Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Implications for HDL assembly.

Identifieur interne : 002784 ( PubMed/Curation ); précédent : 002783; suivant : 002785

Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Implications for HDL assembly.

Auteurs : M N Palgunachari [États-Unis] ; V K Mishra ; S. Lund-Katz ; M C Phillips ; S O Adeyeye ; S. Alluri ; G M Anantharamaiah ; J P Segrest

Source :

RBID : pubmed:8620350

Descripteurs français

English descriptors

Abstract

Human apolipoprotein A-I (apo A-I) possesses multiple tandem repeating 22-mer amphipathic alpha-helixes. Computer analysis and studies of model synthetic peptides and recombinant protein-lipid complexes of phospholipids have suggested that apo A-I interacts with HDL surface lipids through cooperation among its individual amphipathic helical domains. To delineate the overall lipid-associating properties of apo A-I, the first step is to understand the lipid-associating properties of individual amphipathic helical domains. To this end, we synthesized and studied each of the eight tandem repeating 22-mer domains of apo A-I: residues 44-65, 66-87, 99-120, 121-142, 143-164, 165-186, 187-208, and 220-241. Among the 22-mers, only the N- and C-terminal peptides (44-65 and 220-241) were effective in clarifying multilamellar vesicles (MLVs) of dimyristoylphosphatidylcholine (DMPC). These two peptides also exhibited the highest partition coefficient into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine liposomes, the highest exclusion pressure for penetration into an egg yolk phosphatidylcholine monolayer, and the greatest reduction in the enthalpy of the gel-to-liquid crystalline phase transition of DMPC MLVs. These results suggest that the strong, lipid-associating properties of apo A-I are localized to the N- and C-terminal amphipathic domains. Although each of the eight peptides studied has an amphipathic structure, models based on changes in residual effective amino acid hydrophobicity resulting from differing depths of helix penetration into the lipid are best able to explain the high lipid affinity possessed by the two terminal domains. Differential scanning calorimetry (DSC) studies showed that on a molar basis, apo A-I is about 10 times more effective than the most effective peptide analyzed in reducing the enthalpy of the gel-to-liquid crystalline phase transition of DMPC MLVs. Because previous proteolysis experiments coupled with the present DSC results suggest that the lipid-associating domains of apo A-I are distributed throughout the length of the 243 amino acid residues, we propose that the terminal amphipathic helical domains are involved in the initial binding of apo A-I to the lipid surface to form HDL particles, followed by cooperative binding of the middle six amphipathic helical domains, perhaps aided by salt-bridge formation between adjacent helixes arranged in an antiparallel orientation.

