Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Purification and characterization of recombinant pea-seed ferritins expressed in Escherichia coli: influence of N-terminus deletions on protein solubility and core formation in vitro.

Identifieur interne : 002842 ( PubMed/Curation ); précédent : 002841; suivant : 002843

Purification and characterization of recombinant pea-seed ferritins expressed in Escherichia coli: influence of N-terminus deletions on protein solubility and core formation in vitro.

Auteurs : O. Van Wuytswinkel [France] ; G. Savino ; J F Briat

Source :

RBID : pubmed:7826338

Descripteurs français

English descriptors

Abstract

Plant ferritin subunits are synthesized as precursor molecules; the transit peptide (TP) in their NH2 extremity, responsible for plastid targeting, is cleaved during translocation to this compartment. In addition, the N-terminus of the mature subunit contains a plant-specific sequence named extension peptide (EP) [Ragland, Briat, Gagnon, Laulhère, Massenet, and Theil, E.C. (1990) J. Biol. Chem. 265, 18339-18344], the function of which is unknown. A novel pea-seed ferritin cDNA, with a consensus ferroxidase centre conserved within H-type animal ferritins has been characterized. This pea-seed ferritin cDNA has been engineered using oligonucleotide-directed mutagenesis to produce DNA fragments (1) corresponding to the wild-type (WT) ferritin precursor, (2) with the TP deleted, (3) with both the TP and the plant specific EP sequences deleted and (4) containing the TP but with the EP deleted. These four DNA fragments have been cloned in an Escherichia coli expression vector to produce the corresponding recombinant pea-seed ferritins. Expression at 37 degrees C led to the accumulation of recombinant pea-seed ferritins in inclusion bodies, whatever the construct introduced in E. coli. Expression at 25 degrees C in the presence of sorbitol and betaine allowed soluble proteins to accumulate when constructs with the TP deleted were used; under this condition, E. coli cells transformed with constructs containing the TP were unable to accumulate recombinant protein. Recombinant ferritins purified from inclusion bodies were found to be assembled only when the TP was deleted; however assembled ferritin under this condition had a ferroxidase activity undetectable at acid pH. On the other hand, soluble recombinant ferritins with the TP deleted and expressed at 25 degrees C were purified as 24-mers containing an average of 40-50 iron atoms per molecule. Despite the conservation in the plant ferritin subunit of a consensus ferroxidase centre, the iron uptake activity in vitro at pH 6.8 was found to be lower than that of the recombinant human H-ferritin, though it was much more active than the recombinant human L-ferritin. The recombinant ferritin with both the TP and the EP deleted (r delta TP/EP) assembled correctly as a 24-mer; it has slightly higher ferroxidase activity and decreased solubility compared with the wild-type protein with the TP deleted (r delta TP). In addition, on denaturation by urea followed by renaturation by dialysis the r delta TP/EP protein showed a 25% increase in core-formation in vitro compared with the r delta TP protein.(ABSTRACT TRUNCATED AT 400 WORDS)

