Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effects of modifications near the 2-, 3- and 4-fold symmetry axes on human ferritin renaturation.

Identifieur interne : 002735 ( PubMed/Curation ); précédent : 002734; suivant : 002736

Effects of modifications near the 2-, 3- and 4-fold symmetry axes on human ferritin renaturation.

Auteurs : P. Santambrogio [Italie] ; P. Pinto ; S. Levi ; A. Cozzi ; E. Rovida ; A. Albertini ; P. Artymiuk ; P M Harrison ; P. Arosio

Source :

RBID : pubmed:9065764

Descripteurs français

English descriptors

Abstract

Ferritin is a protein of 24 subunits which assemble into a shell with 432 point symmetry. It can be denatured reversibly in acidic guanidine hydrochloride, with the formation of poorly populated renaturation intermediates. In order to increase the accumulation of intermediates and to study the mechanism of ferritin renaturation, we analysed variants of the human ferritin H-chain altered at the N-terminus (delta(1-13)), near the 4-fold axis (Leu-169 --> Arg), the 3-fold axis (Asp-131 --> Ile + Glu-134 --> Phe) or the 2-fold axis (Ile-85 --> Cys). We also carried out specific chemical modifications of Cys-130 (near the 3-fold axis) and Cys-85 (near the 2-fold axis). Renaturation of the modified ferritins yielded assembly intermediates that differed in size and physical properties. Alterations of residues around the 2-, 4- and 3-fold axes produced subunit monomers, dimers and higher oligomers respectively. All these intermediates could be induced to assemble into ferritin 24-mers by concentrating them or by co-renaturing them with wild-type H-ferritin. The results support the hypothesis that the symmetric subunit dimers are the building blocks of ferritin assembly, and are consistent with a reassembly pathway involving the coalescence of dimers, probably around the 4-fold axis, followed by stepwise addition of dimers until the 24-mer cage is completed. In addition they show that assembly interactions are responsible for the large hysteresis of folding and unfolding plots. The implications of the studies for in vivo heteropolymer formation in vertebrates, which have two types of ferritin chain (H and L), are discussed.

