Movement Disorders (revue)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Real-time refinement of subthalamic nucleus targeting using bayesian decision-making on the root mean square measure

Identifieur interne : 001999 ( PascalFrancis/Corpus ); précédent : 001998; suivant : 001A00

Real-time refinement of subthalamic nucleus targeting using bayesian decision-making on the root mean square measure

Auteurs : Anan Moran ; Izhar Bar-Gad ; Hagai Bergman ; Zvi Israel

Source :

RBID : Pascal:06-0518097

Descripteurs français

English descriptors

Abstract

The subthalamic nucleus (STN) is a major target for treatment of advanced Parkinson's disease patients undergoing deep brain stimulation surgery. Microelectrode recording (MER) is used in many cases to identify the target nucleus. A real-time procedure for identifying the entry and exit points of the STN would improve the outcome of this targeting procedure. We used the normalized root mean square (NRMS) of a short (5 seconds) MER sampled signal and the estimated anatomical distance to target (EDT) as the basis for this procedure. Electrode tip location was defined intraoperatively by an expert neurophysiologist to be before, within, or after the STN. Data from 46 trajectories of 27 patients were used to calculate the Bayesian posterior probability of being in each of these locations, given RMS-EDT pair values. We tested our predictions on each trajectory using a bootstrapping technique, with the rest of the trajectories serving as a training set and found the error in predicting the STN entry to be (mean ± SD) 0.18 ± 0.84, and 0.50 ± 0.59 mm for STN exit point, which yields a 0.30 ± 0.28 mm deviation from the expert's target center. The simplicity and computational ease of RMS calculation, its spike sorting-independent nature and tolerance to electrode parameters of this Bayesian predictor, can lead directly to the development of a fully automated intraoperative physiological procedure for the refinement of imaging estimates of STN borders.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0885-3185
A03   1    @0 Mov. disord.
A05       @2 21
A06       @2 9
A08 01  1  ENG  @1 Real-time refinement of subthalamic nucleus targeting using bayesian decision-making on the root mean square measure
A11 01  1    @1 MORAN (Anan)
A11 02  1    @1 BAR-GAD (Izhar)
A11 03  1    @1 BERGMAN (Hagai)
A11 04  1    @1 ISRAEL (Zvi)
A14 01      @1 Gonda Multidisciplinary Brain Research Center and Faculty of Life Sciences, Bar Ilan University @2 Ramat Gan @3 ISR @Z 1 aut. @Z 2 aut.
A14 02      @1 Department of Physiology, Hadassah Medical School and Interdisciplinary Center for Neural Computation, Hebrew University @2 Jerusalem @3 ISR @Z 3 aut.
A14 03      @1 Department of Neurosurgery, Hadassah University Hospital @2 Jerusalem @3 ISR @Z 4 aut.
A20       @1 1425-1431
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 20953 @5 354000158780860190
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 21 ref.
A47 01  1    @0 06-0518097
A60       @1 P
A61       @0 A
A64 01  1    @0 Movement disorders
A66 01      @0 USA