DOI: 10.1042/bj3050253
PubMed: 7826338

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:7826338

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Purification and characterization of recombinant pea-seed ferritins expressed in Escherichia coli: influence of N-terminus deletions on protein solubility and core formation in vitro.</title>
<author>
<name sortKey="Van Wuytswinkel, O" sort="Van Wuytswinkel, O" uniqKey="Van Wuytswinkel O" first="O" last="Van Wuytswinkel">O. Van Wuytswinkel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Biologie Moléculaire Végétale, Centre National de la Recherche Scientifique (Unité de Recherche 1178), Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Biologie Moléculaire Végétale, Centre National de la Recherche Scientifique (Unité de Recherche 1178), Grenoble</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Savino, G" sort="Savino, G" uniqKey="Savino G" first="G" last="Savino">G. Savino</name>
</author>
<author>
<name sortKey="Briat, J F" sort="Briat, J F" uniqKey="Briat J" first="J F" last="Briat">J F Briat</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1995">1995</date>
<idno type="RBID">pubmed:7826338</idno>
<idno type="pmid">7826338</idno>
<idno type="doi">10.1042/bj3050253</idno>
<idno type="wicri:Area/PubMed/Corpus">002842</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002842</idno>
<idno type="wicri:Area/PubMed/Curation">002842</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002842</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Purification and characterization of recombinant pea-seed ferritins expressed in Escherichia coli: influence of N-terminus deletions on protein solubility and core formation in vitro.</title>
<author>
<name sortKey="Van Wuytswinkel, O" sort="Van Wuytswinkel, O" uniqKey="Van Wuytswinkel O" first="O" last="Van Wuytswinkel">O. Van Wuytswinkel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Biologie Moléculaire Végétale, Centre National de la Recherche Scientifique (Unité de Recherche 1178), Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Biologie Moléculaire Végétale, Centre National de la Recherche Scientifique (Unité de Recherche 1178), Grenoble</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Savino, G" sort="Savino, G" uniqKey="Savino G" first="G" last="Savino">G. Savino</name>
</author>
<author>
<name sortKey="Briat, J F" sort="Briat, J F" uniqKey="Briat J" first="J F" last="Briat">J F Briat</name>
</author>
</analytic>
<series>
<title level="j">The Biochemical journal</title>
<idno type="ISSN">0264-6021</idno>
<imprint>
<date when="1995" type="published">1995</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Ceruloplasmin (genetics)</term>
<term>Cloning, Molecular</term>
<term>Consensus Sequence</term>
<term>DNA, Plant (genetics)</term>
<term>Escherichia coli (genetics)</term>
<term>Escherichia coli (metabolism)</term>
<term>Ferritins (biosynthesis)</term>
<term>Ferritins (genetics)</term>
<term>Ferritins (isolation & purification)</term>
<term>Gene Deletion</term>
<term>Macromolecular Substances</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Peas (chemistry)</term>
<term>Peas (metabolism)</term>
<term>Plant Proteins (biosynthesis)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (isolation & purification)</term>
<term>Protein Denaturation</term>
<term>Protein Precursors (metabolism)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (isolation & purification)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Seeds (metabolism)</term>
<term>Seeds (physiology)</term>
<term>Solubility</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Clonage moléculaire</term>
<term>Céruloplasmine (génétique)</term>
<term>Données de séquences moléculaires</term>
<term>Délétion de gène</term>
<term>Dénaturation des protéines</term>
<term>Escherichia coli (génétique)</term>
<term>Escherichia coli (métabolisme)</term>
<term>Ferritines (biosynthèse)</term>
<term>Ferritines (génétique)</term>
<term>Ferritines (isolement et purification)</term>
<term>Graines (métabolisme)</term>
<term>Graines (physiologie)</term>
<term>Mutation</term>
<term>Pois ()</term>
<term>Pois (métabolisme)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (isolement et purification)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Protéines végétales (biosynthèse)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (isolement et purification)</term>
<term>Précurseurs de protéines (métabolisme)</term>
<term>Relation structure-activité</term>
<term>Solubilité</term>
<term>Structures macromoléculaires</term>
<term>Séquence consensus</term>
<term>Séquence d'acides aminés</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Ferritins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Ceruloplasmin</term>
<term>DNA, Plant</term>
<term>Ferritins</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Ferritines</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Peas</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Escherichia coli</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Céruloplasmine</term>
<term>Escherichia coli</term>
<term>Ferritines</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Ferritins</term>
<term>Plant Proteins</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Ferritines</term>
<term>Protéines recombinantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Escherichia coli</term>
<term>Peas</term>
<term>Protein Precursors</term>
<term>Recombinant Proteins</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Escherichia coli</term>
<term>Graines</term>
<term>Pois</term>
<term>Protéines recombinantes</term>
<term>Précurseurs de protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Graines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cloning, Molecular</term>
<term>Consensus Sequence</term>
<term>Gene Deletion</term>
<term>Macromolecular Substances</term>
<term>Molecular Sequence Data</term>
<term>Mutation</term>
<term>Protein Denaturation</term>
<term>Solubility</term>
<term>Structure-Activity Relationship</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Clonage moléculaire</term>
