Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structure and assembly of the Escherichia coli transcription termination factor rho and its interaction with RNA. I. Cryoelectron microscopic studies.

Identifieur interne : 002978 ( PubMed/Curation ); précédent : 002977; suivant : 002979

Structure and assembly of the Escherichia coli transcription termination factor rho and its interaction with RNA. I. Cryoelectron microscopic studies.

Auteurs : E P Gogol ; S E Seifried ; P H Von Hippel

Source :

RBID : pubmed:1719215

Descripteurs français

English descriptors

Abstract

Cryoelectron microscopy has been used to visualize the Escherichia coli transcription termination protein rho in a vitreously frozen state, without the use of strains, fixatives or other chemical perturbants. In the absence of RNA cofactor, a variety of structures are observed, reflecting the heterogeneity of complexes formed by rho at protein concentrations near the physiological range (3 to 10 microM). One of the most common structural motifs we see is a six-membered ring of rho subunits (present as either a closed or "notched" circle), which corresponds to the predominant hexameric association state of the protein. Also visible are smaller oligomeric structures, present as curved lines of rho subunits, which probably represent the lower association states of the protein that coexist with the hexamer at these protein concentrations. Addition of oligomers of ribocytosine (rC) of defined lengths (23-mers and 100-mers) results in the generation of more homogeneous populations of rho oligomers. In the presence of (rC)23, all identifiable particles appear either as closed or as notched hexameric circles. A small fraction of these particles are of visibly higher density, and are identified with the dodecamers expected as a subpopulation of rho under these conditions. Binding of (rC)100, an oligomer of length greater than that needed to span the entire hexamer binding site, results in a uniform population of closed circular hexamers. In some images additional features are visible at either the centers or the peripheries of the particles. These features may correspond to the excess length of the rC strands bound to the hexamers. The distributions of particles observed under the various experimental conditions used correlate well to those deduced from physical biochemical studies Seifried et al., accompanying paper).

DOI: 10.1016/0022-2836(91)90923-t
PubMed: 1719215

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:1719215

Curation

No country items

E P Gogol
<affiliation>
<nlm:affiliation>Institute of Molecular Biology, University of Oregon, Eugene 97403.</nlm:affiliation>
<wicri:noCountry code="subField">Eugene 97403</wicri:noCountry>
</affiliation>