C01 01    ENG  @0 The subthalamic nucleus (STN) is a major target for treatment of advanced Parkinson's disease patients undergoing deep brain stimulation surgery. Microelectrode recording (MER) is used in many cases to identify the target nucleus. A real-time procedure for identifying the entry and exit points of the STN would improve the outcome of this targeting procedure. We used the normalized root mean square (NRMS) of a short (5 seconds) MER sampled signal and the estimated anatomical distance to target (EDT) as the basis for this procedure. Electrode tip location was defined intraoperatively by an expert neurophysiologist to be before, within, or after the STN. Data from 46 trajectories of 27 patients were used to calculate the Bayesian posterior probability of being in each of these locations, given RMS-EDT pair values. We tested our predictions on each trajectory using a bootstrapping technique, with the rest of the trajectories serving as a training set and found the error in predicting the STN entry to be (mean ± SD) 0.18 ± 0.84, and 0.50 ± 0.59 mm for STN exit point, which yields a 0.30 ± 0.28 mm deviation from the expert's target center. The simplicity and computational ease of RMS calculation, its spike sorting-independent nature and tolerance to electrode parameters of this Bayesian predictor, can lead directly to the development of a fully automated intraoperative physiological procedure for the refinement of imaging estimates of STN borders.
C02 01  X    @0 002B17
C02 02  X    @0 002B16B
C02 03  X    @0 002B25J01
C03 01  X  FRE  @0 Système nerveux pathologie @5 01
C03 01  X  ENG  @0 Nervous system diseases @5 01
C03 01  X  SPA  @0 Sistema nervioso patología @5 01
C03 02  X  FRE  @0 Parkinson maladie @5 02
C03 02  X  ENG  @0 Parkinson disease @5 02
C03 02  X  SPA  @0 Parkinson enfermedad @5 02
C03 03  X  FRE  @0 Affinement @5 09
C03 03  X  ENG  @0 Refinement @5 09
C03 03  X  SPA  @0 Afinamiento @5 09
C03 04  X  FRE  @0 Noyau sousthalamique @5 10
C03 04  X  ENG  @0 Subthalamic nucleus @5 10
C03 04  X  SPA  @0 Núcleo subtalámico @5 10
C03 05  X  FRE  @0 Ciblage @5 11
C03 05  X  ENG  @0 Targeting @5 11
C03 05  X  SPA  @0 Blancado @5 11
C03 06  X  FRE  @0 Prise décision @5 12
C03 06  X  ENG  @0 Decision making @5 12
C03 06  X  SPA  @0 Toma decision @5 12
C03 07  X  FRE  @0 Racine carrée @5 13
C03 07  X  ENG  @0 Square root @5 13
C03 07  X  SPA  @0 Raíz cuadrada @5 13
C03 08  X  FRE  @0 Inférence @5 14
C03 08  X  ENG  @0 Inference @5 14
C03 08  X  SPA  @0 Inferencia @5 14
C03 09  X  FRE  @0 Microélectrode @5 15
C03 09  X  ENG  @0 Microelectrode @5 15
C03 09  X  SPA  @0 Microeléctrodo @5 15
C03 10  X  FRE  @0 Localisation @5 16
C03 10  X  ENG  @0 Localization @5 16
C03 10  X  SPA  @0 Localización @5 16
C03 11  X  FRE  @0 Stimulation cérébrale profonde @4 CD @5 96
C03 11  X  ENG  @0 Deep brain stimulation @4 CD @5 96
C07 01  X  FRE  @0 Encéphale pathologie @5 37
C07 01  X  ENG  @0 Cerebral disorder @5 37
C07 01  X  SPA  @0 Encéfalo patología @5 37
C07 02  X  FRE  @0 Système nerveux central @5 38
C07 02  X  ENG  @0 Central nervous system @5 38
C07 02  X  SPA  @0 Sistema nervioso central @5 38
C07 03  X  FRE  @0 Extrapyramidal syndrome @5 39
C07 03  X  ENG  @0 Extrapyramidal syndrome @5 39
C07 03  X  SPA  @0 Extrapiramidal síndrome @5 39
C07 04  X  FRE  @0 Maladie dégénérative @5 40
C07 04  X  ENG  @0 Degenerative disease @5 40
C07 04  X  SPA  @0 Enfermedad degenerativa @5 40
C07 05  X  FRE  @0 Système nerveux central pathologie @5 41
