name>
</author>
<author>
<name sortKey="Pedata, F" uniqKey="Pedata F">F Pedata</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Liu, Yf" uniqKey="Liu Y">YF Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Apostol, Bl" uniqKey="Apostol B">BL Apostol</name>
</author>
<author>
<name sortKey="Illes, K" uniqKey="Illes K">K Illes</name>
</author>
<author>
<name sortKey="Pallos, J" uniqKey="Pallos J">J Pallos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Morfini, Ga" uniqKey="Morfini G">GA Morfini</name>
</author>
<author>
<name sortKey="You, Y M" uniqKey="You Y">Y-M You</name>
</author>
<author>
<name sortKey="Pollema, Sl" uniqKey="Pollema S">SL Pollema</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Fan, J" uniqKey="Fan J">J Fan</name>
</author>
<author>
<name sortKey="Gladding, Cm" uniqKey="Gladding C">CM Gladding</name>
</author>
<author>
<name sortKey="Wang, L" uniqKey="Wang L">L Wang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Ferrante, Rj" uniqKey="Ferrante R">RJ Ferrante</name>
</author>
<author>
<name sortKey="Kubilus, Jk" uniqKey="Kubilus J">JK Kubilus</name>
</author>
<author>
<name sortKey="Lee, J" uniqKey="Lee J">J Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Taylor, Dm" uniqKey="Taylor D">DM Taylor</name>
</author>
<author>
<name sortKey="Moser, R" uniqKey="Moser R">R Moser</name>
</author>
<author>
<name sortKey="Regulier, E" uniqKey="Regulier E">E Régulier</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Apostol, Bl" uniqKey="Apostol B">BL Apostol</name>
</author>
<author>
<name sortKey="Simmons, Da" uniqKey="Simmons D">DA Simmons</name>
</author>
<author>
<name sortKey="Zuccato, C" uniqKey="Zuccato C">C Zuccato</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zuccato, C" uniqKey="Zuccato C">C Zuccato</name>
</author>
<author>
<name sortKey="Marullo, M" uniqKey="Marullo M">M Marullo</name>
</author>
<author>
<name sortKey="Conforti, P" uniqKey="Conforti P">P Conforti</name>
</author>
<author>
<name sortKey="Macdonald, Me" uniqKey="Macdonald M">ME MacDonald</name>
</author>
<author>
<name sortKey="Tartari, M" uniqKey="Tartari M">M Tartari</name>
</author>
<author>
<name sortKey="Cattaneo, E" uniqKey="Cattaneo E">E Cattaneo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zuccato, C" uniqKey="Zuccato C">C Zuccato</name>
</author>
<author>
<name sortKey="Ciammola, A" uniqKey="Ciammola A">A Ciammola</name>
</author>
<author>
<name sortKey="Rigamonti, D" uniqKey="Rigamonti D">D Rigamonti</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Gauthier, Lr" uniqKey="Gauthier L">LR Gauthier</name>
</author>
<author>
<name sortKey="Charrin, Bc" uniqKey="Charrin B">BC Charrin</name>
</author>
<author>
<name sortKey="Borrell Pages, M" uniqKey="Borrell Pages M">M Borrell-Pagès</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kells, Ap" uniqKey="Kells A">AP Kells</name>
</author>
<author>
<name sortKey="Fong, Dm" uniqKey="Fong D">DM Fong</name>
</author>
<author>
<name sortKey="Dragunow, M" uniqKey="Dragunow M">M Dragunow</name>
</author>
<author>
<name sortKey="During, Mj" uniqKey="During M">MJ During</name>
</author>
<author>
<name sortKey="Young, D" uniqKey="Young D">D Young</name>
</author>
<author>
<name sortKey="Connor, B" uniqKey="Connor B">B Connor</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Pineda, Jr" uniqKey="Pineda J">JR Pineda</name>
</author>
<author>
<name sortKey="Rubio, N" uniqKey="Rubio N">N Rubio</name>
</author>
<author>
<name sortKey="Akerud, P" uniqKey="Akerud P">P Akerud</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Marks, Wj" uniqKey="Marks W">WJ Marks</name>
</author>
<author>
<name sortKey="Bartus, Rt" uniqKey="Bartus R">RT Bartus</name>
</author>
<author>
<name sortKey="Siffert, J" uniqKey="Siffert J">J Siffert</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bartus, Rt" uniqKey="Bartus R">RT Bartus</name>
</author>
<author>
<name sortKey="Weinberg, Ms" uniqKey="Weinberg M">MS Weinberg</name>
</author>
<author>
<name sortKey="Samulski, Rj" uniqKey="Samulski R">RJ Samulski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jiang, M" uniqKey="Jiang M">M Jiang</name>
</author>
<author>
<name sortKey="Peng, Q" uniqKey="Peng Q">Q Peng</name>
</author>
<author>
<name sortKey="Liu, X" uniqKey="Liu X">X Liu</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Simmons, Da" uniqKey="Simmons D">DA Simmons</name>
</author>
<author>
<name sortKey="Belichenko, Np" uniqKey="Belichenko N">NP Belichenko</name>
</author>
<author>
<name sortKey="Yang, T" uniqKey="Yang T">T Yang</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Todd, D" uniqKey="Todd D">D Todd</name>
</author>
<author>
<name sortKey="Gowers, I" uniqKey="Gowers I">I Gowers</name>
</author>
<author>
<name sortKey="Dowler, Sj" uniqKey="Dowler S">SJ Dowler</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Conforti, P" uniqKey="Conforti P">P Conforti</name>
</author>
<author>
<name sortKey="Zuccato, C" uniqKey="Zuccato C">C Zuccato</name>
</author>
<author>
<name sortKey="Gaudenzi, G" uniqKey="Gaudenzi G">G Gaudenzi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Borrell Pages, M" uniqKey="Borrell Pages M">M Borrell-Pages</name>
</author>
<author>
<name sortKey="Canals, Jm" uniqKey="Canals J">JM Canals</name>
</author>
<author>
<name sortKey="Cordelieres, Fp" uniqKey="Cordelieres F">FP Cordelieres</name>
</author>
</analytic>
</biblStruct>
<biblStruct></biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bjorkqvist, M" uniqKey="Bjorkqvist M">M Björkqvist</name>
</author>
<author>
<name sortKey="Wild, Ej" uniqKey="Wild E">EJ Wild</name>
</author>
<author>
<name sortKey="Thiele, J" uniqKey="Thiele J">J Thiele</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Schwarcz, R" uniqKey="Schwarcz R">R Schwarcz</name>
</author>
<author>
<name sortKey="Whetsell, W" uniqKey="Whetsell W">W Whetsell</name>
</author>
<author>
<name sortKey="Mangano, R" uniqKey="Mangano R">R Mangano</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Vecsei, L" uniqKey="Vecsei L">L Vecsei</name>
</author>
<author>
<name sortKey="Szalardy, L" uniqKey="Szalardy L">L Szalardy</name>
</author>
<author>
<name sortKey="Fulop, F" uniqKey="Fulop F">F Fulop</name>
</author>
<author>
<name sortKey="Toldi, J" uniqKey="Toldi J">J Toldi</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Guidetti, P" uniqKey="Guidetti P">P Guidetti</name>
</author>
<author>
<name sortKey="Luthi Carter, Re" uniqKey="Luthi Carter R">RE Luthi-Carter</name>
</author>
<author>
<name sortKey="Augood, Sj" uniqKey="Augood S">SJ Augood</name>
</author>
<author>
<name sortKey="Schwarcz, R" uniqKey="Schwarcz R">R Schwarcz</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beal, Mf" uniqKey="Beal M">MF Beal</name>
</author>
<author>
<name sortKey="Matson, Wr" uniqKey="Matson W">WR Matson</name>
</author>
<author>
<name sortKey="Storey, E" uniqKey="Storey E">E Storey</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Giorgini, F" uniqKey="Giorgini F">F Giorgini</name>
</author>
<author>
<name sortKey="Guidetti, P" uniqKey="Guidetti P">P Guidetti</name>
</author>
<author>
<name sortKey="Nguyen, Q" uniqKey="Nguyen Q">Q Nguyen</name>
</author>
<author>
<name sortKey="Bennett, Sc" uniqKey="Bennett S">SC Bennett</name>
</author>
<author>
<name sortKey="Muchowski, Pj" uniqKey="Muchowski P">PJ Muchowski</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Campesan, S" uniqKey="Campesan S">S Campesan</name>
</author>
<author>
<name sortKey="Green, Ew" uniqKey="Green E">EW Green</name>
</author>
<author>
<name sortKey="Breda, C" uniqKey="Breda C">C Breda</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Zwilling, D" uniqKey="Zwilling D">D Zwilling</name>
</author>
<author>
<name sortKey="Huang, Sy" uniqKey="Huang S">SY Huang</name>
</author>
<author>
<name sortKey="Sathyasaikumar, Kv" uniqKey="Sathyasaikumar K">KV Sathyasaikumar</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mrzljak, L" uniqKey="Mrzljak L">L Mrzljak</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Traeger, U" uniqKey="Traeger U">U Traeger</name>
</author>
<author>
<name sortKey="Andre, R" uniqKey="Andre R">R Andre</name>
</author>
<author>
<name sortKey="Lahiri, N" uniqKey="Lahiri N">N Lahiri</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bruck, W" uniqKey="Bruck W">W Brück</name>
</author>
<author>
<name sortKey="Pfortner, R" uniqKey="Pfortner R">R Pförtner</name>
</author>
<author>
<name sortKey="Pham, T" uniqKey="Pham T">T Pham</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Aharoni, R" uniqKey="Aharoni R">R Aharoni</name>
</author>
<author>
<name sortKey="Saada, R" uniqKey="Saada R">R Saada</name>
</author>
<author>
<name sortKey="Eilam, R" uniqKey="Eilam R">R Eilam</name>
</author>
<author>
<name sortKey="Hayardeny, L" uniqKey="Hayardeny L">L Hayardeny</name>
</author>
<author>
<name sortKey="Sela, M" uniqKey="Sela M">M Sela</name>
</author>
<author>
<name sortKey="Arnon, R" uniqKey="Arnon R">R Arnon</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mishra, Mk" uniqKey="Mishra M">MK Mishra</name>
</author>
<author>
<name sortKey="Wang, J" uniqKey="Wang J">J Wang</name>
</author>
<author>
<name sortKey="Silva, C" uniqKey="Silva C">C Silva</name>
</author>
<author>
<name sortKey="Mack, M" uniqKey="Mack M">M Mack</name>
</author>
<author>
<name sortKey="Yong, Vw" uniqKey="Yong V">VW Yong</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Comi, G" uniqKey="Comi G">G Comi</name>
</author>
<author>
<name sortKey="Jeffery, D" uniqKey="Jeffery D">D Jeffery</name>
</author>
<author>
<name sortKey="Kappos, L" uniqKey="Kappos L">L Kappos</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Bouchard, J" uniqKey="Bouchard J">J Bouchard</name>
</author>
<author>
<name sortKey="Truong, J" uniqKey="Truong J">J Truong</name>
</author>
<author>
<name sortKey="Bouchard, K" uniqKey="Bouchard K">K Bouchard</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Diaz Hernandez, M" uniqKey="Diaz Hernandez M">M Díaz-Hernández</name>
</author>
<author>
<name sortKey="Diez Zaera, M" uniqKey="Diez Zaera M">M Díez-Zaera</name>
</author>
<author>
<name sortKey="Sanchez Nogueiro, J" uniqKey="Sanchez Nogueiro J">J Sánchez-Nogueiro</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jun, D J" uniqKey="Jun D">D-J Jun</name>
</author>
<author>
<name sortKey="Kim, J" uniqKey="Kim J">J Kim</name>
</author>
<author>
<name sortKey="Jung, S Y" uniqKey="Jung S">S-Y Jung</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Kim, K" uniqKey="Kim K">K Kim</name>
</author>
<author>
<name sortKey="Lee, S G" uniqKey="Lee S">S-G Lee</name>
</author>
<author>
<name sortKey="Kegelman, Tp" uniqKey="Kegelman T">TP Kegelman</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Lievens, Jc" uniqKey="Lievens J">JC Liévens</name>
</author>
<author>
<name sortKey="Woodman, B" uniqKey="Woodman B">B Woodman</name>
</author>
<author>
<name sortKey="Mahal, A" uniqKey="Mahal A">A Mahal</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Arzberger, T" uniqKey="Arzberger T">T Arzberger</name>
</author>
<author>
<name sortKey="Krampfl, K" uniqKey="Krampfl K">K Krampfl</name>
</author>
<author>
<name sortKey="Leimgruber, S" uniqKey="Leimgruber S">S Leimgruber</name>
</author>
<author>
<name sortKey="Weindl, A" uniqKey="Weindl A">A Weindl</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Miller, Br" uniqKey="Miller B">BR Miller</name>
</author>
<author>
<name sortKey="Dorner, Jl" uniqKey="Dorner J">JL Dorner</name>
</author>
<author>
<name sortKey="Shou, M" uniqKey="Shou M">M Shou</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Rothstein, Jd" uniqKey="Rothstein J">JD Rothstein</name>
</author>
<author>
<name sortKey="Patel, S" uniqKey="Patel S">S Patel</name>
</author>
<author>
<name sortKey="Regan, Mr" uniqKey="Regan M">MR Regan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Mrzljak, L" uniqKey="Mrzljak L">L Mrzljak</name>
</author>
<author>
<name sortKey="Munoz Sanjuan, I" uniqKey="Munoz Sanjuan I">I Munoz-Sanjuan</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Seong, Is" uniqKey="Seong I">IS Seong</name>
</author>
<author>
<name sortKey="Ivanova, E" uniqKey="Ivanova E">E Ivanova</name>
</author>
<author>
<name sortKey="Lee, J M" uniqKey="Lee J">J-M Lee</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Jin, J" uniqKey="Jin J">J Jin</name>
</author>
<author>
<name sortKey="Albertz, J" uniqKey="Albertz J">J Albertz</name>
</author>
<author>
<name sortKey="Guo, Z" uniqKey="Guo Z">Z Guo</name>
</author>
</analytic>
</biblStruct>
<biblStruct>
<analytic>
<author>
<name sortKey="Beconi, Mg" uniqKey="Beconi M">MG Beconi</name>
</author>
<author>
<name sortKey="Yates, D" uniqKey="Yates D">D Yates</name>
</author>
<author>
<name sortKey="Lyons, K" uniqKey="Lyons K">K Lyons</name>
</author>
</analytic>
</biblStruct>
</listBibl>
</div1>
</back>
</TEI>
<pmc article-type="research-article">
<pmc-dir>properties open_access</pmc-dir>
<front>
<journal-meta>
<journal-id journal-id-type="nlm-ta">Mov Disord</journal-id>
<journal-id journal-id-type="iso-abbrev">Mov. Disord</journal-id>
<journal-id journal-id-type="publisher-id">mds</journal-id>
<journal-title-group>
<journal-title>Movement Disorders</journal-title>
</journal-title-group>
<issn pub-type="ppub">0885-3185</issn>
<issn pub-type="epub">1531-8257</issn>
<publisher>
<publisher-name>BlackWell Publishing Ltd</publisher-name>
<publisher-loc>Oxford, UK</publisher-loc>
</publisher>
</journal-meta>
<article-meta>
<article-id pub-id-type="pmid">25155142</article-id>
<article-id pub-id-type="pmc">4265300</article-id>
<article-id pub-id-type="doi">10.1002/mds.26007</article-id>
<article-categories>
<subj-group subj-group-type="heading">
<subject>Therapy-Present and Future</subject>
</subj-group>
</article-categories>
<title-group>
<article-title>Targets for future clinical trials in Huntington's disease: What's in the pipeline?</article-title>
</title-group>
<contrib-group>
<contrib contrib-type="author">
<name>
<surname>Wild</surname>
<given-names>Edward J</given-names>
<suffix>MD, PhD</suffix>
</name>
</contrib>
<contrib contrib-type="author">
<name>
<surname>Tabrizi</surname>
<given-names>Sarah J</given-names>
<suffix>MD, PhD</suffix>
</name>
<xref ref-type="corresp" rid="cor1">*</xref>
</contrib>
<aff id="au1">
<label>1</label>
<institution>Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology & Neurosurgery</institution>
<addr-line>Queen Square, London, WC1N 3BG, UK</addr-line>
</aff>
</contrib-group>
<author-notes>
<corresp id="cor1">*
<bold>Correspondence to</bold>
: Dr. Sarah J. Tabrizi, Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology & Neurosurgery, Queen Square, London WC1N 3BG, UK, Email:
<email>s.tabrizi@ucl.ac.uk</email>
</corresp>
<fn>
<p>
<bold>Funding agencies:</bold>
The research in S.J.T.'s laboratory is funded by the UK Medical Research Council, Wellcome Trust, EU FP7 programme, BBSRC, CHDI Foundation, UCL/UCLH Biomedical Research Centre, the UK Dementia and Neurodegenerative Diseases Network (DeNDRoN), UK HD association, European HD Network, and the Rosetrees Trust. S.J.T. has undertaken consultancy work for TEVA, GSK, Roche, Takeda Pharmaceuticals, ISIS, and Siena Biotech via UCL but has not received personal remuneration for this. E.J.W.'s work is funded by the National Institutes for Health Research (NIHR), Academy of Medical Sciences, the European Huntington's Disease Network, CHDI Foundation, and Novartis Inc.</p>
</fn>
<fn>
<p>
<bold>Relevant conflicts of interest/financial disclosures:</bold>
Nothing to report. Full financial disclosures and author roles may be found in the online version of this article.</p>
</fn>
</author-notes>
<pub-date pub-type="ppub">
<day>15</day>
<month>9</month>
<year>2014</year>
</pub-date>
<pub-date pub-type="epub">
<day>25</day>
<month>8</month>
<year>2014</year>
</pub-date>
<volume>29</volume>
<issue>11</issue>
<fpage>1434</fpage>
<lpage>1445</lpage>
<history>
<date date-type="received">
<day>25</day>
<month>7</month>
<year>2014</year>
</date>
<date date-type="rev-recd">
<day>28</day>
<month>7</month>
<year>2014</year>
</date>
<date date-type="accepted">
<day>30</day>
<month>7</month>
<year>2014</year>
</date>
</history>
<permissions>
<copyright-statement>© 2014 The Authors.