<term>Données de séquences moléculaires</term>
<term>Délétion de gène</term>
<term>Dénaturation des protéines</term>
<term>Mutation</term>
<term>Pois</term>
<term>Relation structure-activité</term>
<term>Solubilité</term>
<term>Structures macromoléculaires</term>
<term>Séquence consensus</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plant ferritin subunits are synthesized as precursor molecules; the transit peptide (TP) in their NH2 extremity, responsible for plastid targeting, is cleaved during translocation to this compartment. In addition, the N-terminus of the mature subunit contains a plant-specific sequence named extension peptide (EP) [Ragland, Briat, Gagnon, Laulhère, Massenet, and Theil, E.C. (1990) J. Biol. Chem. 265, 18339-18344], the function of which is unknown. A novel pea-seed ferritin cDNA, with a consensus ferroxidase centre conserved within H-type animal ferritins has been characterized. This pea-seed ferritin cDNA has been engineered using oligonucleotide-directed mutagenesis to produce DNA fragments (1) corresponding to the wild-type (WT) ferritin precursor, (2) with the TP deleted, (3) with both the TP and the plant specific EP sequences deleted and (4) containing the TP but with the EP deleted. These four DNA fragments have been cloned in an Escherichia coli expression vector to produce the corresponding recombinant pea-seed ferritins. Expression at 37 degrees C led to the accumulation of recombinant pea-seed ferritins in inclusion bodies, whatever the construct introduced in E. coli. Expression at 25 degrees C in the presence of sorbitol and betaine allowed soluble proteins to accumulate when constructs with the TP deleted were used; under this condition, E. coli cells transformed with constructs containing the TP were unable to accumulate recombinant protein. Recombinant ferritins purified from inclusion bodies were found to be assembled only when the TP was deleted; however assembled ferritin under this condition had a ferroxidase activity undetectable at acid pH. On the other hand, soluble recombinant ferritins with the TP deleted and expressed at 25 degrees C were purified as 24-mers containing an average of 40-50 iron atoms per molecule. Despite the conservation in the plant ferritin subunit of a consensus ferroxidase centre, the iron uptake activity in vitro at pH 6.8 was found to be lower than that of the recombinant human H-ferritin, though it was much more active than the recombinant human L-ferritin. The recombinant ferritin with both the TP and the EP deleted (r delta TP/EP) assembled correctly as a 24-mer; it has slightly higher ferroxidase activity and decreased solubility compared with the wild-type protein with the TP deleted (r delta TP). In addition, on denaturation by urea followed by renaturation by dialysis the r delta TP/EP protein showed a 25% increase in core-formation in vitro compared with the r delta TP protein.(ABSTRACT TRUNCATED AT 400 WORDS)</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">7826338</PMID>
<DateCompleted>
<Year>1995</Year>
<Month>02</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0264-6021</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>305 ( Pt 1)</Volume>
<PubDate>
<Year>1995</Year>
<Month>Jan</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Biochemical journal</Title>
<ISOAbbreviation>Biochem. J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Purification and characterization of recombinant pea-seed ferritins expressed in Escherichia coli: influence of N-terminus deletions on protein solubility and core formation in vitro.</ArticleTitle>
<Pagination>
<MedlinePgn>253-61</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Plant ferritin subunits are synthesized as precursor molecules; the transit peptide (TP) in their NH2 extremity, responsible for plastid targeting, is cleaved during translocation to this compartment. In addition, the N-terminus of the mature subunit contains a plant-specific sequence named extension peptide (EP) [Ragland, Briat, Gagnon, Laulhère, Massenet, and Theil, E.C. (1990) J. Biol. Chem. 265, 18339-18344], the function of which is unknown. A novel pea-seed ferritin cDNA, with a consensus ferroxidase centre conserved within H-type animal ferritins has been characterized. This pea-seed ferritin cDNA has been engineered using oligonucleotide-directed mutagenesis to produce DNA fragments (1) corresponding to the wild-type (WT) ferritin precursor, (2) with the TP deleted, (3) with both the TP and the plant specific EP sequences deleted and (4) containing the TP but with the EP deleted. These four DNA fragments have been cloned in an Escherichia coli expression vector to produce the corresponding recombinant pea-seed ferritins. Expression at 37 degrees C led to the accumulation of recombinant pea-seed ferritins in inclusion bodies, whatever the construct introduced in E. coli. Expression at 25 degrees C in the presence of sorbitol and betaine allowed soluble proteins to accumulate when constructs with the TP deleted were used; under this condition, E. coli cells transformed with constructs containing the TP were unable to accumulate recombinant protein. Recombinant ferritins purified from inclusion bodies were found to be assembled only when the TP was deleted; however assembled ferritin under this condition had a ferroxidase activity undetectable at acid pH. On the other hand, soluble recombinant ferritins with the TP deleted and expressed at 25 degrees C were purified as 24-mers containing an average of 40-50 iron atoms per molecule. Despite the conservation in the plant ferritin subunit of a consensus ferroxidase centre, the iron uptake activity in vitro at pH 6.8 was found to be lower than that of the recombinant human H-ferritin, though it was much more active than the recombinant human L-ferritin. The recombinant ferritin with both the TP and the EP deleted (r delta TP/EP) assembled correctly as a 24-mer; it has slightly higher ferroxidase activity and decreased solubility compared with the wild-type protein with the TP deleted (r delta TP). In addition, on denaturation by urea followed by renaturation by dialysis the r delta TP/EP protein showed a 25% increase in core-formation in vitro compared with the r delta TP protein.(ABSTRACT TRUNCATED AT 400 WORDS)</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Van Wuytswinkel</LastName>