C07 05  X  ENG  @0 Central nervous system disease @5 41
C07 05  X  SPA  @0 Sistema nervosio central patología @5 41
N21       @1 338
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 06-0518097 INIST
ET : Real-time refinement of subthalamic nucleus targeting using bayesian decision-making on the root mean square measure
AU : MORAN (Anan); BAR-GAD (Izhar); BERGMAN (Hagai); ISRAEL (Zvi)
AF : Gonda Multidisciplinary Brain Research Center and Faculty of Life Sciences, Bar Ilan University/Ramat Gan/Israël (1 aut., 2 aut.); Department of Physiology, Hadassah Medical School and Interdisciplinary Center for Neural Computation, Hebrew University/Jerusalem/Israël (3 aut.); Department of Neurosurgery, Hadassah University Hospital/Jerusalem/Israël (4 aut.)
DT : Publication en série; Niveau analytique
SO : Movement disorders; ISSN 0885-3185; Etats-Unis; Da. 2006; Vol. 21; No. 9; Pp. 1425-1431; Bibl. 21 ref.
LA : Anglais
EA : The subthalamic nucleus (STN) is a major target for treatment of advanced Parkinson's disease patients undergoing deep brain stimulation surgery. Microelectrode recording (MER) is used in many cases to identify the target nucleus. A real-time procedure for identifying the entry and exit points of the STN would improve the outcome of this targeting procedure. We used the normalized root mean square (NRMS) of a short (5 seconds) MER sampled signal and the estimated anatomical distance to target (EDT) as the basis for this procedure. Electrode tip location was defined intraoperatively by an expert neurophysiologist to be before, within, or after the STN. Data from 46 trajectories of 27 patients were used to calculate the Bayesian posterior probability of being in each of these locations, given RMS-EDT pair values. We tested our predictions on each trajectory using a bootstrapping technique, with the rest of the trajectories serving as a training set and found the error in predicting the STN entry to be (mean ± SD) 0.18 ± 0.84, and 0.50 ± 0.59 mm for STN exit point, which yields a 0.30 ± 0.28 mm deviation from the expert's target center. The simplicity and computational ease of RMS calculation, its spike sorting-independent nature and tolerance to electrode parameters of this Bayesian predictor, can lead directly to the development of a fully automated intraoperative physiological procedure for the refinement of imaging estimates of STN borders.
CC : 002B17; 002B16B; 002B25J01
FD : Système nerveux pathologie; Parkinson maladie; Affinement; Noyau sousthalamique; Ciblage; Prise décision; Racine carrée; Inférence; Microélectrode; Localisation; Stimulation cérébrale profonde
FG : Encéphale pathologie; Système nerveux central; Extrapyramidal syndrome; Maladie dégénérative; Système nerveux central pathologie
ED : Nervous system diseases; Parkinson disease; Refinement; Subthalamic nucleus; Targeting; Decision making; Square root; Inference; Microelectrode; Localization; Deep brain stimulation
EG : Cerebral disorder; Central nervous system; Extrapyramidal syndrome; Degenerative disease; Central nervous system disease
SD : Sistema nervioso patología; Parkinson enfermedad; Afinamiento; Núcleo subtalámico; Blancado; Toma decision; Raíz cuadrada; Inferencia; Microeléctrodo; Localización
LO : INIST-20953.354000158780860190
ID : 06-0518097