<italic>Movement</italic>
Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.</copyright-statement>
<copyright-year>2014</copyright-year>
<license license-type="open-access" xlink:href="http://creativecommons.org/licenses/by/3.0/">
<license-p>This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.</license-p>
</license>
</permissions>
<abstract>
<p>The known genetic cause of Huntington's disease (HD) has fueled considerable progress in understanding its pathobiology and the development of therapeutic approaches aimed at correcting specific changes linked to the causative mutation. Among the most promising is reducing expression of mutant huntingtin protein (mHTT) with RNA interference or antisense oligonucleotides; human trials are now being planned. Zinc-finger transcriptional repression is another innovative method to reduce mHTT expression. Modulation of mHTT phosphorylation, chaperone upregulation, and autophagy enhancement represent attempts to alter cellular homeostasis to favor removal of mHTT. Inhibition of histone deacetylases (HDACs) remains of interest; recent work affirms HDAC4 as a target but questions the assumed centrality of its catalytic activity in HD. Phosphodiesterase inhibition, aimed at restoring synaptic function, has progressed rapidly to human trials. Deranged cellular signaling provides several tractable targets, but specificity and complexity are challenges. Restoring neurotrophic support in HD remains a key potential therapeutic approach. with several approaches being pursued, including brain-derived neurotrophic factor (BDNF) mimesis through tyrosine receptor kinase B (TrkB) agonism and monoclonal antibodies. An increasing understanding of the role of glial cells in HD has led to several new therapeutic avenues, including kynurenine monooxygenase inhibition, immunomodulation by laquinimod, CB2 agonism, and others. The complex metabolic derangements in HD remain under study, but no clear therapeutic strategy has yet emerged. We conclude that many exciting therapeutics are progressing through the development pipeline, and combining a better understanding of HD biology in human patients, with concerted medicinal chemistry efforts, will be crucial for bringing about an era of effective therapies.</p>
</abstract>
<kwd-group>
<kwd>gene silencing</kwd>
<kwd>glial cells</kwd>
<kwd>HDAC inhibition</kwd>
<kwd>Huntington's disease</kwd>
<kwd>kynurenine monooxygenase</kwd>
<kwd>MAPK</kwd>
<kwd>phosphodiesterase inhibition</kwd>
<kwd>therapeutics</kwd>
</kwd-group>
</article-meta>
</front>
<body>
<p>Huntington's disease (HD) is characterized by a number of certainties: It is inherited, fully penetrant, neurodegenerative, progressive, fatal, and caused by CAG repeat expansions in the gene encoding huntingtin. So far, another certainty has been the failure of every attempt to prevent or slow its progression in patients and mutation carriers.
<xref rid="b1" ref-type="bibr">1</xref>
However, the known cause of HD and our ever-increasing understanding of the events that connect the mutation to the clinical features of the disease continue to inspire confidence that one or more dysfunctions leading to HD will prove tractable. Here we review those therapeutic targets in the pipeline, borne from our understanding of the diverse effects of the HD mutation, that we consider most likely to give rise to viable treatments that may reach clinical trials in the foreseeable future.
<xref ref-type="fig" rid="fig01">Figure 1</xref>
gives an overview of the targets we discuss, and these are summarized in Table
<xref ref-type="table" rid="tbl1">1</xref>
.</p>
<fig id="fig01" position="float">
<label>FIG 1</label>
<caption>
<p>Schematic depicting current priority preclinical therapeutic targets under investigation for Huntington's disease. HTT, huntingtin; KMO, kynurenine monooxygenase; NMDA, N-methyl-D-aspartate; PDE, phosphodiesterase; BDNF, brain-derived neurotrophic factor; HDAC, histone deacetylase; Trk, tropomyosin-related kinase. Adapted from Ross et al.
<xref rid="b36" ref-type="bibr">36</xref>
</p>
</caption>
<graphic xlink:href="mds0029-1434-f1"></graphic>
</fig>
<table-wrap id="tbl1" position="float">
<label>TABLE 1</label>
<caption>
<p>Summary of current priority preclinical therapeutic targets in Huntington's disease
<xref ref-type="table-fn" rid="tf1-1">a</xref>
</p>
</caption>
<table frame="hsides" rules="groups">
<thead>
<tr>
<th align="left" rowspan="1" colspan="1">Mechanism/Target</th>
<th align="center" rowspan="1" colspan="1">Compound</th>
<th align="center" rowspan="1" colspan="1">Tested in</th>
<th align="center" rowspan="1" colspan="1">Entity</th>
<th align="center" rowspan="1" colspan="1">Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left" rowspan="5" colspan="1">HTT lowering by RNAi</td>
<td align="left" rowspan="1" colspan="1">Allele-nonspecific siRNA, intrastriatal convection-enhanced delivery</td>
<td align="left" rowspan="1" colspan="1">NHP</td>
<td align="left" rowspan="1" colspan="1">Alnylam Inc. / Medtronic, Inc.</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b21" ref-type="bibr">21</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Allele-nonspecific siRNA, AAV delivery, intrastriatal injection</td>
<td align="left" rowspan="1" colspan="1">NHP</td>
<td align="left" rowspan="1" colspan="1">Medtronic Inc.</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b20" ref-type="bibr">20</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Allele-nonspecific miRNA, AAV delivery, intrastriatal injection</td>
<td align="left" rowspan="1" colspan="1">NHP</td>
<td align="left" rowspan="1" colspan="1">U. Iowa</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b19" ref-type="bibr">19</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Allele-nonspecific siRNA, cholesterol-conjugated, intrastriatal injection</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">MGH / UMass / Alnylam Inc.</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b26" ref-type="bibr">26</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Allele-specific single-stranded siRNA, intraventricular infusion</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">UTSW / UCSD / Isis</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b28" ref-type="bibr">28</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="3" colspan="1">HTT lowering by ASO</td>
<td align="left" rowspan="1" colspan="1">Allele-nonspecific ASO, intrathecal injection</td>
<td align="left" rowspan="1" colspan="1">NHP</td>
<td align="left" rowspan="1" colspan="1">Isis</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b22" ref-type="bibr">22</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Allele-specific ASO, intrastriatal injection</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">UBC / Isis</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b7" ref-type="bibr">7</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Allele-specific CAG-targeted ASO</td>
<td align="left" rowspan="1" colspan="1">Cells</td>
<td align="left" rowspan="1" colspan="1">U. Leiden / Prosensa</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b23" ref-type="bibr">23</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">HTT lowering by ZFP</td>
<td align="left" rowspan="2" colspan="1">Allele-specific ZFP transcriptional repressor, AAV delivery, intrastriatal injection</td>
<td align="left" rowspan="2" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">EMBL/CRG SBRU</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b3" ref-type="bibr">3</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Sangamo</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b3" ref-type="bibr">3</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Posttranslational modification</td>
<td align="left" rowspan="1" colspan="1">Kinase inhibition</td>
<td align="left" rowspan="1" colspan="1">Cells</td>
<td align="left" rowspan="1" colspan="1">McMaster U.</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b38" ref-type="bibr">38</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Ganglioside GM1, intraventricular infusion</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">McMaster U.</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b41" ref-type="bibr">41</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Chaperone enhancement</td>
<td align="left" rowspan="1" colspan="1">Genetic overexpression of HSJ1a</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">KCL</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b44" ref-type="bibr">44</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Recombinant ApiCCT1</td>
<td align="left" rowspan="1" colspan="1">Cells</td>
<td align="left" rowspan="1" colspan="1">UC Irvine / Stanford-</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b47" ref-type="bibr">47</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Autophagy enhancers</td>
<td align="left" rowspan="1" colspan="1">Trehalose, calpastatin, nicardipine, minoxidil</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">Various</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b50" ref-type="bibr">50</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Acetylation promoter (selisistat)</td>
<td align="left" rowspan="1" colspan="1">Human</td>
<td align="left" rowspan="1" colspan="1">Siena Biotech</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b52" ref-type="bibr">52</xref>
,
<xref rid="b54" ref-type="bibr">54</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Aggregation prevention</td>
<td align="left" rowspan="1" colspan="1">HDAC4 genetic knockdown</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">KCL</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b57" ref-type="bibr">57</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Small molecule HDAC4 inhibition</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">CHDI</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b61" ref-type="bibr">61</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Phosphodiesterase 10A inhibition</td>
<td align="left" rowspan="1" colspan="1">PF-2545920</td>
<td align="left" rowspan="1" colspan="1">Human</td>
<td align="left" rowspan="1" colspan="1">Pfizer</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b72" ref-type="bibr">72</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">OMS643762</td>
<td align="left" rowspan="1" colspan="1">Human</td>
<td align="left" rowspan="1" colspan="1">Omeros</td>
<td align="left" rowspan="1" colspan="1">
<sup>120</sup>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">MAPK cell signaling</td>
<td align="left" rowspan="1" colspan="1">JNK/p38 inhibition via MKP-1 overexpression</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">EPFL</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b80" ref-type="bibr">80</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">MLK2 inhibition by CEP-1347</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">UC Irvine</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b81" ref-type="bibr">81</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="5" colspan="1">Neurotrophic support</td>
<td align="left" rowspan="1" colspan="1">TrkB agonists (7,8-DHF / 4′-DMA-7,8-DHF)</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">Johns Hopkins</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b89" ref-type="bibr">89</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TrkB agonist (LM22A-4)</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">Stanford</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b90" ref-type="bibr">90</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">TrkB agonist (monoclonal antibody)</td>
<td align="left" rowspan="1" colspan="1">Cells</td>
<td align="left" rowspan="1" colspan="1">CHDI</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b91" ref-type="bibr">91</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">BDNF transcriptional activation</td>
<td align="left" rowspan="1" colspan="1">Zebrafish</td>
<td align="left" rowspan="1" colspan="1">U. Milano</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b92" ref-type="bibr">92</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Cysteamine</td>
<td align="left" rowspan="1" colspan="1">Human</td>
<td align="left" rowspan="1" colspan="1">Raptor</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b94" ref-type="bibr">94</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">KMO inhibition</td>
<td align="left" rowspan="1" colspan="1">JM6 / Ro-61-8048</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">UCSF</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b102" ref-type="bibr">102</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CHDI-340246</td>
<td align="left" rowspan="1" colspan="1">NHP</td>
<td align="left" rowspan="1" colspan="1">CHDI</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b103" ref-type="bibr">103</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="2" colspan="1">Immunomodulation</td>
<td align="left" rowspan="1" colspan="1">Laquinimod</td>
<td align="left" rowspan="1" colspan="1">Human (MS)</td>
<td align="left" rowspan="1" colspan="1">Teva</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b108" ref-type="bibr">108</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">CB2 agonist (GW405833)</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">UCSF</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b109" ref-type="bibr">109</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">P2X7 antagonism</td>
<td align="left" rowspan="1" colspan="1">Brilliant blue G</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">CSIC/UAM</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b110" ref-type="bibr">110</xref>
</td>
</tr>
<tr>
<td align="left" rowspan="1" colspan="1">Astrocytic glutamate uptake</td>
<td align="left" rowspan="1" colspan="1">EAAT2 promoter activation (ceftriaxone)</td>
<td align="left" rowspan="1" colspan="1">Mouse</td>
<td align="left" rowspan="1" colspan="1">U. Indiana</td>
<td align="left" rowspan="1" colspan="1">
<xref rid="b115" ref-type="bibr">115</xref>
</td>
</tr>
</tbody>
</table>
<table-wrap-foot>
<fn id="tf1-1">
<label>a</label>
<p>‘Tested in’ refers to most advanced model or organism in which successful target modulation has been demonstrated.</p>
</fn>
<fn id="n5">
<p>HTT, huntingtin protein; RNAi, RNA interference; siRNA, short interfering RNA; NHP, non-human primate; AAV, adeno-associated virus; miRNA, microRNA; MGH, Massachusetts General Hospital; ASO, antisense oligonucleotide; UBC, University of British Colombia; ZFP, zinc finger proteins; EMBL/CRG SBRU, European Molecular Biology Laboratory Systems Biology Research Unit; HSJ1a, Homo sapiens J domain protein 1a; ApiCCT1, apical domain of chaperonin containing T-complex protein-1/T-complex protein-1 ring subunit CCT1; KCL, King's College London; MAPK, mitogen-activated protein kinase; JNK, c-Jun terminal kinases; MKP-1, MAP kinase phosphatase 1; EPFL, École polytechnique fédérale de Lausanne; TrkB, tropomyosin-related kinase B; BDNF, brain-derived neurotrophic factor; UCSF, University of California San Francisco; KMO, kynurenine monooxygenase; MS, multiple sclerosis; CB2, cannabinoid Receptor 2; P2X7, purine receptor 2X7; CSIC, Consejo Superior de Investigaciones Científicas; UAM, Universidad Autónoma de Madrid; EAAT2, excitatory amino acid transporter 2.</p>
</fn>
</table-wrap-foot>
</table-wrap>
<sec>
<title>Reducing Huntingtin Expression</title>
<p>In contrast to other prevalent neurodegenerative disorders, the known genetic cause of HD allows the known pathogenic entity, mutant huntingtin protein (mHTT), to be targeted with certainty. Lowering expression of mHTT at the level of DNA (transcription) or RNA (translation) ought to reduce all of the downstream deleterious effects of the protein that lead to the manifestations of HD. Such strategies are sometimes known as “gene silencing”—somewhat misleadingly, because no approach is expected to stop mHTT expression altogether—or “huntingtin lowering” or “huntingtin suppression”. These approaches aimed at reducing HTT expression are considered among the most promising emerging therapeutics to slow or prevent HD.