DOI: 10.1161/01.atv.16.2.328
PubMed: 8620350

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:8620350

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Implications for HDL assembly.</title>
<author>
<name sortKey="Palgunachari, M N" sort="Palgunachari, M N" uniqKey="Palgunachari M" first="M N" last="Palgunachari">M N Palgunachari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicine, Biochemistry and Molecular Genetics, UAB Medical Center 35294, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Biochemistry and Molecular Genetics, UAB Medical Center 35294</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mishra, V K" sort="Mishra, V K" uniqKey="Mishra V" first="V K" last="Mishra">V K Mishra</name>
</author>
<author>
<name sortKey="Lund Katz, S" sort="Lund Katz, S" uniqKey="Lund Katz S" first="S" last="Lund-Katz">S. Lund-Katz</name>
</author>
<author>
<name sortKey="Phillips, M C" sort="Phillips, M C" uniqKey="Phillips M" first="M C" last="Phillips">M C Phillips</name>
</author>
<author>
<name sortKey="Adeyeye, S O" sort="Adeyeye, S O" uniqKey="Adeyeye S" first="S O" last="Adeyeye">S O Adeyeye</name>
</author>
<author>
<name sortKey="Alluri, S" sort="Alluri, S" uniqKey="Alluri S" first="S" last="Alluri">S. Alluri</name>
</author>
<author>
<name sortKey="Anantharamaiah, G M" sort="Anantharamaiah, G M" uniqKey="Anantharamaiah G" first="G M" last="Anantharamaiah">G M Anantharamaiah</name>
</author>
<author>
<name sortKey="Segrest, J P" sort="Segrest, J P" uniqKey="Segrest J" first="J P" last="Segrest">J P Segrest</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1996">1996</date>
<idno type="RBID">pubmed:8620350</idno>
<idno type="pmid">8620350</idno>
<idno type="doi">10.1161/01.atv.16.2.328</idno>
<idno type="wicri:Area/PubMed/Corpus">002784</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002784</idno>
<idno type="wicri:Area/PubMed/Curation">002784</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002784</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Implications for HDL assembly.</title>
<author>
<name sortKey="Palgunachari, M N" sort="Palgunachari, M N" uniqKey="Palgunachari M" first="M N" last="Palgunachari">M N Palgunachari</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Medicine, Biochemistry and Molecular Genetics, UAB Medical Center 35294, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Medicine, Biochemistry and Molecular Genetics, UAB Medical Center 35294</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Mishra, V K" sort="Mishra, V K" uniqKey="Mishra V" first="V K" last="Mishra">V K Mishra</name>
</author>
<author>
<name sortKey="Lund Katz, S" sort="Lund Katz, S" uniqKey="Lund Katz S" first="S" last="Lund-Katz">S. Lund-Katz</name>
</author>
<author>
<name sortKey="Phillips, M C" sort="Phillips, M C" uniqKey="Phillips M" first="M C" last="Phillips">M C Phillips</name>
</author>
<author>
<name sortKey="Adeyeye, S O" sort="Adeyeye, S O" uniqKey="Adeyeye S" first="S O" last="Adeyeye">S O Adeyeye</name>
</author>
<author>
<name sortKey="Alluri, S" sort="Alluri, S" uniqKey="Alluri S" first="S" last="Alluri">S. Alluri</name>
</author>
<author>
<name sortKey="Anantharamaiah, G M" sort="Anantharamaiah, G M" uniqKey="Anantharamaiah G" first="G M" last="Anantharamaiah">G M Anantharamaiah</name>
</author>
<author>
<name sortKey="Segrest, J P" sort="Segrest, J P" uniqKey="Segrest J" first="J P" last="Segrest">J P Segrest</name>
</author>
</analytic>
<series>
<title level="j">Arteriosclerosis, thrombosis, and vascular biology</title>
<idno type="ISSN">1079-5642</idno>
<imprint>
<date when="1996" type="published">1996</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Apolipoprotein A-I (genetics)</term>
<term>Apolipoprotein A-I (metabolism)</term>
<term>Binding, Competitive</term>
<term>Calorimetry, Differential Scanning</term>
<term>Circular Dichroism</term>
<term>Humans</term>
<term>Light</term>
<term>Lipid Metabolism</term>
<term>Lipoproteins, HDL (chemistry)</term>
<term>Models, Biological</term>
<term>Peptide Fragments (metabolism)</term>
<term>Repetitive Sequences, Nucleic Acid</term>
<term>Scattering, Radiation</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Apolipoprotéine A-I (génétique)</term>
<term>Apolipoprotéine A-I (métabolisme)</term>
<term>Calorimétrie différentielle à balayage</term>
<term>Dichroïsme circulaire</term>
<term>Diffusion de rayonnements</term>
<term>Fixation compétitive</term>
<term>Fragments peptidiques (métabolisme)</term>
<term>Humains</term>
<term>Lipoprotéines HDL ()</term>
<term>Lumière</term>
<term>Modèles biologiques</term>
<term>Métabolisme des lipides</term>
<term>Séquences répétées d'acides nucléiques</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lipoproteins, HDL</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Apolipoprotein A-I</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Apolipoprotein A-I</term>
<term>Peptide Fragments</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Apolipoprotéine A-I</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Apolipoprotéine A-I</term>
<term>Fragments peptidiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding, Competitive</term>
<term>Calorimetry, Differential Scanning</term>
<term>Circular Dichroism</term>
<term>Humans</term>
<term>Light</term>
<term>Lipid Metabolism</term>
<term>Models, Biological</term>
<term>Repetitive Sequences, Nucleic Acid</term>
<term>Scattering, Radiation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Calorimétrie différentielle à balayage</term>
<term>Dichroïsme circulaire</term>
<term>Diffusion de rayonnements</term>
<term>Fixation compétitive</term>
<term>Humains</term>
<term>Lipoprotéines HDL</term>
<term>Lumière</term>
<term>Modèles biologiques</term>
<term>Métabolisme des lipides</term>
<term>Séquences répétées d'acides nucléiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Human apolipoprotein A-I (apo A-I) possesses multiple tandem repeating 22-mer amphipathic alpha-helixes. Computer analysis and studies of model synthetic peptides and recombinant protein-lipid complexes of phospholipids have suggested that apo A-I interacts with HDL surface lipids through cooperation among its individual amphipathic helical domains. To delineate the overall lipid-associating properties of apo A-I, the first step is to understand the lipid-associating properties of individual amphipathic helical domains. To this end, we synthesized and studied each of the eight tandem repeating 22-mer domains of apo A-I: residues 44-65, 66-87, 99-120, 121-142, 143-164, 165-186, 187-208, and 220-241. Among the 22-mers, only the N- and C-terminal peptides (44-65 and 220-241) were effective in clarifying multilamellar vesicles (MLVs) of dimyristoylphosphatidylcholine (DMPC). These two peptides also exhibited the highest partition coefficient into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine liposomes, the highest exclusion pressure for penetration into an egg yolk phosphatidylcholine monolayer, and the greatest reduction in the enthalpy of the gel-to-liquid crystalline phase transition of DMPC MLVs. These results suggest that the strong, lipid-associating properties of apo A-I are localized