Links to Exploration step

Pascal:06-0518097

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Real-time refinement of subthalamic nucleus targeting using bayesian decision-making on the root mean square measure</title>
<author>
<name sortKey="Moran, Anan" sort="Moran, Anan" uniqKey="Moran A" first="Anan" last="Moran">Anan Moran</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Gonda Multidisciplinary Brain Research Center and Faculty of Life Sciences, Bar Ilan University</s1>
<s2>Ramat Gan</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bar Gad, Izhar" sort="Bar Gad, Izhar" uniqKey="Bar Gad I" first="Izhar" last="Bar-Gad">Izhar Bar-Gad</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Gonda Multidisciplinary Brain Research Center and Faculty of Life Sciences, Bar Ilan University</s1>
<s2>Ramat Gan</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bergman, Hagai" sort="Bergman, Hagai" uniqKey="Bergman H" first="Hagai" last="Bergman">Hagai Bergman</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Physiology, Hadassah Medical School and Interdisciplinary Center for Neural Computation, Hebrew University</s1>
<s2>Jerusalem</s2>
<s3>ISR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Israel, Zvi" sort="Israel, Zvi" uniqKey="Israel Z" first="Zvi" last="Israel">Zvi Israel</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Neurosurgery, Hadassah University Hospital</s1>
<s2>Jerusalem</s2>
<s3>ISR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0518097</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0518097 INIST</idno>
<idno type="RBID">Pascal:06-0518097</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">001999</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Real-time refinement of subthalamic nucleus targeting using bayesian decision-making on the root mean square measure</title>
<author>
<name sortKey="Moran, Anan" sort="Moran, Anan" uniqKey="Moran A" first="Anan" last="Moran">Anan Moran</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Gonda Multidisciplinary Brain Research Center and Faculty of Life Sciences, Bar Ilan University</s1>
<s2>Ramat Gan</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bar Gad, Izhar" sort="Bar Gad, Izhar" uniqKey="Bar Gad I" first="Izhar" last="Bar-Gad">Izhar Bar-Gad</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Gonda Multidisciplinary Brain Research Center and Faculty of Life Sciences, Bar Ilan University</s1>
<s2>Ramat Gan</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Bergman, Hagai" sort="Bergman, Hagai" uniqKey="Bergman H" first="Hagai" last="Bergman">Hagai Bergman</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Department of Physiology, Hadassah Medical School and Interdisciplinary Center for Neural Computation, Hebrew University</s1>
<s2>Jerusalem</s2>
<s3>ISR</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Israel, Zvi" sort="Israel, Zvi" uniqKey="Israel Z" first="Zvi" last="Israel">Zvi Israel</name>
<affiliation>
<inist:fA14 i1="03">
<s1>Department of Neurosurgery, Hadassah University Hospital</s1>
<s2>Jerusalem</s2>
<s3>ISR</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Movement disorders</title>
<title level="j" type="abbreviated">Mov. disord.</title>
<idno type="ISSN">0885-3185</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Movement disorders</title>
<title level="j" type="abbreviated">Mov. disord.</title>
<idno type="ISSN">0885-3185</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Decision making</term>
<term>Deep brain stimulation</term>
<term>Inference</term>
<term>Localization</term>
<term>Microelectrode</term>
<term>Nervous system diseases</term>
<term>Parkinson disease</term>
<term>Refinement</term>
<term>Square root</term>
<term>Subthalamic nucleus</term>
<term>Targeting</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Système nerveux pathologie</term>
<term>Parkinson maladie</term>
<term>Affinement</term>
<term>Noyau sousthalamique</term>
<term>Ciblage</term>
<term>Prise décision</term>
<term>Racine carrée</term>
<term>Inférence</term>
<term>Microélectrode</term>
<term>Localisation</term>
<term>Stimulation cérébrale profonde</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The subthalamic nucleus (STN) is a major target for treatment of advanced Parkinson's disease patients undergoing deep brain stimulation surgery. Microelectrode recording (MER) is used in many cases to identify the target nucleus. A real-time procedure for identifying the entry and exit points of the STN would improve the outcome of this targeting procedure. We used the normalized root mean square (NRMS) of a short (5 seconds) MER sampled signal and the estimated anatomical distance to target (EDT) as the basis for this procedure. Electrode tip location was defined intraoperatively by an expert neurophysiologist to be before, within, or after the STN. Data from 46 trajectories of 27 patients were used to calculate the Bayesian posterior probability of being in each of these locations, given RMS-EDT pair values. We tested our predictions on each trajectory using a bootstrapping technique, with the rest of the trajectories serving as a training set and found the error in predicting the STN entry to be (mean ± SD) 0.18 ± 0.84, and 0.50 ± 0.59 mm for STN exit point, which yields a 0.30 ± 0.28 mm deviation from the expert's target center. The simplicity and computational ease of RMS calculation, its spike sorting-independent nature and tolerance to electrode parameters of this Bayesian predictor, can lead directly to the development of a fully automated intraoperative physiological procedure for the refinement of imaging estimates of STN borders.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0885-3185</s0>