<xref rid="b2" ref-type="bibr">2</xref>
,
<xref rid="b3" ref-type="bibr">3</xref>
</p>
<p>Three broad approaches are under investigation to reduce mHTT expression: RNA interference (RNAi) using short interfering RNA (siRNA); translational repression using single-stranded DNA-based antisense oligonucleotides (ASOs); and transcriptional repression using zinc finger proteins (ZFPs).</p>
<p>Some of these approaches constitute “gene therapy”—namely, those delivered or expressed using viral technology, such as ZFPs or some RNAi methods, whereas central nervous system (CNS) delivery of antisense oligonucleotides or siRNAs is not gene therapy.</p>
<sec>
<title>Nucleotide-Based Silencing</title>
<p>RNA interference and ASO repression use synthetic modified nucleotide agents designed to bind to a chosen sequence in the HTT messenger RNA (mRNA), using Watson-Crick complementarity. Once bound, different cellular mRNA disposal mechanisms remove the HTT mRNA, resulting in reduced translation and lowered protein expression (
<xref ref-type="fig" rid="fig02">Fig. 2</xref>
).
<xref rid="b2" ref-type="bibr">2</xref>
,
<xref rid="b4" ref-type="bibr">4</xref>
</p>
<fig id="fig02" position="float">
<label>FIG 2</label>
<caption>
<p>Schematic illustration of the three main approaches to lowering huntingtin expression. Zinc finger protein (ZFP) therapeutics aim to reduce transcription of the huntingtin gene. Translational repression can be attempted at the pre-mRNA level using DNA-based antisense oligonucleotides (ASOs) or on mature mRNA using short interfering RNA (siRNA) compounds. Different cellular mechanisms degrade the bound mRNA.
<xref rid="b4" ref-type="bibr">4</xref>
</p>
</caption>
<graphic xlink:href="mds0029-1434-f2"></graphic>
</fig>
<p>In RNAi, the drug molecule can be either an siRNA or a microRNA (miRNA) molecule. Degradation of siRNA-bound mRNA is performed by the RNA-induced silencing complex (RISC), which incorporates the RNAse enzyme argonaute. The ASOs are modified single-stranded DNA molecules, and ASO-bound mRNA is degraded by RNAse H (
<xref ref-type="fig" rid="fig02">Fig. 2</xref>
).
<xref rid="b5" ref-type="bibr">5</xref>
</p>
<p>Nucleotide-based gene silencing methods have advanced considerably in recent years and are approaching readiness for trials in human HD patients. Numerous successes have now been reported in rodent models, first with RNA-based drugs
<xref rid="b6" ref-type="bibr">6</xref>
and more recently with ASOs.
<xref rid="b7" ref-type="bibr">7</xref>
Most animal work has focused on nonselective silencing of both wild-type and mutant
<italic>HTT</italic>
alleles, and the first human trials will take this approach. Directly infused into the brain parenchyma or ventricles of HD model mice, these drugs appear capable of significantly reducing mRNA expression and HTT protein levels. This has been associated with not just slowing of the phenotypic progression of HD, but with substantial improvement in some manifestations having clinically significant counterparts in the human disease. For instance, intra-striatal injection of an adeno-associated virus (AAV2) vector expressing HTT-silencing miRNA in the YAC128 HD mouse model produced transduction of approximately 80% of the striatum, approximately 50% reduction in HTT mRNA, and a similar reduction in HTT protein; reduced mHTT aggregation; restored performance on a behavioral task modeling depression to near-wild-type levels; and showed no evidence of inflammation or neurotoxicity.
<xref rid="b8" ref-type="bibr">8</xref>
The ASOs are no less successful: intraventricular infusion in three HD mouse models produced more than 60% reduction in HTT mRNA and more than 80% reduction in HTT protein; mHTT aggregate formation was delayed and motor performance improved with treatment. Strikingly, these improvements significantly outlasted both the presence of the ASO drug and the reduction in soluble protein,
<xref rid="b9" ref-type="bibr">9</xref>
suggesting that dysfunctioning cells are able to recover from at least some deleterious effects of mHTT if expression of the protein is even transiently reduced, restoring the balance of damage and repair. Of course, whether this optimistic “huntingtin holiday” concept will translate into human patients for these therapeutics remains to be seen.
<xref rid="b10" ref-type="bibr">10</xref>
,
<xref rid="b11" ref-type="bibr">11</xref>
</p>
<p>In 2013, the first phase 1 human trial of an intrathecally delivered ASO, targeting superoxide dismutase 1 (SOD1) in familial amyotrophic lateral sclerosis, was completed without significant safety issues reported, paving the way for such trials with such agents in HD.
<xref rid="b12" ref-type="bibr">12</xref>
</p>
</sec>
<sec>
<title>Potential Risks of Gene Silencing</title>
<p>Lowering huntingtin expression is not without its challenges. Safety is a major concern: both off-target effects and on-target lowering of wild-type HTT levels could produce unforeseen consequences in humans. The corollary of sustained benefit may be sustained adverse effects and the absence of an “off-switch,” particularly for gene therapy approaches such as ZFP, and viral delivery of siRNAs or miRNAs, but also for long-lasting drugs such as ASOs, is cause for proceeding with caution to human trials. A major unknown is the effect of lowering wild-type HTT in humans. HTT is clearly an important protein, because knocking out the gene is embryonic lethal in murine models,
<xref rid="b13" ref-type="bibr">13</xref>
and conditional huntingtin knockout has been reported to produce neurodegeneration.
<xref rid="b14" ref-type="bibr">14</xref>
Although transient long-acting ASO-induced HTT knockdown in wild-type BACHD mice by 75% produced no detectable behavioral or motor deficits,
<xref rid="b9" ref-type="bibr">9</xref>
subtler effects could be missed in murine studies, and the effect of reducing wild-type HTT in human patients is unknown. However, we do know with certainty that mHTT expression causes HD; therefore, we hope that the benefits of lowering the toxic mHTT protein will significantly outweigh the potential side effects of lowering wild-type HTT.</p>
<p>Other safety concerns are generic to the molecules and delivery methodologies necessary to obtain translational repression in the CNS. The presence of synthetic oligonucleotides
<italic>per se</italic>
, some with backbone chemistries not seen in nature, could cause toxicity or neuroinflammation independently of their effects on gene expression.
<xref rid="b15" ref-type="bibr">15</xref>
Although the safety and efficacy of viral vectors is improving, concerns remain around their possible immunogenicity, either on first dosing
<xref rid="b16" ref-type="bibr">16</xref>
or as a limitation to the later administration of newer AAV-delivered compounds to patients dosed previously.</p>
<p>Future oligonucleotide-based gene silencing drugs are likely to be even more effective. Candidate nucleotide sequences have been optimized through rational design to maximize binding to HTT mRNA while minimizing off-target effects through binding to other mRNAs,
<xref rid="b17" ref-type="bibr">17</xref>
whereas improvements in the nucleotide backbone chemistry promise improved specificity, potency, and stability.
<xref rid="b18" ref-type="bibr">18</xref>
</p>
<p>So far, the available safety data, especially from several recent nonhuman primate trials, are encouraging. In wild-type rhesus macaques, McBride and colleagues
<xref rid="b19" ref-type="bibr">19</xref>
produced up to 45% sustained wild-type HTT reduction in the striatum using AAV-delivered shRNA without evidence of adverse effects; Grondin and colleagues
<xref rid="b20" ref-type="bibr">20</xref>
demonstrated safety of AAV-mediated RNAi striatal wild-type HTT suppression over six months; Stiles and colleagues
<xref rid="b21" ref-type="bibr">21</xref>
found 28 days' convection-enhanced siRNA delivery to be well tolerated; and ASOs infused into the lumbar cerebrospinal fluid produced distribution to the cortex and, to a lesser extent, some deep brain structures, without adverse effects.
<xref rid="b22" ref-type="bibr">22</xref>
</p>
</sec>
<sec>
<title>Allele-Selective Silencing</title>
<p>One way to obviate the risk of WT HTT knockdown is to target the mutant allele selectively. Targeting the CAG repeat to achieve allele-selective knockdown is under investigation
<xref rid="b23" ref-type="bibr">23</xref>
but carries a risk of off-target effects on other polyCAG-containing genes. Another strategy is to identify and target single-nucleotide polymorphisms (SNPs) on the mutant allele, an approach that may be able to provide allele-selective mHTT silencing for a certain percentage of HD mutation carriers, amounting to personalized genomic medicine in which individual subjects with the correct SNP genotype on the mutant allele may be treated.
<xref rid="b7" ref-type="bibr">7</xref>
,
<xref rid="b24" ref-type="bibr">24</xref>
The existence of a few common haplotypes means some SNPs are overrepresented on alleles also bearing
<italic>HTT</italic>
expansions, suggesting that a small number of SNP-targeted drugs could provide allele-selective silencing for most individuals.
<xref rid="b24" ref-type="bibr">24</xref>
However, targeting polymorphisms dramatically reduces the repertoire of possible RNA target sequences, increasing the chance of off-target effects; developing multiple agents, each targeting a different SNP, has significant regulatory, cost, and practical implications. Non-allele–selective approaches are much more likely to reach human trials sooner, because such agents are more advanced in the HD therapeutic pipeline; but both approaches are being actively developed.</p>
</sec>
<sec>
<title>The Distribution Problem</title>
<p>The other major challenge is delivery and distribution of the HTT suppression agents in the CNS. Whereas in nonhuman primates, ASOs diffuse rather widely into the cortex when injected into the lumbar cerebrospinal fluid, their distribution is not universal, and in particular the striatum, affected prominently and early in HD, absorbs relatively little after lumbar injection.
<xref rid="b22" ref-type="bibr">22</xref>
The siRNAs have even less natural diffusion and uptake, but this can be enhanced by a number of methods, including viral vectors, exosomes,
<xref rid="b25" ref-type="bibr">25</xref>
cholesterol conjugation,
<xref rid="b26" ref-type="bibr">26</xref>
convection-enhanced delivery, and novel conjugates of single-stranded siRNA compounds.
<xref rid="b27" ref-type="bibr">27</xref>
,
<xref rid="b28" ref-type="bibr">28</xref>
Targeting both cortex and striatum using different delivery methods has been proposed to overcome these limitations, and we think this may be an important future therapeutic approach.
<xref rid="b11" ref-type="bibr">11</xref>
This is supported by recent work demonstrating that reducing mHTT expression in both cortex and striatum is necessary for optimal suppression of relevant phenotypes in a murine model of HD.
<xref rid="b29" ref-type="bibr">29</xref>
Meanwhile, the development of technologies such as the Roche “brain shuttle” raises the prospect of allowing CNS penetration by peripheral administration of potential therapeutic agents.
<xref rid="b30" ref-type="bibr">30</xref>
</p>
</sec>
<sec>
<title>Zinc Fingers</title>
<p>Another exciting advance uses zinc finger protein repressors, which are transcription factor DNA-recognition motifs that can be designed to allow selective binding to specific DNA sequences, and fused to a transcriptional repressor domain (
<xref ref-type="fig" rid="fig02">Fig. 2</xref>
). Zinc-finger proteins (ZFPs) can repress protein production by reducing transcription.
<xref rid="b31" ref-type="bibr">31</xref>
In theory, this combines the virtues of RNAi translational repression with the added advantages of obviating potential harm from toxicity of mHTT mRNA
<xref rid="b32" ref-type="bibr">32</xref>
or from alternatively spliced HTT species that may lack the targeted mRNA sequence
<xref rid="b33" ref-type="bibr">33</xref>
—pathobiological mechanisms that have both been proposed in HD. Two groups have targeted the expanded CAG repeat that causes HD using ZFP-based compounds encoded by viral vectors. Serendipitously, the proximity of the CAG repeat to the 5' end of the
<italic>HTT</italic>
gene appears to confer considerable selectivity over other polyCAG-containing genes. The approach has so far demonstrated successful selective repression of mHTT and amelioration of motor manifestations in an HD mouse model, but it shares the delivery and distribution hurdles of other virally delivered HTT-lowering methods.
<xref rid="b3" ref-type="bibr">3</xref>
,
<xref rid="b34" ref-type="bibr">34</xref>
The ability of ZFPs to target nuclease-induced DNA scission and repair raises the tantalizing prospect of true gene therapy for HD in which excessive CAGs are excised from the genomes of expansion carriers through “genome editing.”
<xref rid="b35" ref-type="bibr">35</xref>
</p>
</sec>
</sec>
<sec>
<title>Protein Homeostasis</title>
<p>Once expressed, mHTT interacts with hundreds of partners, undergoes dozens of post-translational modifications, forms intranuclear and cytoplasmic aggregates, and may be degraded through autophagy. The complex life of mHTT in cells offers a multitude of potential therapeutic targets.
<xref rid="b1" ref-type="bibr">1</xref>
,
<xref rid="b36" ref-type="bibr">36</xref>
Prioritizing these is currently limited by a lack of understanding of the most toxic HTT species and the difficulty of modulating multifunctional targets.</p>
<p>Modulation of mHTT post-translational modification is appealing because it is carried out by enzymes that ought to be targetable by small molecule therapeutics (
<xref ref-type="fig" rid="fig01">Fig. 1</xref>
). Phosphorylation of N-terminal mHTT at serines 13 and 16 reduces its toxicity in vivo
<xref rid="b37" ref-type="bibr">37</xref>
and affects its intracellular targeting,
<xref rid="b38" ref-type="bibr">38</xref>
whereas phosphorylation at serine 421 restores the ability of mHTT to promote axonal vesicular transport and neurotrophic factor release.
<xref rid="b39" ref-type="bibr">39</xref>
Small-molecule kinase inhibitors modulating N-terminal mHTT phosphorylation have been identified and are under investigation,
<xref rid="b38" ref-type="bibr">38</xref>
but whether inhibitors that can specifically increase desirable phosphorylation of key residues, while avoiding harmful phosphorylation events elsewhere in mHTT, or other proteins, remains to be seen. The same is true of all potentially important post-translational modification. One striking recent report linked to post-translational modification concerns gangliosides—CNS-abundant glycosphingolipids with roles in membrane functioning and cell signaling that have been shown to be deficient in HD models.
<xref rid="b40" ref-type="bibr">40</xref>
Chronic intraventricular infusion of ganglioside GM1 in YAC128 mice restored normal motor function and expression of the striatal marker DARPP32 and increased phosphorylation of HTT at serines 13 and 16.
<xref rid="b41" ref-type="bibr">41</xref>
The mechanism of this intriguing result is unclear: It requires replication and further mechanistic study as a possible therapeutic avenue.</p>
<p>Although whether mHTT aggregates are neuroprotective, neurotoxic, or both remains unclear, disordered protein folding and aggregation are a potentially tractable hallmark of HD. Upregulation of chaperone proteins in an attempt to reduce harmful misfolding of mHTT has previously shown limited therapeutic potential in mammalian HD models.
<xref rid="b42" ref-type="bibr">42</xref>
,
<xref rid="b43" ref-type="bibr">43</xref>
However, overexpression of HSJ1a in R6/2 mice was shown to reduce the formation of large nuclear aggregates and modestly delayed disease progression, surprisingly mediated by detergent-insoluble mHTT species that had already begun to aggregate.
<xref rid="b44" ref-type="bibr">44</xref>
Another chaperone, TCP1-ring complex (TRiC), is known to suppress mHTT aggregation,
<xref rid="b45" ref-type="bibr">45</xref>
,
<xref rid="b46" ref-type="bibr">46</xref>
and a recombinant subunit of TRiC, ApiCCT1, was recently shown to be able to enter cells, where it decreased the formation of visible inclusions and fibrillar oligomers and reduced mHTT-induced toxicity.
<xref rid="b47" ref-type="bibr">47</xref>
Whether this is a viable therapeutic strategy remains to be seen, but an increased understanding of chaperone proteins and protein homeostasis is capable of generating novel, apparently tractable therapeutic targets.</p>
<p>Mutant huntingtin protein can be cleared by macroautophagy but impairs its own clearance through impaired cargo recognition.