DOI: 10.1042/bj3220461
PubMed: 9065764

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:9065764

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Effects of modifications near the 2-, 3- and 4-fold symmetry axes on human ferritin renaturation.</title>
<author>
<name sortKey="Santambrogio, P" sort="Santambrogio, P" uniqKey="Santambrogio P" first="P" last="Santambrogio">P. Santambrogio</name>
<affiliation wicri:level="1">
<nlm:affiliation>DIBIT, San Raffaele Scientific Institute, Milano, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>DIBIT, San Raffaele Scientific Institute, Milano</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pinto, P" sort="Pinto, P" uniqKey="Pinto P" first="P" last="Pinto">P. Pinto</name>
</author>
<author>
<name sortKey="Levi, S" sort="Levi, S" uniqKey="Levi S" first="S" last="Levi">S. Levi</name>
</author>
<author>
<name sortKey="Cozzi, A" sort="Cozzi, A" uniqKey="Cozzi A" first="A" last="Cozzi">A. Cozzi</name>
</author>
<author>
<name sortKey="Rovida, E" sort="Rovida, E" uniqKey="Rovida E" first="E" last="Rovida">E. Rovida</name>
</author>
<author>
<name sortKey="Albertini, A" sort="Albertini, A" uniqKey="Albertini A" first="A" last="Albertini">A. Albertini</name>
</author>
<author>
<name sortKey="Artymiuk, P" sort="Artymiuk, P" uniqKey="Artymiuk P" first="P" last="Artymiuk">P. Artymiuk</name>
</author>
<author>
<name sortKey="Harrison, P M" sort="Harrison, P M" uniqKey="Harrison P" first="P M" last="Harrison">P M Harrison</name>
</author>
<author>
<name sortKey="Arosio, P" sort="Arosio, P" uniqKey="Arosio P" first="P" last="Arosio">P. Arosio</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1997">1997</date>
<idno type="RBID">pubmed:9065764</idno>
<idno type="pmid">9065764</idno>
<idno type="doi">10.1042/bj3220461</idno>
<idno type="wicri:Area/PubMed/Corpus">002735</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002735</idno>
<idno type="wicri:Area/PubMed/Curation">002735</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002735</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Effects of modifications near the 2-, 3- and 4-fold symmetry axes on human ferritin renaturation.</title>
<author>
<name sortKey="Santambrogio, P" sort="Santambrogio, P" uniqKey="Santambrogio P" first="P" last="Santambrogio">P. Santambrogio</name>
<affiliation wicri:level="1">
<nlm:affiliation>DIBIT, San Raffaele Scientific Institute, Milano, Italy.</nlm:affiliation>
<country xml:lang="fr">Italie</country>
<wicri:regionArea>DIBIT, San Raffaele Scientific Institute, Milano</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Pinto, P" sort="Pinto, P" uniqKey="Pinto P" first="P" last="Pinto">P. Pinto</name>
</author>
<author>
<name sortKey="Levi, S" sort="Levi, S" uniqKey="Levi S" first="S" last="Levi">S. Levi</name>
</author>
<author>
<name sortKey="Cozzi, A" sort="Cozzi, A" uniqKey="Cozzi A" first="A" last="Cozzi">A. Cozzi</name>
</author>
<author>
<name sortKey="Rovida, E" sort="Rovida, E" uniqKey="Rovida E" first="E" last="Rovida">E. Rovida</name>
</author>
<author>
<name sortKey="Albertini, A" sort="Albertini, A" uniqKey="Albertini A" first="A" last="Albertini">A. Albertini</name>
</author>
<author>
<name sortKey="Artymiuk, P" sort="Artymiuk, P" uniqKey="Artymiuk P" first="P" last="Artymiuk">P. Artymiuk</name>
</author>
<author>
<name sortKey="Harrison, P M" sort="Harrison, P M" uniqKey="Harrison P" first="P M" last="Harrison">P M Harrison</name>
</author>
<author>
<name sortKey="Arosio, P" sort="Arosio, P" uniqKey="Arosio P" first="P" last="Arosio">P. Arosio</name>
</author>
</analytic>
<series>
<title level="j">The Biochemical journal</title>
<idno type="ISSN">0264-6021</idno>
<imprint>
<date when="1997" type="published">1997</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Circular Dichroism</term>
<term>Cysteine (chemistry)</term>
<term>Dimerization</term>
<term>Ferritins (chemistry)</term>
<term>Ferritins (drug effects)</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Mutagenesis, Site-Directed</term>
<term>Mutation</term>
<term>Protein Conformation</term>
<term>Protein Denaturation</term>
<term>Protein Folding</term>
<term>Urea (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Cystéine ()</term>
<term>Dichroïsme circulaire</term>
<term>Dimérisation</term>
<term>Dénaturation des protéines</term>
<term>Ferritines ()</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Mutation</term>
<term>Pliage des protéines</term>
<term>Urée (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Cysteine</term>
<term>Ferritins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Ferritins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Urea</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Urée</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Circular Dichroism</term>
<term>Dimerization</term>
<term>Humans</term>
<term>Models, Molecular</term>
<term>Mutagenesis, Site-Directed</term>
<term>Mutation</term>
<term>Protein Conformation</term>
<term>Protein Denaturation</term>
<term>Protein Folding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Cystéine</term>
<term>Dichroïsme circulaire</term>
<term>Dimérisation</term>
<term>Dénaturation des protéines</term>
<term>Ferritines</term>
<term>Humains</term>
<term>Modèles moléculaires</term>
<term>Mutagenèse dirigée</term>
<term>Mutation</term>
<term>Pliage des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ferritin is a protein of 24 subunits which assemble into a shell with 432 point symmetry. It can be denatured reversibly in acidic guanidine hydrochloride, with the formation of poorly populated renaturation intermediates. In order to increase the accumulation of intermediates and to study the mechanism of ferritin renaturation, we analysed variants of the human ferritin H-chain altered at the N-terminus (delta(1-13)), near the 4-fold axis (Leu-169 --> Arg), the 3-fold axis (Asp-131 --> Ile + Glu-134 --> Phe) or the 2-fold axis (Ile-85 --> Cys). We also carried out specific chemical modifications of Cys-130 (near the 3-fold axis) and Cys-85 (near the 2-fold axis). Renaturation of the modified ferritins yielded assembly intermediates that differed in size and physical properties. Alterations of residues around the 2-, 4- and 3-fold axes produced subunit monomers, dimers and higher oligomers respectively. All these intermediates could be induced to assemble into ferritin 24-mers by concentrating them or by co-renaturing them with wild-type H-ferritin. The results support the hypothesis that the symmetric subunit dimers are the building blocks of ferritin assembly, and are consistent with a reassembly pathway involving the coalescence of dimers, probably around the 4-fold axis, followed by stepwise addition of dimers until the 24-mer cage is completed. In addition they show that assembly interactions are responsible for the large hysteresis of folding and unfolding plots. The implications of the studies for in vivo heteropolymer formation in vertebrates, which have two types of ferritin chain (H and L), are discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9065764</PMID>
<DateCompleted>
<Year>1997</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0264-6021</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>322 ( Pt 2)</Volume>
<PubDate>
<Year>1997</Year>
<Month>Mar</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>The Biochemical journal</Title>
<ISOAbbreviation>Biochem. J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Effects of modifications near the 2-, 3- and 4-fold symmetry axes on human ferritin renaturation.</ArticleTitle>