</fA01>
<fA03 i2="1">
<s0>Mov. disord.</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Real-time refinement of subthalamic nucleus targeting using bayesian decision-making on the root mean square measure</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>MORAN (Anan)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BAR-GAD (Izhar)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>BERGMAN (Hagai)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ISRAEL (Zvi)</s1>
</fA11>
<fA14 i1="01">
<s1>Gonda Multidisciplinary Brain Research Center and Faculty of Life Sciences, Bar Ilan University</s1>
<s2>Ramat Gan</s2>
<s3>ISR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physiology, Hadassah Medical School and Interdisciplinary Center for Neural Computation, Hebrew University</s1>
<s2>Jerusalem</s2>
<s3>ISR</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Neurosurgery, Hadassah University Hospital</s1>
<s2>Jerusalem</s2>
<s3>ISR</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s1>1425-1431</s1>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>20953</s2>
<s5>354000158780860190</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0518097</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Movement disorders</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The subthalamic nucleus (STN) is a major target for treatment of advanced Parkinson's disease patients undergoing deep brain stimulation surgery. Microelectrode recording (MER) is used in many cases to identify the target nucleus. A real-time procedure for identifying the entry and exit points of the STN would improve the outcome of this targeting procedure. We used the normalized root mean square (NRMS) of a short (5 seconds) MER sampled signal and the estimated anatomical distance to target (EDT) as the basis for this procedure. Electrode tip location was defined intraoperatively by an expert neurophysiologist to be before, within, or after the STN. Data from 46 trajectories of 27 patients were used to calculate the Bayesian posterior probability of being in each of these locations, given RMS-EDT pair values. We tested our predictions on each trajectory using a bootstrapping technique, with the rest of the trajectories serving as a training set and found the error in predicting the STN entry to be (mean ± SD) 0.18 ± 0.84, and 0.50 ± 0.59 mm for STN exit point, which yields a 0.30 ± 0.28 mm deviation from the expert's target center. The simplicity and computational ease of RMS calculation, its spike sorting-independent nature and tolerance to electrode parameters of this Bayesian predictor, can lead directly to the development of a fully automated intraoperative physiological procedure for the refinement of imaging estimates of STN borders.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>002B17</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>002B16B</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>002B25J01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Système nerveux pathologie</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Nervous system diseases</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Sistema nervioso patología</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Parkinson maladie</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Parkinson disease</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Parkinson enfermedad</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Affinement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Refinement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Afinamiento</s0>
<s5>09</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Noyau sousthalamique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Subthalamic nucleus</s0>
<s5>10</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Núcleo subtalámico</s0>
<s5>10</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Ciblage</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Targeting</s0>
<s5>11</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Blancado</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Prise décision</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Decision making</s0>
<s5>12</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Toma decision</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Racine carrée</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Square root</s0>
<s5>13</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Raíz cuadrada</s0>
<s5>13</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Inférence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Inference</s0>
<s5>14</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Inferencia</s0>
<s5>14</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Microélectrode</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Microelectrode</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Microeléctrodo</s0>
<s5>15</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Localisation</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Localization</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Localización</s0>