<xref rid="b48" ref-type="bibr">48</xref>
Enhancing autophagy through mammalian target of rapamycin (mTOR) inhibition by rapamycin improved phenotypes in fly and mouse models of HD,
<xref rid="b49" ref-type="bibr">49</xref>
and a number of agents have shown similar effects in model systems,
<xref rid="b50" ref-type="bibr">50</xref>
and upregulation of autophagy to clear mHTT is an important potential therapeutic strategy. A cellular imaging screen for autophagy enhancers revealed a candidate compound that was neuroprotective against mHTT and several related FDA-approved compounds with similar potential.
<xref rid="b51" ref-type="bibr">51</xref>
Acetylation of mHTT targets it for degradation by autophagy
<xref rid="b49" ref-type="bibr">49</xref>
and more generally, hypoacetylation of chromatin is a feature of HD, so promoting acetylation has been proposed as a therapeutic strategy. Selisistat, an inhibitor of the deacetylase sirtuin 1, was recently shown to suppress mHTT-induced pathology in
<italic>Drosophila</italic>
, mammalian HD cell models, and the R6/2 mouse, where it significantly improved survival and behavioral but not motor phenotype, and reduced aggregate formation.
<xref rid="b52" ref-type="bibr">52</xref>
Whether this was accomplished through autophagy enhancement or another means is unclear, and the role of sirtuin 1 is controversial, its overexpression in HD mammalian models also having been reported as neuroprotective.
<xref rid="b53" ref-type="bibr">53</xref>
A recent phase 1B clinical trial of selisistat in early HD demonstrated safety and tolerability.
<xref rid="b54" ref-type="bibr">54</xref>
</p>
</sec>
<sec>
<title>Histone Deacetylase Inhibition</title>
<p>With the aim of correcting transcriptional dysregulation, histone deacetylase (HDAC) inhibitors have been under study for a number of years in HD. The HDACs are potent regulators of transcription through chromatin modification. The nonselective HDAC inhibitor suberoylanilide hydroxamic acid was shown to ameliorate the motor phenotype in R6/2 mice.
<xref rid="b55" ref-type="bibr">55</xref>
Although compounds targeting HDAC1 and HDAC3 have been shown to ameliorate disease phenotypes in fly and cellular models,
<xref rid="b56" ref-type="bibr">56</xref>
systematic work has shown HDAC4 to be the sole HDAC among 11 whose genetic knockdown ameliorates the HD phenotype in mouse models.
<xref rid="b57" ref-type="bibr">57</xref>
<xref rid="b60" ref-type="bibr">60</xref>
HDAC4 inhibition has therefore been a focus for therapeutic development in HD, and potent, selective small-molecule inhibitors of its enzymatic function have been developed.
<xref rid="b61" ref-type="bibr">61</xref>
</p>
<p>Unexpectedly, though genetic HDAC4 knockdown improved neuropathology, synaptic function, motor phenotype, and lifespan in R6/2 mice, it did so without improving global transcriptional dysregulation. These double-transgenic animals show delayed cytoplasmic mHTT aggregation, and HDAC4 is now known to co-localize with cytoplasmic inclusions.
<xref rid="b57" ref-type="bibr">57</xref>
This novel, cytoplasmic role for HDAC4 calls into question whether inhibition of its catalytic site is necessary or sufficient to recapitulate the strikingly favorable features of genetic HDAC4 knockdown. A reappraisal of the therapeutic effect of suberoylanilide hydroxamic acid in HD model mice revealed that it reduced HDAC4 level through increased degradation.
<xref rid="b62" ref-type="bibr">62</xref>
Understanding and modulating the noncatalytic functions of HDAC4 is a focus of current study.</p>
</sec>
<sec>
<title>Phosphodiesterase Inhibition</title>
<p>Altered synaptic plasticity is one potentially reversible cause of dysfunction in HD. Impairment of cyclic adenosine monophosphate (cAMP) signaling
<xref rid="b63" ref-type="bibr">63</xref>
and dysregulation of gene transcription mediated by the cAMP response element (CRE)
<xref rid="b64" ref-type="bibr">64</xref>
are established features of HD. Phosphodiesterase (PDE) 10A is almost exclusively expressed in the striatum,
<xref rid="b65" ref-type="bibr">65</xref>
and its activity is intimately linked to the synaptic biology of medium spiny neurons whose death is a prominent feature of HD. PDE10A regulates cAMP and cyclic guanosine monophosphate signalling, synaptic plasticity and the response to cortical stimulation.
<xref rid="b66" ref-type="bibr">66</xref>
,
<xref rid="b67" ref-type="bibr">67</xref>
PDE10A inhibition or genetic deletion produces numerous CRE–related gene expression changes
<xref rid="b68" ref-type="bibr">68</xref>
and alterations in synaptic function
<xref rid="b69" ref-type="bibr">69</xref>
suggested to be beneficial in schizophrenia and HD.
<xref rid="b67" ref-type="bibr">67</xref>
In the R6/2 mouse, PDE10A inhibition with TP-10 ameliorated motor deficits, reduced striatal atrophy and increased brain-derived neurotrophic factor (BDNF) levels.
<xref rid="b70" ref-type="bibr">70</xref>
Detailed study of PDE10A and its pharmacological inhibition is underway to validate it as a target in HD. One concern is that early death of striatal neurons might deplete PDE10A levels to the extent that the target is lost; however, PET imaging with the PDE10A radioligand [18F]-MNI-695 suggests that enzyme levels are sufficient even in manifest HD to expect a meaningful response.
<xref rid="b71" ref-type="bibr">71</xref>
Clinical trials of PDE10A inhibition in HD patients are already underway, with motor and functional MRI endpoints.
<xref rid="b72" ref-type="bibr">72</xref>
Other phosphodiesterases implicated in HD pathogenesis are also under study. PDE4 inhibition with rolipram, meanwhile, improved survival and ameliorated neuropathology and motor phenotypes in the R6/2 mouse.
<xref rid="b73" ref-type="bibr">73</xref>
</p>
</sec>
<sec>
<title>Mitogen-Activated Protein Kinase Cell Signaling</title>
<p>Mitogen-activated protein kinase (MAPK) signaling is involved in the regulation of many cellular functions in response to a variety of stimuli. Abnormal MAPK signaling is a feature of HD; in particular, the MAPKs JNK (c-Jun terminal kinases), ERK (extracellular signal-regulated kinases), and p38, and the upstream kinase mixed lineage kinase 2 (MLK2), are overactive in HD.
<xref rid="b74" ref-type="bibr">74</xref>
<xref rid="b76" ref-type="bibr">76</xref>
One effect of this may be impaired axonal transport, caused by JNK3-induced phosphorylation of kinesin-1.
<xref rid="b77" ref-type="bibr">77</xref>
Additionally, p38 overactivity may contribute to NMDA-receptor–mediated excitotoxicity.
<xref rid="b78" ref-type="bibr">78</xref>
Extracellular signal-regulated kinase overactivation is complex and may overall be protective in the presence of mHTT.
<xref rid="b76" ref-type="bibr">76</xref>
Treatment of R6/2 mice with sodium butyrate was neuroprotective and extended survival; it also induced upregulation of MKP-1, a negative regulator of MAPK signaling.
<xref rid="b79" ref-type="bibr">79</xref>
However, sodium butyrate likely acts via multiple mechanisms. Recently, specific overexpression of MKP-1 was shown to exert neuroprotective effects against mHTT through inhibition of JNK and p38.
<xref rid="b80" ref-type="bibr">80</xref>
Pharmacological MLK2 inhibition reduced toxicity in several model systems and increased motor performance and BDNF levels in the R6/2 mouse.
<xref rid="b81" ref-type="bibr">81</xref>
Small-molecule approaches to activate MKP-1 and ERK, or to inhibit MLK2, JNK, and p38, may be of value, but these pathways, their role in HD, and the optimal targets and means of modulating them are incompletely understood.</p>
</sec>
<sec>
<title>Neurotrophic Factors</title>
<p>Depletion of BDNF is a well-established feature of the HD brain. Produced by cortical neurons, BDNF promotes neuronal growth, survival, and plasticity. It is particularly important for the survival of striatal neurons that are affected prominently in HD and may protect against excitotoxicity.
<xref rid="b82" ref-type="bibr">82</xref>
Several mechanisms have been implicated in the depletion of BDNF in HD, including transcriptional dysregulation
<xref rid="b83" ref-type="bibr">83</xref>
and reduced axonal transport.
<xref rid="b84" ref-type="bibr">84</xref>
Restoration of BDNF levels, or those of related neurotrophins such as glial cell–derived neurotrophic factor (GDNF), is of interest, but the challenges of delivering a protein-based therapeutic to the CNS are considerable. Delivery of BDNF and GDNF using viral
<xref rid="b85" ref-type="bibr">85</xref>
or stem-cell
<xref rid="b86" ref-type="bibr">86</xref>
vehicles has shown some potential. Clinical trials in Parkinson's disease (PD) patients have demonstrated that intraparenchymal AAV-mediated delivery of the GDNF analog neurturin to the putamen is safe and well-tolerated but have yet to meet a primary efficacy endpoint.
<xref rid="b87" ref-type="bibr">87</xref>
Postmortem analysis has confirmed successful induction and sustained expression of neurturin. A recently completed phase 2b trial has been reported as again meeting safety but not efficacy endpoints.
<xref rid="b88" ref-type="bibr">88</xref>
One reason for efficacy failure of this approach may be the difficulty of identifying PD patients sufficiently early to intervene successfully. The monogenic, penetrant nature of HD perhaps makes it more amenable to this approach to neurotrophin delivery, because treatment could be initiated early in the disease or even before symptom onset.</p>
<p>BDNF acts principally through binding to TrkB receptors, and one approach to overcome the limitations of a protein-based therapeutic has been to develop small-molecule TrkB agonists. Several experimental compounds have now been tested in HD rodent models. Jiang and colleagues orally administered two presumed TrkB agonists (7,8-DHF and 4′-DMA-7,8-DHF) to N171-82Q mice and showed increased striatal TrkB phosphorylation, significantly improved motor function, increased lifespan, and reduced brain atrophy in treated animals.
<xref rid="b89" ref-type="bibr">89</xref>
Simmons and colleagues
<xref rid="b90" ref-type="bibr">90</xref>
demonstrated similar benefits from another TrkB agonist, LM22A-4, in the R6/2 and BACHD models, and additionally showed reduced intranuclear aggregation of mHTT in striatum and cortex.</p>
<p>However, Todd and colleagues
<xref rid="b91" ref-type="bibr">91</xref>
compared 7,8-DHF, LM22A-4, and other reported small-molecule TrkB agonists. In contrast to previous reports, all tested compounds displayed a lack of TrkB agonism, no activation of relevant pathways, and no neuroprotection against mHTT in corticostriatal co-culture. However, two monoclonal antibodies were shown to agonize TrkB in a manner akin to BDNF and protected striatal neurons from mHTT-induced toxicity. Though challenging, the use of monoclonal antibodies as BDNF mimics warrants further study.
<xref rid="b91" ref-type="bibr">91</xref>
</p>
<p>An innovative approach to restoring neurotrophic support in HD is to target the transcriptional dysregulation that partly underlies the BDNF deficiency in HD. Abnormal repression of BDNF expression by the transcription factor REST/NRSF has been demonstrated in HD. Conforti and colleagues
<xref rid="b92" ref-type="bibr">92</xref>
screened for compounds capable of inhibiting the formation of the REST-mSIN3 complex that is required for transcriptional repression. They identified a compound, C91, that increased BDNF mRNA levels in Htt-knockdown and mHTT-expressing zebrafish models.
<xref rid="b92" ref-type="bibr">92</xref>
This novel approach is in its infancy but offers another avenue for rescuing the BDNF deficit in HD.</p>
<p>Finally, the FDA-approved compound cysteamine is thought to increase brain levels of BDNF by stimulating its release through an interaction with the heat-shock protein HSJ1b.
<xref rid="b93" ref-type="bibr">93</xref>
A recent trial of cysteamine in HD patients has recently completed, but although a suggestion of motor improvement occurred in a subgroup analysis, the primary efficacy endpoint was not met; the full results of the trial, and its open-label extension, are awaited.
<xref rid="b94" ref-type="bibr">94</xref>
</p>
</sec>
<sec>
<title>Modulation of Glial Activity</title>
<p>Although the clinical features of HD are undoubtedly driven by cell-autonomous effects of mHTT causing neuronal dysfunction and death, the role of non-neuronal cells in the pathobiology of HD is increasingly a focus for study and as a source of tractable therapeutic targets. Huntingtin is ubiquitously expressed, and glial cells may display cell-autonomous dysfunctions of their own,
<xref rid="b95" ref-type="bibr">95</xref>
which may exacerbate an already precarious situation for neurons.</p>
<p>Excitotoxicity is a long-hypothesized contributor to neuronal dysfunction and death in HD. The earliest HD models were generated by intrastriatal injection of the excitotoxic NMDA agonist quinolinic acid (QA) in rodents.
<xref rid="b96" ref-type="bibr">96</xref>
Quinolinic acid is an endogenous metabolite produced by the degradation of tryptophan by the kynurenine pathway. The enzyme kynurenine monooxygenase (KMO) is a key branchpoint in this pathway, and its activity determines the balance of QA and the neuroprotectant metabolites kynurenic acid (KA) and kynurenine. In the CNS, the kynurenine pathway is confined to microglial cells.
<xref rid="b97" ref-type="bibr">97</xref>
QA levels are increased and KA levels decreased in post-mortem HD patient brain.
<xref rid="b98" ref-type="bibr">98</xref>
,
<xref rid="b99" ref-type="bibr">99</xref>
A yeast genomic screen highlighted KMO as a leading therapeutic target,
<xref rid="b100" ref-type="bibr">100</xref>
and subsequent work in drosophila has confirmed this.
<xref rid="b101" ref-type="bibr">101</xref>
Zwilling and colleagues
<xref rid="b102" ref-type="bibr">102</xref>
treated R6/2 HD model mice with a KMO inhibitor compound, JM6, and found increased brain levels of KA and decreased glutamate. Treated animals displayed improved survival, reduced loss of the synaptic marker synaptophysin, and a decrease in abnormal microglial activation. Neither JM6 nor its metabolites cross the blood–brain barrier, suggesting that its beneficial effects are mediated by peripheral KMO inhibition, producing beneficial effects for the CNS via the transit of an intermediate compound, possibly kynurenine.
<xref rid="b102" ref-type="bibr">102</xref>
Subsequent work by Beconi and colleagues
<xref rid="b120" ref-type="bibr">120</xref>
has questioned the status of JM6 as a KMO inhibitor, suggesting that the observed effects were likely attributable to contamination by the known KMO inhibitor Ro-61-8048; however, the status of KMO inhibition, peripherally or centrally, as a therapeutic target remains strong. Indeed a novel peripherally acting KMO inhibitor, CHDI-340246, has been reported to increase levels of kynurenine and KA in HD rodent models and the cerebrospinal fluid of nonhuman primates.
<xref rid="b103" ref-type="bibr">103</xref>
</p>
<p>Hyperactivity of the innate immune system, both centrally and peripherally, as a result of the cell-autonomous effects of mHTT in monocytes and microglia, and mediated by the nuclear factor kappa B (NFκB) pathway, is now an established pathogenic pathway in HD.
<xref rid="b95" ref-type="bibr">95</xref>
,
<xref rid="b104" ref-type="bibr">104</xref>
Whether immunomodulation by any of the wide array of agents available is capable of preventing or reversing this detectable phenotype, and whether this will prove beneficial in patients, remains to be seen. Although its precise mechanism of action is unknown, the immunomodulator laquinimod reduces (NFκB) activation in astrocytes
<xref rid="b105" ref-type="bibr">105</xref>
and may restore BDNF levels.
<xref rid="b106" ref-type="bibr">106</xref>
Laquinimod also may act in part through the MAPK signaling pathway, reducing the phosphorylation of p38 and JNK,
<xref rid="b107" ref-type="bibr">107</xref>
linking this compound to the cell signaling pathways discussed previously. Having demonstrated potential in multiple sclerosis,
<xref rid="b108" ref-type="bibr">108</xref>
laquinimod's effects on tractable dysfunctions in HD are under investigation, and clinical trials in HD are planned.</p>
<p>CB2 cannabinoid receptors are expressed in microglia and peripheral immune cells; their activation is anti-inflammatory, and their levels are increased in postmortem HD brain. Genetic deletion of CB2 receptors was found to accelerate the phenotype in bacterial artificial chromosome HD (BACHD) mice, whereas treatment with the CB2 agonist GW405833 ameliorated it and prolonged survival. This effect was reversed by co-administration of a peripherally acting CB2 antagonist, suggesting again that peripheral immunomodulation may be capable of altering the CNS phenotype of HD.