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structure and assembly of the Escherichia coli transcription termination factor rho and its interaction with RNA. I. Cryoelectron microscopic studies.</title>
<author>
<name sortKey="Gogol, E P" sort="Gogol, E P" uniqKey="Gogol E" first="E P" last="Gogol">E P Gogol</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biology, University of Oregon, Eugene 97403.</nlm:affiliation>
<wicri:noCountry code="subField">Eugene 97403</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Seifried, S E" sort="Seifried, S E" uniqKey="Seifried S" first="S E" last="Seifried">S E Seifried</name>
</author>
<author>
<name sortKey="Von Hippel, P H" sort="Von Hippel, P H" uniqKey="Von Hippel P" first="P H" last="Von Hippel">P H Von Hippel</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1991">1991</date>
<idno type="RBID">pubmed:1719215</idno>
<idno type="pmid">1719215</idno>
<idno type="doi">10.1016/0022-2836(91)90923-t</idno>
<idno type="wicri:Area/PubMed/Corpus">002978</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002978</idno>
<idno type="wicri:Area/PubMed/Curation">002978</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002978</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structure and assembly of the Escherichia coli transcription termination factor rho and its interaction with RNA. I. Cryoelectron microscopic studies.</title>
<author>
<name sortKey="Gogol, E P" sort="Gogol, E P" uniqKey="Gogol E" first="E P" last="Gogol">E P Gogol</name>
<affiliation>
<nlm:affiliation>Institute of Molecular Biology, University of Oregon, Eugene 97403.</nlm:affiliation>
<wicri:noCountry code="subField">Eugene 97403</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Seifried, S E" sort="Seifried, S E" uniqKey="Seifried S" first="S E" last="Seifried">S E Seifried</name>
</author>
<author>
<name sortKey="Von Hippel, P H" sort="Von Hippel, P H" uniqKey="Von Hippel P" first="P H" last="Von Hippel">P H Von Hippel</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="ISSN">0022-2836</idno>
<imprint>
<date when="1991" type="published">1991</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (metabolism)</term>
<term>Bacterial Proteins (ultrastructure)</term>
<term>Cryopreservation</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Escherichia coli (metabolism)</term>
<term>Macromolecular Substances</term>
<term>Microscopy, Electron</term>
<term>Poly C (metabolism)</term>
<term>Protein Conformation</term>
<term>RNA, Bacterial (metabolism)</term>
<term>Rho Factor (metabolism)</term>
<term>Rho Factor (ultrastructure)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN bactérien (métabolisme)</term>
<term>Conformation des protéines</term>
<term>Cryoconservation</term>
<term>Escherichia coli (métabolisme)</term>
<term>Facteur Rho (métabolisme)</term>
<term>Facteur Rho (ultrastructure)</term>
<term>Microscopie électronique</term>
<term>Poly C (métabolisme)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Protéines bactériennes (ultrastructure)</term>
<term>Structures macromoléculaires</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Poly C</term>
<term>RNA, Bacterial</term>
<term>Rho Factor</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Rho Factor</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN bactérien</term>
<term>Escherichia coli</term>
<term>Facteur Rho</term>
<term>Poly C</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Facteur Rho</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cryopreservation</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Macromolecular Substances</term>
<term>Microscopy, Electron</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Cryoconservation</term>
<term>Microscopie électronique</term>
<term>Structures macromoléculaires</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cryoelectron microscopy has been used to visualize the Escherichia coli transcription termination protein rho in a vitreously frozen state, without the use of strains, fixatives or other chemical perturbants. In the absence of RNA cofactor, a variety of structures are observed, reflecting the heterogeneity of complexes formed by rho at protein concentrations near the physiological range (3 to 10 microM). One of the most common structural motifs we see is a six-membered ring of rho subunits (present as either a closed or "notched" circle), which corresponds to the predominant hexameric association state of the protein. Also visible are smaller oligomeric structures, present as curved lines of rho subunits, which probably represent the lower association states of the protein that coexist with the hexamer at these protein concentrations. Addition of oligomers of ribocytosine (rC) of defined lengths (23-mers and 100-mers) results in the generation of more homogeneous populations of rho oligomers. In the presence of (rC)23, all identifiable particles appear either as closed or as notched hexameric circles. A small fraction of these particles are of visibly higher density, and are identified with the dodecamers expected as a subpopulation of rho under these conditions. Binding of (rC)100, an oligomer of length greater than that needed to span the entire hexamer binding site, results in a uniform population of closed circular hexamers. In some images additional features are visible at either the centers or the peripheries of the particles. These features may correspond to the excess length of the rC strands bound to the hexamers. The distributions of particles observed under the various experimental conditions used correlate well to those deduced from physical biochemical studies Seifried et al., accompanying paper).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">1719215</PMID>
<DateCompleted>
<Year>1991</Year>
<Month>12</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>07</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-2836</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>221</Volume>
<Issue>4</Issue>
<PubDate>
<Year>1991</Year>
<Month>Oct</Month>
<Day>20</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Structure and assembly of the Escherichia coli transcription termination factor rho and its interaction with RNA. I. Cryoelectron microscopic studies.</ArticleTitle>
<Pagination>
<MedlinePgn>1127-38</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Cryoelectron microscopy has been used to visualize the Escherichia coli transcription termination protein rho in a vitreously frozen state, without the use of strains, fixatives or other chemical perturbants. In the absence of RNA cofactor, a variety of structures are observed, reflecting the heterogeneity of complexes formed by rho at protein concentrations near the physiological range (3 to 10 microM). One of the most common structural motifs we see is a six-membered ring of rho subunits (present as either a closed or "notched" circle), which corresponds to the predominant hexameric association state of the protein. Also visible are smaller oligomeric structures, present as curved lines of rho subunits, which probably represent the lower association states of the protein that coexist with the hexamer at these protein concentrations. Addition of oligomers of ribocytosine (rC) of defined lengths (23-mers and 100-mers) results in the generation of more homogeneous populations of rho oligomers. In the presence of (rC)23, all identifiable particles appear either as closed or as notched hexameric circles. A small fraction of these particles are of visibly higher density, and are identified with the dodecamers expected as a subpopulation of rho under these conditions. Binding of (rC)100, an oligomer of length greater than that needed to span the entire hexamer binding site, results in a uniform population of closed circular hexamers. In some images additional features are visible at either the centers or the peripheries of the particles. These features may correspond to the excess length of the rC strands bound to the hexamers. The distributions of particles observed under the various experimental conditions used correlate well to those deduced from physical biochemical studies Seifried et al., accompanying paper).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gogol</LastName>
<ForeName>E P</ForeName>
<Initials>EP</Initials>
<AffiliationInfo>
<Affiliation>Institute of Molecular Biology, University of Oregon, Eugene 97403.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Seifried</LastName>
<ForeName>S E</ForeName>
<Initials>SE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>von Hippel</LastName>
<ForeName>P H</ForeName>
<Initials>PH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM15792</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM29158</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046911">Macromolecular Substances</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012329">RNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012234">Rho Factor</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>30811-80-4</RegistryNumber>
<NameOfSubstance UI="D011066">Poly C</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015925" MajorTopicYN="N">Cryopreservation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046911" MajorTopicYN="N">Macromolecular Substances</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008854" MajorTopicYN="N">Microscopy, Electron</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011066" MajorTopicYN="N">Poly C</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012329" MajorTopicYN="N">RNA, Bacterial</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012234" MajorTopicYN="N">Rho Factor</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="Y">ultrastructure</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1991</Year>
<Month>10</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1991</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1991</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">1719215</ArticleId>
<ArticleId IdType="pii">0022-2836(91)90923-T</ArticleId>
<ArticleId IdType="doi">10.1016/0022-2836(91)90923-t</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002978 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002978 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:1719215
   |texte=   Structure and assembly of the Escherichia coli transcription termination factor rho and its interaction with RNA. I. Cryoelectron microscopic studies.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:1719215" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021