<s5>16</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Stimulation cérébrale profonde</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Deep brain stimulation</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC07 i1="01" i2="X" l="FRE">
<s0>Encéphale pathologie</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="ENG">
<s0>Cerebral disorder</s0>
<s5>37</s5>
</fC07>
<fC07 i1="01" i2="X" l="SPA">
<s0>Encéfalo patología</s0>
<s5>37</s5>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Système nerveux central</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Central nervous system</s0>
<s5>38</s5>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Sistema nervioso central</s0>
<s5>38</s5>
</fC07>
<fC07 i1="03" i2="X" l="FRE">
<s0>Extrapyramidal syndrome</s0>
<s5>39</s5>
</fC07>
<fC07 i1="03" i2="X" l="ENG">
<s0>Extrapyramidal syndrome</s0>
<s5>39</s5>
</fC07>
<fC07 i1="03" i2="X" l="SPA">
<s0>Extrapiramidal síndrome</s0>
<s5>39</s5>
</fC07>
<fC07 i1="04" i2="X" l="FRE">
<s0>Maladie dégénérative</s0>
<s5>40</s5>
</fC07>
<fC07 i1="04" i2="X" l="ENG">
<s0>Degenerative disease</s0>
<s5>40</s5>
</fC07>
<fC07 i1="04" i2="X" l="SPA">
<s0>Enfermedad degenerativa</s0>
<s5>40</s5>
</fC07>
<fC07 i1="05" i2="X" l="FRE">
<s0>Système nerveux central pathologie</s0>
<s5>41</s5>
</fC07>
<fC07 i1="05" i2="X" l="ENG">
<s0>Central nervous system disease</s0>
<s5>41</s5>
</fC07>
<fC07 i1="05" i2="X" l="SPA">
<s0>Sistema nervosio central patología</s0>
<s5>41</s5>
</fC07>
<fN21>
<s1>338</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 06-0518097 INIST</NO>
<ET>Real-time refinement of subthalamic nucleus targeting using bayesian decision-making on the root mean square measure</ET>
<AU>MORAN (Anan); BAR-GAD (Izhar); BERGMAN (Hagai); ISRAEL (Zvi)</AU>
<AF>Gonda Multidisciplinary Brain Research Center and Faculty of Life Sciences, Bar Ilan University/Ramat Gan/Israël (1 aut., 2 aut.); Department of Physiology, Hadassah Medical School and Interdisciplinary Center for Neural Computation, Hebrew University/Jerusalem/Israël (3 aut.); Department of Neurosurgery, Hadassah University Hospital/Jerusalem/Israël (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Movement disorders; ISSN 0885-3185; Etats-Unis; Da. 2006; Vol. 21; No. 9; Pp. 1425-1431; Bibl. 21 ref.</SO>
<LA>Anglais</LA>
<EA>The subthalamic nucleus (STN) is a major target for treatment of advanced Parkinson's disease patients undergoing deep brain stimulation surgery. Microelectrode recording (MER) is used in many cases to identify the target nucleus. A real-time procedure for identifying the entry and exit points of the STN would improve the outcome of this targeting procedure. We used the normalized root mean square (NRMS) of a short (5 seconds) MER sampled signal and the estimated anatomical distance to target (EDT) as the basis for this procedure. Electrode tip location was defined intraoperatively by an expert neurophysiologist to be before, within, or after the STN. Data from 46 trajectories of 27 patients were used to calculate the Bayesian posterior probability of being in each of these locations, given RMS-EDT pair values. We tested our predictions on each trajectory using a bootstrapping technique, with the rest of the trajectories serving as a training set and found the error in predicting the STN entry to be (mean ± SD) 0.18 ± 0.84, and 0.50 ± 0.59 mm for STN exit point, which yields a 0.30 ± 0.28 mm deviation from the expert's target center. The simplicity and computational ease of RMS calculation, its spike sorting-independent nature and tolerance to electrode parameters of this Bayesian predictor, can lead directly to the development of a fully automated intraoperative physiological procedure for the refinement of imaging estimates of STN borders.</EA>
<CC>002B17; 002B16B; 002B25J01</CC>
<FD>Système nerveux pathologie; Parkinson maladie; Affinement; Noyau sousthalamique; Ciblage; Prise décision; Racine carrée; Inférence; Microélectrode; Localisation; Stimulation cérébrale profonde</FD>
<FG>Encéphale pathologie; Système nerveux central; Extrapyramidal syndrome; Maladie dégénérative; Système nerveux central pathologie</FG>
<ED>Nervous system diseases; Parkinson disease; Refinement; Subthalamic nucleus; Targeting; Decision making; Square root; Inference; Microelectrode; Localization; Deep brain stimulation</ED>
<EG>Cerebral disorder; Central nervous system; Extrapyramidal syndrome; Degenerative disease; Central nervous system disease</EG>
<SD>Sistema nervioso patología; Parkinson enfermedad; Afinamiento; Núcleo subtalámico; Blancado; Toma decision; Raíz cuadrada; Inferencia; Microeléctrodo; Localización</SD>
<LO>INIST-20953.354000158780860190</LO>
<ID>06-0518097</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Santé/explor/MovDisordV3/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001999 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 001999 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Santé
   |area=    MovDisordV3
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0518097
   |texte=   Real-time refinement of subthalamic nucleus targeting using bayesian decision-making on the root mean square measure
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 12:29:32 2016. Site generation: Wed Feb 14 10:52:30 2024