<Pagination>
<MedlinePgn>461-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Ferritin is a protein of 24 subunits which assemble into a shell with 432 point symmetry. It can be denatured reversibly in acidic guanidine hydrochloride, with the formation of poorly populated renaturation intermediates. In order to increase the accumulation of intermediates and to study the mechanism of ferritin renaturation, we analysed variants of the human ferritin H-chain altered at the N-terminus (delta(1-13)), near the 4-fold axis (Leu-169 --> Arg), the 3-fold axis (Asp-131 --> Ile + Glu-134 --> Phe) or the 2-fold axis (Ile-85 --> Cys). We also carried out specific chemical modifications of Cys-130 (near the 3-fold axis) and Cys-85 (near the 2-fold axis). Renaturation of the modified ferritins yielded assembly intermediates that differed in size and physical properties. Alterations of residues around the 2-, 4- and 3-fold axes produced subunit monomers, dimers and higher oligomers respectively. All these intermediates could be induced to assemble into ferritin 24-mers by concentrating them or by co-renaturing them with wild-type H-ferritin. The results support the hypothesis that the symmetric subunit dimers are the building blocks of ferritin assembly, and are consistent with a reassembly pathway involving the coalescence of dimers, probably around the 4-fold axis, followed by stepwise addition of dimers until the 24-mer cage is completed. In addition they show that assembly interactions are responsible for the large hysteresis of folding and unfolding plots. The implications of the studies for in vivo heteropolymer formation in vertebrates, which have two types of ferritin chain (H and L), are discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Santambrogio</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>DIBIT, San Raffaele Scientific Institute, Milano, Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pinto</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Levi</LastName>
<ForeName>S</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cozzi</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rovida</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Albertini</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Artymiuk</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harrison</LastName>
<ForeName>P M</ForeName>
<Initials>PM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Arosio</LastName>
<ForeName>P</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biochem J</MedlineTA>
<NlmUniqueID>2984726R</NlmUniqueID>
<ISSNLinking>0264-6021</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>8W8T17847W</RegistryNumber>
<NameOfSubstance UI="D014508">Urea</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-73-2</RegistryNumber>
<NameOfSubstance UI="D005293">Ferritins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005293" MajorTopicYN="N">Ferritins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016297" MajorTopicYN="N">Mutagenesis, Site-Directed</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="Y">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011489" MajorTopicYN="N">Protein Denaturation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="Y">Protein Folding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014508" MajorTopicYN="N">Urea</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1997</Year>
<Month>3</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1997</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1997</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9065764</ArticleId>
<ArticleId IdType="pmc">PMC1218213</ArticleId>
<ArticleId IdType="doi">10.1042/bj3220461</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochem J. 1992 Dec 1;288 ( Pt 2):591-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1992 Sep 20;227(2):532-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1404367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 May 25;268(15):10760-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8496142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 15;268(17):12744-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8509409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Oct 15;268(29):21819-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7691817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1993 Dec 27;336(2):309-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8262252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1993 Nov;2(11):1844-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8268795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Dec 2;269(48):30334-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7982945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Jul 15;317 ( Pt 2):467-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8713073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1996 Jul 31;1275(3):161-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8695634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1967 May;6(5):1341-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6036829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1973 Jul 20;181(4096):223-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4124164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1978 Jun 25;253(12):4451-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">659425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1979 Apr 15;100(2):296-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">456569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1981 Sep 1;20(18):5226-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7295674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 1984 Feb 13;304(1121):551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6142491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1986 Jul 25;872(1-2):61-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3089283</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1987 Apr 7;26(7):1831-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3593696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem Hoppe Seyler. 1987 Apr;368(4):387-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3606823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Biophys J. 1987;15(2):103-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3436310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1988 May 31;27(11):4089-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3415975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Dec 5;263(34):18086-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3192527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Feb;8(2):569-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2656256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1991 Feb 7;349(6309):541-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1992356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Jul 15;267(20):14077-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1629207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1993 Mar;64(3):824-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8471727</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002735 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002735 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:9065764
   |texte=   Effects of modifications near the 2-, 3- and 4-fold symmetry axes on human ferritin renaturation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:9065764" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021