<xref rid="b109" ref-type="bibr">109</xref>
</p>
<p>The microglial and neuronal P2X7 receptor is an adenosine triphosphate–gated ion channel that has been found to be overexpressed in synaptic terminals in HD.
<xref rid="b110" ref-type="bibr">110</xref>
Extracellular adenosine triphosphate, acting on this receptor, stimulates synaptic dysregulation and neuronal death through apoptotic and nonapoptotic mechanisms
<xref rid="b111" ref-type="bibr">111</xref>
; in HD model mice, a P2X7 antagonist reduced apoptotic neuronal death, weight loss, and motor deficits.
<xref rid="b110" ref-type="bibr">110</xref>
P2X7 in both neurons and microglia is under investigation as a potential therapeutic target.</p>
<p>Extracellular glutamate, which may contribute to excitotoxic neuronal death, is predominantly (90%) removed by excitatory amino acid transporter 2 (EAAT2), predominantly expressed in astrocytes.
<xref rid="b112" ref-type="bibr">112</xref>
EAAT2 and its ortholog GLT1 show reduced expression in the R6/2 mouse and human HD brain
<xref rid="b113" ref-type="bibr">113</xref>
,
<xref rid="b114" ref-type="bibr">114</xref>
although whether receptor deficiency is the cause of impaired glutamate in HD striatum is less clear.
<xref rid="b115" ref-type="bibr">115</xref>
EAAT2 expression may be amenable to pharmacological modulation through activation of its promoter by the antibiotic ceftriaxone.
<xref rid="b116" ref-type="bibr">116</xref>
In one study, ceftriaxone treatment increased overall receptor expression and ameliorated motor deficits in R6/2 mice.
<xref rid="b115" ref-type="bibr">115</xref>
Whether EAAT2 in relevant cell populations is amenable to sustained pharmacological upregulation in HD, and whether this will be beneficial in patients, remains to be seen.</p>
</sec>
<sec>
<title>Metabolism</title>
<p>Numerous alterations of cellular energetic mechanisms have been described in HD, albeit with inconsistent findings, especially comparing animal and human studies
<xref rid="b117" ref-type="bibr">117</xref>
; however, an association between energetic deficits and the length of the CAG triplet repeat presents a compelling case for a direct causation by the mutant gene.
<xref rid="b118" ref-type="bibr">118</xref>
Human trials of several antioxidant molecules have not yielded any clear therapeutic success, however, and improvement of our understanding of HD-specific metabolic derangements is needed to develop more targeted therapeutics.
<xref rid="b117" ref-type="bibr">117</xref>
Modulation of the metabolic transcriptional coactivator Peroxisome proliferator-activated receptor-gamma coactivator (PGC1α), perhaps through agonism of the nuclear receptor peroxisome proliferator-activated receptor gamma by rosiglitazone, has been reported as ameliorating motor deficits and increasing cortical BDNF in an HD mouse model, although apparently without effect on striatal pathology.
<xref rid="b119" ref-type="bibr">119</xref>
A much improved understanding of the complex metabolic effects of mHTT is needed.</p>
</sec>
<sec sec-type="conclusions">
<title>Conclusion</title>
<p>As our understanding of the consequences of the HD mutation increases, so the range of tractable targets for therapeutic development broadens. While there are many potential targets, few are well-validated, and many single studies of purported success have yet to be replicated. Another problem is the shortcomings of our model systems and the failure, so far, of any agent that has been beneficial in an HD mouse model to prove so in human patients. Insights from studying patients are likely to be key to bridging this so-called “valley of death”: increasingly we are inclined and able to demonstrate relevant derangements in patients or patient-derived tissue before embarking on expensive and potentially hazardous clinical trials. Our understanding of therapeutic targets
<xref rid="b36" ref-type="bibr">36</xref>
and our ability to prosecute them is better than ever, thanks in part to the increasingly prominent, concerted involvement of medicinal chemists in the field,
<xref rid="b61" ref-type="bibr">61</xref>
and we anticipate an exciting era in the near future in which multiple agents, designed specifically to target the known pathobiology of HD, will enter clinical trials with a reasonable expectation of success.</p>
</sec>
</body>
<back>
<ack>
<p>We thank Dr. Douglas Macdonald and Dr. Ignacio Muñoz-Sanjuan for helpful comments on the manuscript.</p>
</ack>
<ref-list>
<title>References</title>
<ref id="b1">
<label>1</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ross</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Tabrizi</surname>
<given-names>SJ</given-names>
</name>
</person-group>
<article-title>Huntington's disease: from molecular pathogenesis to clinical treatment</article-title>
<source>The Lancet Neurology</source>
<year>2011</year>
<volume>10</volume>
<fpage>83</fpage>
<lpage>98</lpage>
<pub-id pub-id-type="pmid">21163446</pub-id>
</element-citation>
</ref>
<ref id="b2">
<label>2</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Magen</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Hornstein</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Oligonucleotide-based therapy for neurodegenerative diseases</article-title>
<source>Brain Res</source>
<year>2014</year>
<comment>DOI:
<ext-link ext-link-type="doi" xlink:href="10.1016/j.brainres.2014.04.005">10.1016/j.brainres.2014.04.005</ext-link>
</comment>
</element-citation>
</ref>
<ref id="b3">
<label>3</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Garriga-Canut</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Agustín-Pavón</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Herrmann</surname>
<given-names>F</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2012</year>
<volume>109</volume>
<fpage>E3136</fpage>
<lpage>E3145</lpage>
<pub-id pub-id-type="pmid">23054839</pub-id>
</element-citation>
</ref>
<ref id="b4">
<label>4</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bennett</surname>
<given-names>CF</given-names>
</name>
<name>
<surname>Swayze</surname>
<given-names>EE</given-names>
</name>
</person-group>
<article-title>RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform</article-title>
<source>Annu Rev Pharmacol Toxicol</source>
<year>2010</year>
<volume>50</volume>
<fpage>259</fpage>
<lpage>293</lpage>
<pub-id pub-id-type="pmid">20055705</pub-id>
</element-citation>
</ref>
<ref id="b5">
<label>5</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martínez</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Wright</surname>
<given-names>N</given-names>
</name>
<name>
<surname>López-Fraga</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jiménez</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Pañeda</surname>
<given-names>C</given-names>
</name>
</person-group>
<article-title>Silencing human genetic diseases with oligonucleotide-based therapies</article-title>
<source>Hum Genet</source>
<year>2013</year>
<volume>132</volume>
<fpage>481</fpage>
<lpage>493</lpage>
<pub-id pub-id-type="pmid">23494242</pub-id>
</element-citation>
</ref>
<ref id="b6">
<label>6</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Harper</surname>
<given-names>SQ</given-names>
</name>
<name>
<surname>Staber</surname>
<given-names>PD</given-names>
</name>
<name>
<surname>He</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2005</year>
<volume>102</volume>
<fpage>5820</fpage>
<lpage>5825</lpage>
<pub-id pub-id-type="pmid">15811941</pub-id>
</element-citation>
</ref>
<ref id="b7">
<label>7</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Carroll</surname>
<given-names>JB</given-names>
</name>
<name>
<surname>Warby</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Southwell</surname>
<given-names>AL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Potent and selective antisense oligonucleotides targeting single-nucleotide polymorphisms in the Huntington disease gene/allele-specific silencing of mutant huntingtin</article-title>
<source>Mol Ther</source>
<year>2011</year>
<volume>19</volume>
<fpage>2178</fpage>
<lpage>2185</lpage>
<pub-id pub-id-type="pmid">21971427</pub-id>
</element-citation>
</ref>
<ref id="b8">
<label>8</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stanek</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Sardi</surname>
<given-names>SP</given-names>
</name>
<name>
<surname>Mastis</surname>
<given-names>BM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Silencing mutant huntingtin by AAV-mediated RNAi ameliorates disease manifestations in the YAC128 mouse model of Huntington's disease</article-title>
<source>Hum Gene Ther</source>
<year>2014</year>
<volume>25</volume>
<fpage>461</fpage>
<lpage>474</lpage>
<pub-id pub-id-type="pmid">24484067</pub-id>
</element-citation>
</ref>
<ref id="b9">
<label>9</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kordasiewicz</surname>
<given-names>HB</given-names>
</name>
<name>
<surname>Stanek</surname>
<given-names>LM</given-names>
</name>
<name>
<surname>Wancewicz</surname>
<given-names>EV</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Sustained therapeutic reversal of Huntington's disease by transient repression of huntingtin synthesis</article-title>
<source>Neuron</source>
<year>2012</year>
<volume>74</volume>
<fpage>1031</fpage>
<lpage>1044</lpage>
<pub-id pub-id-type="pmid">22726834</pub-id>
</element-citation>
</ref>
<ref id="b10">
<label>10</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lu</surname>
<given-names>X-H</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>XW</given-names>
</name>
</person-group>
<article-title>“Huntingtin holiday”: progress toward an antisense therapy for Huntington's disease</article-title>
<source>Neuron</source>
<year>2012</year>
<volume>74</volume>
<fpage>964</fpage>
<lpage>966</lpage>
<pub-id pub-id-type="pmid">22726826</pub-id>
</element-citation>
</ref>
<ref id="b11">
<label>11</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aronin</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Moore</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Hunting down huntingtin</article-title>
<source>N Engl J Med</source>
<year>2012</year>
<volume>367</volume>
<fpage>1753</fpage>
<lpage>1754</lpage>
<pub-id pub-id-type="pmid">23113488</pub-id>
</element-citation>
</ref>
<ref id="b12">
<label>12</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Pestronk</surname>
<given-names>A</given-names>
</name>
<name>
<surname>David</surname>
<given-names>W</given-names>
</name>
<etal></etal>
</person-group>
<article-title>An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study</article-title>
<source>Lancet Neurol</source>
<year>2013</year>
<volume>12</volume>
<fpage>435</fpage>
<lpage>442</lpage>
<pub-id pub-id-type="pmid">23541756</pub-id>
</element-citation>
</ref>
<ref id="b13">
<label>13</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Nasir</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Floresco</surname>
<given-names>SB</given-names>
</name>
<name>
<surname>O'Kusky</surname>
<given-names>JR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeted disruption of the Huntington's disease gene results in embryonic lethality and behavioral and morphological changes in heterozygotes</article-title>
<source>Cell</source>
<year>1995</year>
<volume>81</volume>
<fpage>811</fpage>
<lpage>823</lpage>
<pub-id pub-id-type="pmid">7774020</pub-id>
</element-citation>
</ref>
<ref id="b14">
<label>14</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dragatsis</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Levine</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Zeitlin</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>Inactivation of Hdh in the brain and testis results in progressive neurodegeneration and sterility in mice</article-title>
<source>Nat Genet</source>
<year>2000</year>
<volume>26</volume>
<fpage>300</fpage>
<lpage>306</lpage>
<pub-id pub-id-type="pmid">11062468</pub-id>
</element-citation>
</ref>
<ref id="b15">
<label>15</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marques</surname>
<given-names>JT</given-names>
</name>
<name>
<surname>Williams</surname>
<given-names>BRG</given-names>
</name>
</person-group>
<article-title>Activation of the mammalian immune system by siRNAs</article-title>
<source>Nat Biotech</source>
<year>2005</year>
<volume>23</volume>
<fpage>1399</fpage>
<lpage>1405</lpage>
</element-citation>
</ref>
<ref id="b16">
<label>16</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mingozzi</surname>
<given-names>F</given-names>
</name>
<name>
<surname>High</surname>
<given-names>KA</given-names>
</name>
</person-group>
<article-title>Immune responses to AAV in clinical trials</article-title>
<source>Curr Gene Ther</source>
<year>2011</year>
<volume>11</volume>
<fpage>321</fpage>
<lpage>330</lpage>
<pub-id pub-id-type="pmid">21557723</pub-id>
</element-citation>
</ref>
<ref id="b17">
<label>17</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Boudreau</surname>
<given-names>RL</given-names>
</name>
<name>
<surname>Spengler</surname>
<given-names>RM</given-names>
</name>
<name>
<surname>Davidson</surname>
<given-names>BL</given-names>
</name>
</person-group>
<article-title>Rational design of therapeutic siRNAs: minimizing off-targeting potential to improve the safety of RNAi therapy for Huntington's disease</article-title>
<source>Mol Ther</source>
<year>2011</year>
<volume>19</volume>
<fpage>2169</fpage>
<lpage>2177</lpage>
<pub-id pub-id-type="pmid">21952166</pub-id>
</element-citation>
</ref>
<ref id="b18">
<label>18</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dirin</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Winkler</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Influence of diverse chemical modifications on the ADME characteristics and toxicology of antisense oligonucleotides</article-title>
<source>Exp Opin Biol Ther</source>
<year>2013</year>
<volume>13</volume>
<fpage>875</fpage>
<lpage>888</lpage>
</element-citation>
</ref>
<ref id="b19">
<label>19</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>McBride</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Pitzer</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Boudreau</surname>
<given-names>RL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington's disease</article-title>
<source>Mol Ther</source>
<year>2011</year>
<volume>19</volume>
<fpage>2152</fpage>
<lpage>2162</lpage>
<pub-id pub-id-type="pmid">22031240</pub-id>
</element-citation>
</ref>
<ref id="b20">
<label>20</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Grondin</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Kaytor</surname>
<given-names>MD</given-names>
</name>
<name>
<surname>Ai</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum</article-title>
<source>Brain</source>
<year>2012</year>
<volume>135</volume>
<fpage>1197</fpage>
<lpage>209</lpage>
<pub-id pub-id-type="pmid">22252996</pub-id>
</element-citation>
</ref>
<ref id="b21">
<label>21</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Stiles</surname>
<given-names>DK</given-names>
</name>
<name>
<surname>Zhang</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Ge</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Widespread suppression of huntingtin with convection-enhanced delivery of siRNA</article-title>
<source>Exp Neurol</source>
<year>2012</year>
<volume>233</volume>
<fpage>463</fpage>
<lpage>471</lpage>
<pub-id pub-id-type="pmid">22119622</pub-id>
</element-citation>
</ref>
<ref id="b22">
<label>22</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Bennett</surname>
<given-names>CF</given-names>
</name>
</person-group>
<article-title>Antisense oligonucleotide therapy for the treatment of Huntington's disease</article-title>
<source>World Congress on Huntington's Disease</source>
<year>2011</year>
<publisher-loc>Melbourne, Australia</publisher-loc>
<fpage>3</fpage>
</element-citation>
</ref>
<ref id="b23">
<label>23</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Evers</surname>
<given-names>MM</given-names>
</name>
<name>
<surname>Pepers</surname>
<given-names>BA</given-names>
</name>
<name>
<surname>van Deutekom</surname>
<given-names>JC</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Targeting several CAG expansion diseases by a single antisense oligonucleotide</article-title>
<source>PloS One</source>
<year>2011</year>
<volume>6</volume>
<fpage>e24308</fpage>
<pub-id pub-id-type="pmid">21909428</pub-id>
</element-citation>
</ref>
<ref id="b24">
<label>24</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lombardi</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Jaspers</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Spronkmans</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A majority of Huntington's disease patients may be treatable by individualized allele-specific RNA interference</article-title>
<source>Exp Neurol</source>
<year>2009</year>
<volume>217</volume>
<fpage>312</fpage>
<lpage>319</lpage>
<pub-id pub-id-type="pmid">19289118</pub-id>
</element-citation>
</ref>
<ref id="b25">
<label>25</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Alvarez-Erviti</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Seow</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Yin</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Betts</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Lakhal</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Wood</surname>
<given-names>MJA</given-names>
</name>
</person-group>
<article-title>Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes</article-title>
<source>Nat Biotech</source>
<year>2011</year>
<volume>29</volume>
<fpage>341</fpage>
<lpage>345</lpage>
</element-citation>
</ref>
<ref id="b26">
<label>26</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>DiFiglia</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sena-Esteves</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Chase</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2007</year>
<volume>104</volume>
<fpage>17204</fpage>
<lpage>17209</lpage>
<pub-id pub-id-type="pmid">17940007</pub-id>
</element-citation>
</ref>
<ref id="b27">
<label>27</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Lima</surname>
<given-names>WF</given-names>
</name>