to the N- and C-terminal amphipathic domains. Although each of the eight peptides studied has an amphipathic structure, models based on changes in residual effective amino acid hydrophobicity resulting from differing depths of helix penetration into the lipid are best able to explain the high lipid affinity possessed by the two terminal domains. Differential scanning calorimetry (DSC) studies showed that on a molar basis, apo A-I is about 10 times more effective than the most effective peptide analyzed in reducing the enthalpy of the gel-to-liquid crystalline phase transition of DMPC MLVs. Because previous proteolysis experiments coupled with the present DSC results suggest that the lipid-associating domains of apo A-I are distributed throughout the length of the 243 amino acid residues, we propose that the terminal amphipathic helical domains are involved in the initial binding of apo A-I to the lipid surface to form HDL particles, followed by cooperative binding of the middle six amphipathic helical domains, perhaps aided by salt-bridge formation between adjacent helixes arranged in an antiparallel orientation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">8620350</PMID>
<DateCompleted>
<Year>1996</Year>
<Month>06</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1079-5642</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>16</Volume>
<Issue>2</Issue>
<PubDate>
<Year>1996</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Arteriosclerosis, thrombosis, and vascular biology</Title>
<ISOAbbreviation>Arterioscler. Thromb. Vasc. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Implications for HDL assembly.</ArticleTitle>
<Pagination>
<MedlinePgn>328-38</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Human apolipoprotein A-I (apo A-I) possesses multiple tandem repeating 22-mer amphipathic alpha-helixes. Computer analysis and studies of model synthetic peptides and recombinant protein-lipid complexes of phospholipids have suggested that apo A-I interacts with HDL surface lipids through cooperation among its individual amphipathic helical domains. To delineate the overall lipid-associating properties of apo A-I, the first step is to understand the lipid-associating properties of individual amphipathic helical domains. To this end, we synthesized and studied each of the eight tandem repeating 22-mer domains of apo A-I: residues 44-65, 66-87, 99-120, 121-142, 143-164, 165-186, 187-208, and 220-241. Among the 22-mers, only the N- and C-terminal peptides (44-65 and 220-241) were effective in clarifying multilamellar vesicles (MLVs) of dimyristoylphosphatidylcholine (DMPC). These two peptides also exhibited the highest partition coefficient into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine liposomes, the highest exclusion pressure for penetration into an egg yolk phosphatidylcholine monolayer, and the greatest reduction in the enthalpy of the gel-to-liquid crystalline phase transition of DMPC MLVs. These results suggest that the strong, lipid-associating properties of apo A-I are localized to the N- and C-terminal amphipathic domains. Although each of the eight peptides studied has an amphipathic structure, models based on changes in residual effective amino acid hydrophobicity resulting from differing depths of helix penetration into the lipid are best able to explain the high lipid affinity possessed by the two terminal domains. Differential scanning calorimetry (DSC) studies showed that on a molar basis, apo A-I is about 10 times more effective than the most effective peptide analyzed in reducing the enthalpy of the gel-to-liquid crystalline phase transition of DMPC MLVs. Because previous proteolysis experiments coupled with the present DSC results suggest that the lipid-associating domains of apo A-I are distributed throughout the length of the 243 amino acid residues, we propose that the terminal amphipathic helical domains are involved in the initial binding of apo A-I to the lipid surface to form HDL particles, followed by cooperative binding of the middle six amphipathic helical domains, perhaps aided by salt-bridge formation between adjacent helixes arranged in an antiparallel orientation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Palgunachari</LastName>
<ForeName>M N</ForeName>
<Initials>MN</Initials>
<AffiliationInfo>
<Affiliation>Department of Medicine, Biochemistry and Molecular Genetics, UAB Medical Center 35294, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mishra</LastName>
<ForeName>V K</ForeName>
<Initials>VK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lund-Katz</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Phillips</LastName>
<ForeName>M C</ForeName>
<Initials>MC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Adeyeye</LastName>
<ForeName>S O</ForeName>
<Initials>SO</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alluri</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Anantharamaiah</LastName>
<ForeName>G M</ForeName>
<Initials>GM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Segrest</LastName>
<ForeName>J P</ForeName>
<Initials>JP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HL 22633</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL34343</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Arterioscler Thromb Vasc Biol</MedlineTA>
<NlmUniqueID>9505803</NlmUniqueID>
<ISSNLinking>1079-5642</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016632">Apolipoprotein A-I</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008075">Lipoproteins, HDL</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010446">Peptide Fragments</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016632" MajorTopicYN="N">Apolipoprotein A-I</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001667" MajorTopicYN="N">Binding, Competitive</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002152" MajorTopicYN="N">Calorimetry, Differential Scanning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050356" MajorTopicYN="Y">Lipid Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008075" MajorTopicYN="N">Lipoproteins, HDL</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010446" MajorTopicYN="N">Peptide Fragments</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012091" MajorTopicYN="Y">Repetitive Sequences, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012542" MajorTopicYN="N">Scattering, Radiation</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1996</Year>
<Month>2</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1996</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1996</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">8620350</ArticleId>
<ArticleId IdType="doi">10.1161/01.atv.16.2.328</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002784 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002784 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:8620350
   |texte=   Only the two end helixes of eight tandem amphipathic helical domains of human apo A-I have significant lipid affinity. Implications for HDL assembly.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:8620350" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021