<ForeName>O</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Biologie Moléculaire Végétale, Centre National de la Recherche Scientifique (Unité de Recherche 1178), Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Savino</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Briat</LastName>
<ForeName>J F</ForeName>
<Initials>JF</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>X73369</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biochem J</MedlineTA>
<NlmUniqueID>2984726R</NlmUniqueID>
<ISSNLinking>0264-6021</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046911">Macromolecular Substances</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011498">Protein Precursors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-73-2</RegistryNumber>
<NameOfSubstance UI="D005293">Ferritins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.16.3.1</RegistryNumber>
<NameOfSubstance UI="D002570">Ceruloplasmin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002570" MajorTopicYN="N">Ceruloplasmin</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016384" MajorTopicYN="N">Consensus Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004926" MajorTopicYN="N">Escherichia coli</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005293" MajorTopicYN="N">Ferritins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046911" MajorTopicYN="N">Macromolecular Substances</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018532" MajorTopicYN="N">Peas</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011489" MajorTopicYN="N">Protein Denaturation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011498" MajorTopicYN="N">Protein Precursors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012995" MajorTopicYN="N">Solubility</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013329" MajorTopicYN="N">Structure-Activity Relationship</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1995</Year>
<Month>1</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1995</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1995</Year>
<Month>1</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">7826338</ArticleId>
<ArticleId IdType="pmc">PMC1136457</ArticleId>
<ArticleId IdType="doi">10.1042/bj3050253</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1990 Oct 25;265(30):18339-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2211706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Feb 7;349(6309):541-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1992356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Sep;17(3):499-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1884000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1993 Aug 19;1174(2):218-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8357841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Feb 5;259(5096):796-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8430332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1989 Jun 13;28(12):5179-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2669970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1991 Dec 16;295(1-3):10-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1765138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1987;56:289-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3304136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1991 Mar 1;274 ( Pt 2):601-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2006922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1993 Sep 14;32(36):9362-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8369307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">271968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8222-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1896472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Feb 25;264(6):3629-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2536754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1992 Jul;19(4):563-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1627771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1993 Jan 15;1161(1):91-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8422424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1991 Dec 11;1118(1):48-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1764477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1992 Dec 1;288 ( Pt 2):591-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1983 Sep 15;214(3):943-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6626165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1986 May 5;189(1):113-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3537305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Jun;90(2):586-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Inorg Biochem. 1992 Aug 15-Sep;47(3-4):161-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1431878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Aug 5;266(22):14283-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1907276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1989 Aug 28;254(1-2):207-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2776883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 15;268(17):12744-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8509409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1992 Dec 15;288 ( Pt 3):931-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1472006</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002842 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002842 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:7826338
   |texte=   Purification and characterization of recombinant pea-seed ferritins expressed in Escherichia coli: influence of N-terminus deletions on protein solubility and core formation in vitro.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:7826338" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021