<name>
<surname>Prakash</surname>
<given-names>TP</given-names>
</name>
<name>
<surname>Murray</surname>
<given-names>HM</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Single-stranded siRNAs activate RNAi in animals</article-title>
<source>Cell</source>
<year>2012</year>
<volume>150</volume>
<fpage>883</fpage>
<lpage>894</lpage>
<pub-id pub-id-type="pmid">22939618</pub-id>
</element-citation>
</ref>
<ref id="b28">
<label>28</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Yu</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Pendergraff</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Single-stranded RNAs use RNAi to potently and allele-selectively inhibit mutant huntingtin expression</article-title>
<source>Cell</source>
<year>2012</year>
<volume>150</volume>
<fpage>895</fpage>
<lpage>908</lpage>
<pub-id pub-id-type="pmid">22939619</pub-id>
</element-citation>
</ref>
<ref id="b29">
<label>29</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Wang</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Gray</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Lu</surname>
<given-names>X-H</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neuronal targets for reducing mutant huntingtin expression to ameliorate disease in a mouse model of Huntington's disease</article-title>
<source>Nat Med</source>
<year>2014</year>
<volume>20</volume>
<fpage>536</fpage>
<lpage>541</lpage>
<pub-id pub-id-type="pmid">24784230</pub-id>
</element-citation>
</ref>
<ref id="b30">
<label>30</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Niewoehner</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bohrmann</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Collin</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle</article-title>
<source>Neuron</source>
<year>2014</year>
<volume>81</volume>
<fpage>49</fpage>
<lpage>60</lpage>
<pub-id pub-id-type="pmid">24411731</pub-id>
</element-citation>
</ref>
<ref id="b31">
<label>31</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Papworth</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Kolasinska</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Minczuk</surname>
<given-names>M</given-names>
</name>
</person-group>
<article-title>Designer zinc-finger proteins and their applications</article-title>
<source>Gene</source>
<year>2006</year>
<volume>366</volume>
<fpage>27</fpage>
<lpage>38</lpage>
<pub-id pub-id-type="pmid">16298089</pub-id>
</element-citation>
</ref>
<ref id="b32">
<label>32</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bañez-Coronel</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Porta</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Kagerbauer</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A pathogenic mechanism in Huntington's disease involves small CAG-repeated RNAs with neurotoxic activity</article-title>
<source>PLoS Genetics</source>
<year>2012</year>
<volume>8</volume>
<fpage>e1002481</fpage>
<pub-id pub-id-type="pmid">22383888</pub-id>
</element-citation>
</ref>
<ref id="b33">
<label>33</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sathasivam</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Neueder</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Gipson</surname>
<given-names>TA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2013</year>
<volume>110</volume>
<fpage>2366</fpage>
<lpage>2370</lpage>
<pub-id pub-id-type="pmid">23341618</pub-id>
</element-citation>
</ref>
<ref id="b34">
<label>34</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zeitler</surname>
<given-names>JRP</given-names>
</name>
<name>
<surname>Froelich</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Yu</surname>
<given-names>Q</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Allele-specific repression of mutant Huntingtin expression by engineered zinc finger transcriptional repressors as a potential therapy for Huntington's disease. Society for Neuroscience Annual Meeting</article-title>
<source>San Diego, CA, USA</source>
<year>2013</year>
</element-citation>
</ref>
<ref id="b35">
<label>35</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Li</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Haurigot</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Doyon</surname>
<given-names>Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>In vivo genome editing restores haemostasis in a mouse model of haemophilia</article-title>
<source>Nature</source>
<year>2011</year>
<volume>475</volume>
<fpage>217</fpage>
<lpage>221</lpage>
<pub-id pub-id-type="pmid">21706032</pub-id>
</element-citation>
</ref>
<ref id="b36">
<label>36</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ross</surname>
<given-names>CA</given-names>
</name>
<name>
<surname>Aylward</surname>
<given-names>EH</given-names>
</name>
<name>
<surname>Wild</surname>
<given-names>EJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Huntington disease: natural history, biomarkers and prospects for therapeutics</article-title>
<source>Nat Rev Neurol</source>
<year>2014</year>
<volume>10</volume>
<fpage>204</fpage>
<lpage>216</lpage>
<pub-id pub-id-type="pmid">24614516</pub-id>
</element-citation>
</ref>
<ref id="b37">
<label>37</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gu</surname>
<given-names>X</given-names>
</name>
<name>
<surname>Greiner</surname>
<given-names>ER</given-names>
</name>
<name>
<surname>Mishra</surname>
<given-names>R</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Serines 13 and 16 are critical determinants of full-length human mutant huntingtin induced disease pathogenesis in HD mice</article-title>
<source>Neuron</source>
<year>2009</year>
<volume>64</volume>
<fpage>828</fpage>
<lpage>840</lpage>
<pub-id pub-id-type="pmid">20064390</pub-id>
</element-citation>
</ref>
<ref id="b38">
<label>38</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Atwal</surname>
<given-names>RS</given-names>
</name>
<name>
<surname>Desmond</surname>
<given-names>CR</given-names>
</name>
<name>
<surname>Caron</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Kinase inhibitors modulate huntingtin cell localization and toxicity</article-title>
<source>Nat Chem Biol</source>
<year>2011</year>
<volume>7</volume>
<fpage>453</fpage>
<lpage>460</lpage>
<pub-id pub-id-type="pmid">21623356</pub-id>
</element-citation>
</ref>
<ref id="b39">
<label>39</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zala</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Colin</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Rangone</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Liot</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Humbert</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Saudou</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Phosphorylation of mutant huntingtin at S421 restores anterograde and retrograde transport in neurons</article-title>
<source>Hum Mol Genet</source>
<year>2008</year>
<volume>17</volume>
<fpage>3837</fpage>
<lpage>3846</lpage>
<pub-id pub-id-type="pmid">18772195</pub-id>
</element-citation>
</ref>
<ref id="b40">
<label>40</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Maglione</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Marchi</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Di Pardo</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Impaired ganglioside metabolism in Huntington's disease and neuroprotective role of GM1</article-title>
<source>J Neurosci</source>
<year>2010</year>
<volume>30</volume>
<fpage>4072</fpage>
<lpage>4080</lpage>
<pub-id pub-id-type="pmid">20237277</pub-id>
</element-citation>
</ref>
<ref id="b41">
<label>41</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Di Pardo</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Maglione</surname>
<given-names>V</given-names>
</name>
<name>
<surname>Alpaugh</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Ganglioside GM1 induces phosphorylation of mutant huntingtin and restores normal motor behavior in Huntington disease mice</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2012</year>
<volume>109</volume>
<fpage>3528</fpage>
<lpage>3533</lpage>
<pub-id pub-id-type="pmid">22331905</pub-id>
</element-citation>
</ref>
<ref id="b42">
<label>42</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hansson</surname>
<given-names>O</given-names>
</name>
<name>
<surname>Nylandsted</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Castilho</surname>
<given-names>RF</given-names>
</name>
<name>
<surname>Leist</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jaattela</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Brundin</surname>
<given-names>P</given-names>
</name>
</person-group>
<article-title>Overexpression of heat shock protein 70 in R6/2 Huntington's disease mice has only modest effects on disease progression</article-title>
<source>Brain Res</source>
<year>2003</year>
<volume>970</volume>
<fpage>47</fpage>
<lpage>57</lpage>
<pub-id pub-id-type="pmid">12706247</pub-id>
</element-citation>
</ref>
<ref id="b43">
<label>43</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hay</surname>
<given-names>DG</given-names>
</name>
<name>
<surname>Sathasivam</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Tobaben</surname>
<given-names>S</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Progressive decrease in chaperone protein levels in a mouse model of Huntington's disease and induction of stress proteins as a therapeutic approach</article-title>
<source>Hum Mol Genet</source>
<year>2004</year>
<volume>13</volume>
<fpage>1389</fpage>
<lpage>1405</lpage>
<pub-id pub-id-type="pmid">15115766</pub-id>
</element-citation>
</ref>
<ref id="b44">
<label>44</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Labbadia</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Novoselov</surname>
<given-names>SS</given-names>
</name>
<name>
<surname>Bett</surname>
<given-names>JS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Suppression of protein aggregation by chaperone modification of high molecular weight complexes</article-title>
<source>Brain</source>
<year>2012</year>
<volume>135</volume>
<fpage>1180</fpage>
<lpage>1196</lpage>
<pub-id pub-id-type="pmid">22396390</pub-id>
</element-citation>
</ref>
<ref id="b45">
<label>45</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kitamura</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Kubota</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Pack</surname>
<given-names>CG</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cytosolic chaperonin prevents polyglutamine toxicity with altering the aggregation state</article-title>
<source>Nat Cell Biol</source>
<year>2006</year>
<volume>8</volume>
<fpage>1163</fpage>
<lpage>1170</lpage>
<pub-id pub-id-type="pmid">16980958</pub-id>
</element-citation>
</ref>
<ref id="b46">
<label>46</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tam</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Geller</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Spiess</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Frydman</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>The chaperonin TRiC controls polyglutamine aggregation and toxicity through subunit-specific interactions</article-title>
<source>Nat Cell Biol</source>
<year>2006</year>
<volume>8</volume>
<fpage>1155</fpage>
<lpage>1162</lpage>
<pub-id pub-id-type="pmid">16980959</pub-id>
</element-citation>
</ref>
<ref id="b47">
<label>47</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sontag</surname>
<given-names>EM</given-names>
</name>
<name>
<surname>Joachimiak</surname>
<given-names>LA</given-names>
</name>
<name>
<surname>Tan</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Exogenous delivery of chaperonin subunit fragment ApiCCT1 modulates mutant Huntingtin cellular phenotypes</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2013</year>
<volume>110</volume>
<fpage>3077</fpage>
<lpage>3082</lpage>
<pub-id pub-id-type="pmid">23365139</pub-id>
</element-citation>
</ref>
<ref id="b48">
<label>48</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Martinez-Vicente</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Talloczy</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease</article-title>
<source>Nat Neurosci</source>
<year>2010</year>
<volume>13</volume>
<fpage>567</fpage>
<lpage>576</lpage>
<pub-id pub-id-type="pmid">20383138</pub-id>
</element-citation>
</ref>
<ref id="b49">
<label>49</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ravikumar</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Vacher</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Berger</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease</article-title>
<source>Nat Genet</source>
<year>2004</year>
<volume>36</volume>
<fpage>585</fpage>
<lpage>595</lpage>
<pub-id pub-id-type="pmid">15146184</pub-id>
</element-citation>
</ref>
<ref id="b50">
<label>50</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Renna</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Jimenez-Sanchez</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sarkar</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Rubinsztein</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases</article-title>
<source>J Biol Chem</source>
<year>2010</year>
<volume>285</volume>
<fpage>11061</fpage>
<lpage>11067</lpage>
<pub-id pub-id-type="pmid">20147746</pub-id>
</element-citation>
</ref>
<ref id="b51">
<label>51</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Tsvetkov</surname>
<given-names>AS</given-names>
</name>
<name>
<surname>Miller</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Arrasate</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wong</surname>
<given-names>JS</given-names>
</name>
<name>
<surname>Pleiss</surname>
<given-names>MA</given-names>
</name>
<name>
<surname>Finkbeiner</surname>
<given-names>S</given-names>
</name>
</person-group>
<article-title>A small-molecule scaffold induces autophagy in primary neurons and protects against toxicity in a Huntington disease model</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2010</year>
<volume>107</volume>
<fpage>16982</fpage>
<lpage>16987</lpage>
<pub-id pub-id-type="pmid">20833817</pub-id>
</element-citation>
</ref>
<ref id="b52">
<label>52</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Smith</surname>
<given-names>MR</given-names>
</name>
<name>
<surname>Syed</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Lukacsovich</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington's disease</article-title>
<source>Hum Mol Genet</source>
<year>2014</year>
<volume>23</volume>
<fpage>2995</fpage>
<lpage>3007</lpage>
<pub-id pub-id-type="pmid">24436303</pub-id>
</element-citation>
</ref>
<ref id="b53">
<label>53</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Fu</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neuroprotective role of Sirt1 in mammalian models of Huntington's disease through activation of multiple Sirt1 targets</article-title>
<source>Nat Med</source>
<year>2012</year>
<volume>18</volume>
<fpage>153</fpage>
<lpage>158</lpage>
<pub-id pub-id-type="pmid">22179319</pub-id>
</element-citation>
</ref>
<ref id="b54">
<label>54</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Reilmann</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Squitieri</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Priller</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Safety and tolerability of selisistat for the treatment of Huntington's disease: results from a randomized, double-blind, placebo-controlled phase II trial (S47.004)</article-title>
<source>Neurology</source>
<year>2014</year>
<volume>82</volume>
<issue>10 Suppl</issue>
<fpage>S47.004</fpage>
</element-citation>
</ref>
<ref id="b55">
<label>55</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Hockly</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Richon</surname>
<given-names>VM</given-names>
</name>
<name>
<surname>Woodman</surname>
<given-names>B</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease</article-title>
<source>Proc Natl Acad Sci U S A</source>
<year>2003</year>
<volume>100</volume>
<fpage>2041</fpage>
<lpage>2046</lpage>
<pub-id pub-id-type="pmid">12576549</pub-id>
</element-citation>
</ref>
<ref id="b56">
<label>56</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jia</surname>
<given-names>H</given-names>
</name>
<name>
<surname>Pallos</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jacques</surname>
<given-names>V</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Histone deacetylase (HDAC) inhibitors targeting HDAC3 and HDAC1 ameliorate polyglutamine-elicited phenotypes in model systems of Huntington's disease</article-title>
<source>Neurobiol Dis</source>
<year>2012</year>
<volume>46</volume>
<fpage>351</fpage>
<lpage>361</lpage>
<pub-id pub-id-type="pmid">22590724</pub-id>
</element-citation>
</ref>
<ref id="b57">
<label>57</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mielcarek</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Landles</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Weiss</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration</article-title>
<source>PLoS Biol</source>
<year>2013</year>
<volume>11</volume>
<fpage>e1001717</fpage>
<pub-id pub-id-type="pmid">24302884</pub-id>
</element-citation>
</ref>
<ref id="b58">
<label>58</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Moumné</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Campbell</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Howland</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Ouyang</surname>
<given-names>Y</given-names>
</name>
<name>
<surname>Bates</surname>
<given-names>GP</given-names>
</name>
</person-group>
<article-title>Genetic knock-down of HDAC3 does not modify disease-related phenotypes in a mouse model of Huntington's disease</article-title>
<source>PloS One</source>
<year>2012</year>
<volume>7</volume>
<fpage>e31080</fpage>
<pub-id pub-id-type="pmid">22347433</pub-id>
</element-citation>
</ref>
<ref id="b59">
<label>59</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bobrowska</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Paganetti</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Matthias</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Bates</surname>
<given-names>GP</given-names>
</name>
</person-group>
<article-title>Hdac6 knock-out increases tubulin acetylation but does not modify disease progression in the R6/2 mouse model of Huntington's disease</article-title>
<source>PloS One</source>
<year>2011</year>
<volume>6</volume>
<fpage>e20696</fpage>
<pub-id pub-id-type="pmid">21677773</pub-id>
</element-citation>
</ref>
<ref id="b60">
<label>60</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Benn</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Butler</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Mariner</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic knock-down of HDAC7 does not ameliorate disease pathogenesis in the R6/2 mouse model of Huntington's disease</article-title>
<source>PLoS One</source>
<year>2009</year>
<volume>4</volume>
<fpage>e5747</fpage>
<pub-id pub-id-type="pmid">19484127</pub-id>
</element-citation>
</ref>
<ref id="b61">
<label>61</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Dominguez</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Muñoz-Sanjuan</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Foundation-directed therapeutic development in Huntington's disease</article-title>
<source>J Med Chem</source>
<year>2014</year>
<volume>57</volume>
<fpage>5479</fpage>
<lpage>5488</lpage>
<pub-id pub-id-type="pmid">24432836</pub-id>
</element-citation>
</ref>
<ref id="b62">
<label>62</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mielcarek</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Benn</surname>
<given-names>CL</given-names>
</name>
<name>
<surname>Franklin</surname>
<given-names>SA</given-names>
</name>
<etal></etal>
</person-group>
<article-title>SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington's disease</article-title>
<source>PLoS One</source>
<year>2011</year>
<volume>6</volume>
<fpage>e27746</fpage>
<pub-id pub-id-type="pmid">22140466</pub-id>
</element-citation>
</ref>
<ref id="b63">
<label>63</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gines</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Seong</surname>
<given-names>IS</given-names>
</name>
<name>
<surname>Fossale</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington's disease knock-in mice</article-title>
<source>Hum Mol Genet</source>
<year>2003</year>
<volume>12</volume>
<fpage>497</fpage>
<lpage>508</lpage>
<pub-id pub-id-type="pmid">12588797</pub-id>
</element-citation>
</ref>
<ref id="b64">
<label>64</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Sugars</surname>
<given-names>KL</given-names>
</name>
<name>
<surname>Brown</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Cook</surname>
<given-names>LJ</given-names>
</name>
<name>
<surname>Swartz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Rubinsztein</surname>
<given-names>DC</given-names>
</name>
</person-group>
<article-title>Decreased cAMP response element-mediated transcription: an early event in exon 1 and full-length cell models of Huntington's disease that contributes to polyglutamine pathogenesis</article-title>
<source>J Biol Chem</source>
<year>2004</year>
<volume>279</volume>
<fpage>4988</fpage>
<lpage>4999</lpage>
<pub-id pub-id-type="pmid">14627700</pub-id>
</element-citation>
</ref>
<ref id="b65">
<label>65</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Coskran</surname>
<given-names>TM</given-names>
</name>
<name>
<surname>Morton</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Menniti</surname>
<given-names>FS</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species</article-title>
<source>J Histochem Cytochem</source>
<year>2006</year>
<volume>54</volume>
<fpage>1205</fpage>
<lpage>1213</lpage>
<pub-id pub-id-type="pmid">16864896</pub-id>
</element-citation>
</ref>
<ref id="b66">
<label>66</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Threlfell</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Sammut</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Menniti</surname>
<given-names>FS</given-names>
</name>
<name>
<surname>Schmidt</surname>
<given-names>CJ</given-names>
</name>
<name>
<surname>West</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>Inhibition of phosphodiesterase 10A increases the responsiveness of striatal projection neurons to cortical stimulation</article-title>
<source>J Pharmacol Exp Ther</source>
<year>2009</year>
<volume>328</volume>
<fpage>785</fpage>
<lpage>795</lpage>
<pub-id pub-id-type="pmid">19056933</pub-id>
</element-citation>
</ref>
<ref id="b67">
<label>67</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Threlfell</surname>
<given-names>S</given-names>
</name>
<name>
<surname>West</surname>
<given-names>AR</given-names>
</name>
</person-group>
<article-title>Modulation of striatal neuron activity by cyclic nucleotide signalling and phosphodiesterase inhibition</article-title>
<source>Basal Ganglia</source>
<year>2013</year>
<volume>3</volume>
<fpage>137</fpage>
<lpage>146</lpage>
<pub-id pub-id-type="pmid">24490129</pub-id>
</element-citation>
</ref>
<ref id="b68">
<label>68</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kleiman</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Kimmel</surname>
<given-names>LH</given-names>
</name>
<name>
<surname>Bove</surname>
<given-names>SE</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Chronic suppression of phosphodiesterase 10A alters striatal expression of genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington's disease</article-title>
<source>J Pharmacol Exp Ther</source>
<year>2011</year>
<volume>336</volume>
<fpage>64</fpage>
<lpage>76</lpage>
<pub-id pub-id-type="pmid">20923867</pub-id>
</element-citation>
</ref>
<ref id="b69">
<label>69</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Piccart</surname>
<given-names>E</given-names>
</name>
<name>
<surname>De Backer</surname>
<given-names>J-F</given-names>
</name>
<name>
<surname>Gall</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Genetic deletion of PDE10A selectively impairs incentive salience attribution and decreases medium spiny neuron excitability</article-title>
<source>Behav Brain Res</source>
<year>2014</year>
<volume>268</volume>
<fpage>48</fpage>
<lpage>54</lpage>
<pub-id pub-id-type="pmid">24698799</pub-id>
</element-citation>
</ref>
<ref id="b70">
<label>70</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giampà</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Laurenti</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Anzilotti</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bernardi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Menniti</surname>
<given-names>FS</given-names>
</name>
<name>
<surname>Fusco</surname>
<given-names>FR</given-names>
</name>
</person-group>
<article-title>Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington's disease</article-title>
<source>PLoS One</source>
<year>2010</year>
<volume>5</volume>
<fpage>e13417</fpage>
<pub-id pub-id-type="pmid">20976216</pub-id>
</element-citation>
</ref>
<ref id="b71">
<label>71</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Zaleska</surname>
<given-names>M</given-names>
</name>
</person-group>
<source>Advancing phosphodiesterase 10A (PDE10A) inhibitor from bench to clinic</source>
<year>2013</year>
<publisher-loc>Venice, Italy</publisher-loc>
<publisher-name>CHDI Foundation Therapeutics Conference</publisher-name>
</element-citation>
</ref>
<ref id="b72">
<label>72</label>
<element-citation publication-type="other">
<article-title>National Institutes for Health</article-title>
<source>Study evaluating the safety, tolerability and brain function of 2 doses of PF-02545920 in subjects with early Huntington's disease</source>
<year>2014</year>
</element-citation>
</ref>
<ref id="b73">
<label>73</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>DeMarch</surname>
<given-names>Z</given-names>
</name>
<name>
<surname>Giampà</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Patassini</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Bernardi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Fusco</surname>
<given-names>FR</given-names>
</name>
</person-group>
<article-title>Beneficial effects of rolipram in the R6/2 mouse model of Huntington's disease</article-title>
<source>Neurobiol Dis</source>
<year>2008</year>
<volume>30</volume>
<fpage>375</fpage>
<lpage>387</lpage>
<pub-id pub-id-type="pmid">18424161</pub-id>
</element-citation>
</ref>
<ref id="b74">
<label>74</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gianfriddo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Melani</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Turchi</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Giovannini</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Pedata</surname>
<given-names>F</given-names>
</name>
</person-group>
<article-title>Adenosine and glutamate extracellular concentrations and mitogen-activated protein kinases in the striatum of Huntington transgenic mice: selective antagonism of adenosine A2A receptors reduces transmitter outflow</article-title>
<source>Neurobiol Dis</source>
<year>2004</year>
<volume>17</volume>
<fpage>77</fpage>
<lpage>88</lpage>
<pub-id pub-id-type="pmid">15350968</pub-id>
</element-citation>
</ref>
<ref id="b75">
<label>75</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liu</surname>
<given-names>YF</given-names>
</name>
</person-group>
<article-title>Expression of polyglutamine-expanded huntingtin activates the SEK1-JNK pathway and induces apoptosis in a hippocampal neuronal cell line</article-title>
<source>J Biol Chem</source>
<year>1998</year>
<volume>273</volume>
<fpage>28873</fpage>
<lpage>28877</lpage>
<pub-id pub-id-type="pmid">9786889</pub-id>
</element-citation>
</ref>
<ref id="b76">
<label>76</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Apostol</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Illes</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Pallos</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Mutant huntingtin alters MAPK signaling pathways in PC12 and striatal cells: ERK1/2 protects against mutant huntingtin-associated toxicity</article-title>
<source>Hum Mol Genet</source>
<year>2006</year>
<volume>15</volume>
<fpage>273</fpage>
<lpage>285</lpage>
<pub-id pub-id-type="pmid">16330479</pub-id>
</element-citation>
</ref>
<ref id="b77">
<label>77</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Morfini</surname>
<given-names>GA</given-names>
</name>
<name>
<surname>You</surname>
<given-names>Y-M</given-names>
</name>
<name>
<surname>Pollema</surname>
<given-names>SL</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin</article-title>
<source>Nat Neurosci</source>
<year>2009</year>
<volume>12</volume>
<fpage>864</fpage>
<lpage>871</lpage>
<pub-id pub-id-type="pmid">19525941</pub-id>
</element-citation>
</ref>
<ref id="b78">
<label>78</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Fan</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Gladding</surname>
<given-names>CM</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease</article-title>
<source>Neurobiol Dis</source>
<year>2012</year>
<volume>45</volume>
<fpage>999</fpage>
<lpage>1009</lpage>
<pub-id pub-id-type="pmid">22198502</pub-id>
</element-citation>
</ref>
<ref id="b79">
<label>79</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Ferrante</surname>
<given-names>RJ</given-names>
</name>
<name>
<surname>Kubilus</surname>
<given-names>JK</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice</article-title>
<source>J Neurosci</source>
<year>2003</year>
<volume>23</volume>
<fpage>9418</fpage>
<lpage>9427</lpage>
<pub-id pub-id-type="pmid">14561870</pub-id>
</element-citation>
</ref>
<ref id="b80">
<label>80</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Taylor</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Moser</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Régulier</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition</article-title>
<source>J Neurosci</source>
<year>2013</year>
<volume>33</volume>
<fpage>2313</fpage>
<lpage>2325</lpage>
<pub-id pub-id-type="pmid">23392662</pub-id>
</element-citation>
</ref>
<ref id="b81">
<label>81</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Apostol</surname>
<given-names>BL</given-names>
</name>
<name>
<surname>Simmons</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Zuccato</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>CEP-1347 reduces mutant huntingtin-associated neurotoxicity and restores BDNF levels in R6/2 mice</article-title>
<source>Mol Cell Neurosci</source>
<year>2008</year>
<volume>39</volume>
<fpage>8</fpage>
<lpage>20</lpage>
<pub-id pub-id-type="pmid">18602275</pub-id>
</element-citation>
</ref>
<ref id="b82">
<label>82</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zuccato</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Marullo</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Conforti</surname>
<given-names>P</given-names>
</name>
<name>
<surname>MacDonald</surname>
<given-names>ME</given-names>
</name>
<name>
<surname>Tartari</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Cattaneo</surname>
<given-names>E</given-names>
</name>
</person-group>
<article-title>Systematic assessment of BDNF and its receptor levels in human cortices affected by Huntington's disease</article-title>
<source>Brain Pathol</source>
<year>2008</year>
<volume>18</volume>
<fpage>225</fpage>
<lpage>238</lpage>
<pub-id pub-id-type="pmid">18093249</pub-id>
</element-citation>
</ref>
<ref id="b83">
<label>83</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zuccato</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Ciammola</surname>
<given-names>A</given-names>
</name>
<name>
<surname>Rigamonti</surname>
<given-names>D</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Loss of huntingtin-mediated BDNF gene transcription in Huntington's disease</article-title>
<source>Science</source>
<year>2001</year>
<volume>293</volume>
<fpage>493</fpage>
<lpage>498</lpage>
<pub-id pub-id-type="pmid">11408619</pub-id>
</element-citation>
</ref>
<ref id="b84">
<label>84</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Gauthier</surname>
<given-names>LR</given-names>
</name>
<name>
<surname>Charrin</surname>
<given-names>BC</given-names>
</name>
<name>
<surname>Borrell-Pagès</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules</article-title>
<source>Cell</source>
<year>2004</year>
<volume>118</volume>
<fpage>127</fpage>
<lpage>138</lpage>
<pub-id pub-id-type="pmid">15242649</pub-id>
</element-citation>
</ref>
<ref id="b85">
<label>85</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kells</surname>
<given-names>AP</given-names>
</name>
<name>
<surname>Fong</surname>
<given-names>DM</given-names>
</name>
<name>
<surname>Dragunow</surname>
<given-names>M</given-names>
</name>
<name>
<surname>During</surname>
<given-names>MJ</given-names>
</name>
<name>
<surname>Young</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Connor</surname>
<given-names>B</given-names>
</name>
</person-group>
<article-title>AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease</article-title>
<source>Mol Ther</source>
<year>2004</year>
<volume>9</volume>
<fpage>682</fpage>
<lpage>688</lpage>
<pub-id pub-id-type="pmid">15120329</pub-id>
</element-citation>
</ref>
<ref id="b86">
<label>86</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Pineda</surname>
<given-names>JR</given-names>
</name>
<name>
<surname>Rubio</surname>
<given-names>N</given-names>
</name>
<name>
<surname>Akerud</surname>
<given-names>P</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neuroprotection by GDNF-secreting stem cells in a Huntington's disease model: optical neuroimage tracking of brain-grafted cells</article-title>
<source>Gene Ther</source>
<year>2006</year>
<volume>14</volume>
<fpage>118</fpage>
<lpage>128</lpage>
<pub-id pub-id-type="pmid">16943855</pub-id>
</element-citation>
</ref>
<ref id="b87">
<label>87</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Marks</surname>
<given-names>WJ</given-names>
<suffix>Jr</suffix>
</name>
<name>
<surname>Bartus</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>Siffert</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial</article-title>
<source>Lancet Neurol</source>
<year>2010</year>
<volume>9</volume>
<fpage>1164</fpage>
<lpage>1172</lpage>
<pub-id pub-id-type="pmid">20970382</pub-id>
</element-citation>
</ref>
<ref id="b88">
<label>88</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bartus</surname>
<given-names>RT</given-names>
</name>
<name>
<surname>Weinberg</surname>
<given-names>MS</given-names>
</name>
<name>
<surname>Samulski</surname>
<given-names>RJ</given-names>
</name>
</person-group>
<article-title>Parkinson's disease gene therapy: success by design meets failure by efficacy</article-title>
<source>Mol Ther</source>
<year>2014</year>
<volume>22</volume>
<fpage>487</fpage>
<lpage>497</lpage>
<pub-id pub-id-type="pmid">24356252</pub-id>
</element-citation>
</ref>
<ref id="b89">
<label>89</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jiang</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Peng</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Liu</surname>
<given-names>X</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington's disease</article-title>
<source>Hum Mol Genet</source>
<year>2013</year>
<volume>22</volume>
<fpage>2462</fpage>
<lpage>2470</lpage>
<pub-id pub-id-type="pmid">23446639</pub-id>
</element-citation>
</ref>
<ref id="b90">
<label>90</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Simmons</surname>
<given-names>DA</given-names>
</name>
<name>
<surname>Belichenko</surname>
<given-names>NP</given-names>
</name>
<name>
<surname>Yang</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington's disease</article-title>
<source>J Neurosci</source>
<year>2013</year>
<volume>33</volume>
<fpage>18712</fpage>
<lpage>18727</lpage>
<pub-id pub-id-type="pmid">24285878</pub-id>
</element-citation>
</ref>
<ref id="b91">
<label>91</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Todd</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Gowers</surname>
<given-names>I</given-names>
</name>
<name>
<surname>Dowler</surname>
<given-names>SJ</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A monoclonal antibody TrkB receptor agonist as a potential therapeutic for Huntington's disease</article-title>
<source>PloS One</source>
<year>2014</year>
<volume>9</volume>
<fpage>e87923</fpage>
<pub-id pub-id-type="pmid">24503862</pub-id>
</element-citation>
</ref>
<ref id="b92">
<label>92</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Conforti</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Zuccato</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Gaudenzi</surname>
<given-names>G</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Binding of the repressor complex REST-mSIN3b by small molecules restores neuronal gene transcription in Huntington's disease models</article-title>
<source>J Neurochem</source>
<year>2013</year>
<volume>127</volume>
<fpage>22</fpage>
<lpage>35</lpage>
<pub-id pub-id-type="pmid">23800350</pub-id>
</element-citation>
</ref>
<ref id="b93">
<label>93</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Borrell-Pages</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Canals</surname>
<given-names>JM</given-names>
</name>
<name>
<surname>Cordelieres</surname>
<given-names>FP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cystamine and cysteamine increase brain levels of BDNF in Huntington disease via HSJ1b and transglutaminase</article-title>
<source>J Clin Invest</source>
<year>2006</year>
<volume>116</volume>
<fpage>1410</fpage>
<lpage>1424</lpage>
<pub-id pub-id-type="pmid">16604191</pub-id>
</element-citation>
</ref>
<ref id="b94">
<label>94</label>
<element-citation publication-type="book">
<article-title>Raptor Pharmaceuticals</article-title>
<source>Raptor announces clinical results with RP103 in Huntington's disease phase 2/3 trial</source>
<year>2014</year>
<publisher-name>Wall Street Journal</publisher-name>
</element-citation>
</ref>
<ref id="b95">
<label>95</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Björkqvist</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Wild</surname>
<given-names>EJ</given-names>
</name>
<name>
<surname>Thiele</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease</article-title>
<source>J Exp Med</source>
<year>2008</year>
<volume>205</volume>
<fpage>1869</fpage>
<lpage>1877</lpage>
<pub-id pub-id-type="pmid">18625748</pub-id>
</element-citation>
</ref>
<ref id="b96">
<label>96</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Schwarcz</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Whetsell</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Mangano</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Quinolinic acid: an endogenous metabolite that produces axon-sparing lesions in rat brain</article-title>
<source>Science</source>
<year>1983</year>
<volume>219</volume>
<fpage>316</fpage>
<lpage>318</lpage>
<pub-id pub-id-type="pmid">6849138</pub-id>
</element-citation>
</ref>
<ref id="b97">
<label>97</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Vecsei</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Szalardy</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Fulop</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Toldi</surname>
<given-names>J</given-names>
</name>
</person-group>
<article-title>Kynurenines in the CNS: recent advances and new questions</article-title>
<source>Nat Rev Drug Disc</source>
<year>2013</year>
<volume>12</volume>
<fpage>64</fpage>
<lpage>82</lpage>
</element-citation>
</ref>
<ref id="b98">
<label>98</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Guidetti</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Luthi-Carter</surname>
<given-names>RE</given-names>
</name>
<name>
<surname>Augood</surname>
<given-names>SJ</given-names>
</name>
<name>
<surname>Schwarcz</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Neostriatal and cortical quinolinate levels are increased in early grade Huntington's disease</article-title>
<source>Neurobiol Dis</source>
<year>2004</year>
<volume>17</volume>
<fpage>455</fpage>
<lpage>461</lpage>
<pub-id pub-id-type="pmid">15571981</pub-id>
</element-citation>
</ref>
<ref id="b99">
<label>99</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beal</surname>
<given-names>MF</given-names>
</name>
<name>
<surname>Matson</surname>
<given-names>WR</given-names>
</name>
<name>
<surname>Storey</surname>
<given-names>E</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Kynurenic acid concentrations are reduced in Huntington's disease cerebral cortex</article-title>
<source>J Neurol Sci</source>
<year>1992</year>
<volume>108</volume>
<fpage>80</fpage>
<lpage>87</lpage>
<pub-id pub-id-type="pmid">1385624</pub-id>
</element-citation>
</ref>
<ref id="b100">
<label>100</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Giorgini</surname>
<given-names>F</given-names>
</name>
<name>
<surname>Guidetti</surname>
<given-names>P</given-names>
</name>
<name>
<surname>Nguyen</surname>
<given-names>Q</given-names>
</name>
<name>
<surname>Bennett</surname>
<given-names>SC</given-names>
</name>
<name>
<surname>Muchowski</surname>
<given-names>PJ</given-names>
</name>
</person-group>
<article-title>A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease</article-title>
<source>Nat Genet</source>
<year>2005</year>
<volume>37</volume>
<fpage>526</fpage>
<lpage>531</lpage>
<pub-id pub-id-type="pmid">15806102</pub-id>
</element-citation>
</ref>
<ref id="b101">
<label>101</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Campesan</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Green</surname>
<given-names>EW</given-names>
</name>
<name>
<surname>Breda</surname>
<given-names>C</given-names>
</name>
<etal></etal>
</person-group>
<article-title>The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington's disease</article-title>
<source>Curr Biol</source>
<year>2011</year>
<volume>21</volume>
<fpage>961</fpage>
<lpage>966</lpage>
<pub-id pub-id-type="pmid">21636279</pub-id>
</element-citation>
</ref>
<ref id="b102">
<label>102</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Zwilling</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Huang</surname>
<given-names>SY</given-names>
</name>
<name>
<surname>Sathyasaikumar</surname>
<given-names>KV</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Kynurenine 3-monooxygenase inhibition in blood ameliorates neurodegeneration</article-title>
<source>Cell</source>
<year>2011</year>
<volume>145</volume>
<fpage>863</fpage>
<lpage>874</lpage>
<pub-id pub-id-type="pmid">21640374</pub-id>
</element-citation>
</ref>
<ref id="b103">
<label>103</label>
<element-citation publication-type="book">
<person-group person-group-type="author">
<name>
<surname>Mrzljak</surname>
<given-names>L</given-names>
</name>
</person-group>
<article-title>Development of kynurenine monooxygenase (KMO) inhibitor</article-title>
<source>CHDI-340246 for the treatment of Huntington's disease: a progress update</source>
<year>2013</year>
<publisher-loc>Venice, Italy</publisher-loc>
<publisher-name>CHDI Foundation 7th Annual HD Therapeutics Conference</publisher-name>
</element-citation>
</ref>
<ref id="b104">
<label>104</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Traeger</surname>
<given-names>U</given-names>
</name>
<name>
<surname>Andre</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Lahiri</surname>
<given-names>N</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HTT-lowering reverses Huntington's disease immune dysfunction caused by NFκB-pathway dysregulation</article-title>
<source>Brain</source>
<year>2014</year>
<volume>137</volume>
<fpage>819</fpage>
<lpage>833</lpage>
<pub-id pub-id-type="pmid">24459107</pub-id>
</element-citation>
</ref>
<ref id="b105">
<label>105</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Brück</surname>
<given-names>W</given-names>
</name>
<name>
<surname>Pförtner</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Pham</surname>
<given-names>T</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Reduced astrocytic NF-κB activation by laquinimod protects from cuprizone-induced demyelination</article-title>
<source>Acta Neuropathol (Berl)</source>
<year>2012</year>
<volume>124</volume>
<fpage>411</fpage>
<lpage>424</lpage>
<pub-id pub-id-type="pmid">22766690</pub-id>
</element-citation>
</ref>
<ref id="b106">
<label>106</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Aharoni</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Saada</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Eilam</surname>
<given-names>R</given-names>
</name>
<name>
<surname>Hayardeny</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Sela</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Arnon</surname>
<given-names>R</given-names>
</name>
</person-group>
<article-title>Oral treatment with laquinimod augments regulatory T-cells and brain-derived neurotrophic factor expression and reduces injury in the CNS of mice with experimental autoimmune encephalomyelitis</article-title>
<source>J Neuroimmunol</source>
<year>2012</year>
<volume>251</volume>
<fpage>14</fpage>
<lpage>24</lpage>
<pub-id pub-id-type="pmid">22749337</pub-id>
</element-citation>
</ref>
<ref id="b107">
<label>107</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mishra</surname>
<given-names>MK</given-names>
</name>
<name>
<surname>Wang</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Silva</surname>
<given-names>C</given-names>
</name>
<name>
<surname>Mack</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Yong</surname>
<given-names>VW</given-names>
</name>
</person-group>
<article-title>Kinetics of proinflammatory monocytes in a model of multiple sclerosis and its perturbation by laquinimod</article-title>
<source>Am J Pathol</source>
<year>2012</year>
<volume>181</volume>
<fpage>642</fpage>
<lpage>651</lpage>
<pub-id pub-id-type="pmid">22749771</pub-id>
</element-citation>
</ref>
<ref id="b108">
<label>108</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Comi</surname>
<given-names>G</given-names>
</name>
<name>
<surname>Jeffery</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Kappos</surname>
<given-names>L</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Placebo-controlled trial of oral laquinimod for multiple sclerosis</article-title>
<source>N Engl J Med</source>
<year>2012</year>
<volume>366</volume>
<fpage>1000</fpage>
<lpage>1009</lpage>
<pub-id pub-id-type="pmid">22417253</pub-id>
</element-citation>
</ref>
<ref id="b109">
<label>109</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Bouchard</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Truong</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Bouchard</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Cannabinoid receptor 2 signaling in peripheral immune cells modulates disease onset and severity in mouse models of Huntington's disease</article-title>
<source>J Neurosci</source>
<year>2012</year>
<volume>32</volume>
<fpage>18259</fpage>
<lpage>18268</lpage>
<pub-id pub-id-type="pmid">23238740</pub-id>
</element-citation>
</ref>
<ref id="b110">
<label>110</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Díaz-Hernández</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Díez-Zaera</surname>
<given-names>M</given-names>
</name>
<name>
<surname>Sánchez-Nogueiro</surname>
<given-names>J</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Altered P2X7-receptor level and function in mouse models of Huntington's disease and therapeutic efficacy of antagonist administration</article-title>
<source>FASEB J</source>
<year>2009</year>
<volume>23</volume>
<fpage>1893</fpage>
<lpage>1906</lpage>
<pub-id pub-id-type="pmid">19171786</pub-id>
</element-citation>
</ref>
<ref id="b111">
<label>111</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jun</surname>
<given-names>D-J</given-names>
</name>
<name>
<surname>Kim</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Jung</surname>
<given-names>S-Y</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Extracellular ATP mediates necrotic cell swelling in SN4741 dopaminergic neurons through P2X7 receptors</article-title>
<source>J Biol Chem</source>
<year>2007</year>
<volume>282</volume>
<fpage>37350</fpage>
<lpage>37358</lpage>
<pub-id pub-id-type="pmid">17962183</pub-id>
</element-citation>
</ref>
<ref id="b112">
<label>112</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Kim</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>S-G</given-names>
</name>
<name>
<surname>Kegelman</surname>
<given-names>TP</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics</article-title>
<source>J Cell Physiol</source>
<year>2011</year>
<volume>226</volume>
<fpage>2484</fpage>
<lpage>2493</lpage>
<pub-id pub-id-type="pmid">21792905</pub-id>
</element-citation>
</ref>
<ref id="b113">
<label>113</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Liévens</surname>
<given-names>JC</given-names>
</name>
<name>
<surname>Woodman</surname>
<given-names>B</given-names>
</name>
<name>
<surname>Mahal</surname>
<given-names>A</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Impaired glutamate uptake in the R6 Huntington's disease transgenic mice</article-title>
<source>Neurobiol Dis</source>
<year>2001</year>
<volume>8</volume>
<fpage>807</fpage>
<lpage>821</lpage>
<pub-id pub-id-type="pmid">11592850</pub-id>
</element-citation>
</ref>
<ref id="b114">
<label>114</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Arzberger</surname>
<given-names>T</given-names>
</name>
<name>
<surname>Krampfl</surname>
<given-names>K</given-names>
</name>
<name>
<surname>Leimgruber</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Weindl</surname>
<given-names>A</given-names>
</name>
</person-group>
<article-title>Changes of NMDA receptor subunit (NR1, NR2B) and glutamate transporter (GLT1) mRNA expression in Huntington's disease: an in situ hybridization study</article-title>
<source>J Neuropathol Exp Neurol</source>
<year>1997</year>
<volume>56</volume>
<fpage>440</fpage>
<lpage>454</lpage>
<pub-id pub-id-type="pmid">9100675</pub-id>
</element-citation>
</ref>
<ref id="b115">
<label>115</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Miller</surname>
<given-names>BR</given-names>
</name>
<name>
<surname>Dorner</surname>
<given-names>JL</given-names>
</name>
<name>
<surname>Shou</surname>
<given-names>M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Up-regulation of GLT1 expression increases glutamate uptake and attenuates the Huntington's disease phenotype in the R6/2 mouse</article-title>
<source>Neuroscience</source>
<year>2008</year>
<volume>153</volume>
<fpage>329</fpage>
<lpage>337</lpage>
<pub-id pub-id-type="pmid">18353560</pub-id>
</element-citation>
</ref>
<ref id="b116">
<label>116</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Rothstein</surname>
<given-names>JD</given-names>
</name>
<name>
<surname>Patel</surname>
<given-names>S</given-names>
</name>
<name>
<surname>Regan</surname>
<given-names>MR</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression</article-title>
<source>Nature</source>
<year>2005</year>
<volume>433</volume>
<fpage>73</fpage>
<lpage>77</lpage>
<pub-id pub-id-type="pmid">15635412</pub-id>
</element-citation>
</ref>
<ref id="b117">
<label>117</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Mrzljak</surname>
<given-names>L</given-names>
</name>
<name>
<surname>Munoz-Sanjuan</surname>
<given-names>I</given-names>
</name>
</person-group>
<article-title>Therapeutic strategies for Huntington's disease</article-title>
<source>Brain Res</source>
<year>2011</year>
<volume>1406</volume>
<fpage>84</fpage>
<lpage>105</lpage>
<pub-id pub-id-type="pmid">21742312</pub-id>
</element-citation>
</ref>
<ref id="b118">
<label>118</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Seong</surname>
<given-names>IS</given-names>
</name>
<name>
<surname>Ivanova</surname>
<given-names>E</given-names>
</name>
<name>
<surname>Lee</surname>
<given-names>J-M</given-names>
</name>
<etal></etal>
</person-group>
<article-title>HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism</article-title>
<source>Hum Mol Genet</source>
<year>2005</year>
<volume>14</volume>
<fpage>2871</fpage>
<lpage>2880</lpage>
<pub-id pub-id-type="pmid">16115812</pub-id>
</element-citation>
</ref>
<ref id="b119">
<label>119</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Jin</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Albertz</surname>
<given-names>J</given-names>
</name>
<name>
<surname>Guo</surname>
<given-names>Z</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington's disease</article-title>
<source>J Neurochem</source>
<year>2013</year>
<volume>125</volume>
<fpage>410</fpage>
<lpage>419</lpage>
<pub-id pub-id-type="pmid">23373812</pub-id>
</element-citation>
</ref>
<ref id="b120">
<label>120</label>
<element-citation publication-type="journal">
<person-group person-group-type="author">
<name>
<surname>Beconi</surname>
<given-names>MG</given-names>
</name>
<name>
<surname>Yates</surname>
<given-names>D</given-names>
</name>
<name>
<surname>Lyons</surname>
<given-names>K</given-names>
</name>
<etal></etal>
</person-group>
<article-title>Metabolism and Pharmacokinetics of JM6 in Mice: JM6 Is Not a Prodrug for Ro-61-8048</article-title>
<source>Drug Metabolism and Disposition</source>
<year>2012</year>
<volume>40</volume>
<fpage>2297</fpage>
<lpage>2306</lpage>
<pub-id pub-id-type="pmid">22942319</pub-id>
</element-citation>
</ref>
</ref-list>
</back>
</pmc>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Tabrizi, Sarah J" sort="Tabrizi, Sarah J" uniqKey="Tabrizi S" first="Sarah J" last="Tabrizi">Sarah J. Tabrizi</name>
<name sortKey="Wild, Edward J" sort="Wild, Edward J" uniqKey="Wild E" first="Edward J" last="Wild">Edward J. Wild</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/Pmc/Checkpoint
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000011 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd -nk 000011 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    Pmc
   |étape=   Checkpoint
   |type=    RBID
   |clé=     PMC:4265300
   |texte=   Targets for future clinical trials in Huntington's disease: What's in the pipeline?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Pmc/Checkpoint/RBID.i   -Sk "pubmed:25155142" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Pmc/Checkpoint/biblio.hfd   \
       | NlmPubMed2Wicri -a MovDisordV3 

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024