Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding.

Identifieur interne : 002596 ( PubMed/Curation ); précédent : 002595; suivant : 002597

Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding.

Auteurs : R. Dickson [États-Unis] ; C. Weiss ; R J Howard ; S P Alldrick ; R J Ellis ; G. Lorimer ; A. Azem ; P V Viitanen

Source :

RBID : pubmed:10766808

Descripteurs français

English descriptors

Abstract

Unlike the GroEL homologs of eubacteria and mitochondria, oligomer preparations of the higher plant chloroplast chaperonin 60 (cpn60) consist of roughly equal amounts of two divergent subunits, alpha and beta. The functional significance of these isoforms, their structural organization into tetradecamers, and their interactions with the unique binary chloroplast chaperonin 10 (cpn10) have not been elucidated. Toward this goal, we have cloned the alpha and beta subunits of the ch-cpn60 of pea (Pisum sativum), expressed them individually in Escherichia coli, and subjected the purified monomers to in vitro reconstitution experiments. In the absence of other factors, neither subunit (alone or in combination) spontaneously assembles into a higher order structure. However, in the presence of MgATP, the beta subunits form tetradecamers in a cooperative reaction that is potentiated by cpn10. In contrast, alpha subunits only assemble in the presence of beta subunits. Although beta and alpha/beta 14-mers are indistinguishable by electron microscopy and can both assist protein folding, their specificities for cpn10 are entirely different. Similar to the authentic chloroplast protein, the reconstituted alpha/beta 14-mers are functionally compatible with bacterial, mitochondrial, and chloroplast cpn10. In contrast, the folding reaction mediated by the reconstituted beta 14-mers is only efficient with mitochondrial cpn10. The ability to reconstitute two types of functional oligomer in vitro provides a unique tool, which will allow us to investigate the mechanism of this unusual chaperonin system.

DOI: 10.1074/jbc.275.16.11829
PubMed: 10766808

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:10766808

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding.</title>
<author>
<name sortKey="Dickson, R" sort="Dickson, R" uniqKey="Dickson R" first="R" last="Dickson">R. Dickson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Biology Division, Central Research and Development Department, E. I. DuPont de Nemours and Company, Experimental Station, Wilmington, Delaware 19880-0402, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular Biology Division, Central Research and Development Department, E. I. DuPont de Nemours and Company, Experimental Station, Wilmington, Delaware 19880-0402</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Weiss, C" sort="Weiss, C" uniqKey="Weiss C" first="C" last="Weiss">C. Weiss</name>
</author>
<author>
<name sortKey="Howard, R J" sort="Howard, R J" uniqKey="Howard R" first="R J" last="Howard">R J Howard</name>
</author>
<author>
<name sortKey="Alldrick, S P" sort="Alldrick, S P" uniqKey="Alldrick S" first="S P" last="Alldrick">S P Alldrick</name>
</author>
<author>
<name sortKey="Ellis, R J" sort="Ellis, R J" uniqKey="Ellis R" first="R J" last="Ellis">R J Ellis</name>
</author>
<author>
<name sortKey="Lorimer, G" sort="Lorimer, G" uniqKey="Lorimer G" first="G" last="Lorimer">G. Lorimer</name>
</author>
<author>
<name sortKey="Azem, A" sort="Azem, A" uniqKey="Azem A" first="A" last="Azem">A. Azem</name>
</author>
<author>
<name sortKey="Viitanen, P V" sort="Viitanen, P V" uniqKey="Viitanen P" first="P V" last="Viitanen">P V Viitanen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:10766808</idno>
<idno type="pmid">10766808</idno>
<idno type="doi">10.1074/jbc.275.16.11829</idno>
<idno type="wicri:Area/PubMed/Corpus">002596</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002596</idno>
<idno type="wicri:Area/PubMed/Curation">002596</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002596</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding.</title>
<author>
<name sortKey="Dickson, R" sort="Dickson, R" uniqKey="Dickson R" first="R" last="Dickson">R. Dickson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Molecular Biology Division, Central Research and Development Department, E. I. DuPont de Nemours and Company, Experimental Station, Wilmington, Delaware 19880-0402, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Molecular Biology Division, Central Research and Development Department, E. I. DuPont de Nemours and Company, Experimental Station, Wilmington, Delaware 19880-0402</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Weiss, C" sort="Weiss, C" uniqKey="Weiss C" first="C" last="Weiss">C. Weiss</name>
</author>
<author>
<name sortKey="Howard, R J" sort="Howard, R J" uniqKey="Howard R" first="R J" last="Howard">R J Howard</name>
</author>
<author>
<name sortKey="Alldrick, S P" sort="Alldrick, S P" uniqKey="Alldrick S" first="S P" last="Alldrick">S P Alldrick</name>
</author>
<author>
<name sortKey="Ellis, R J" sort="Ellis, R J" uniqKey="Ellis R" first="R J" last="Ellis">R J Ellis</name>
</author>
<author>
<name sortKey="Lorimer, G" sort="Lorimer, G" uniqKey="Lorimer G" first="G" last="Lorimer">G. Lorimer</name>
</author>
<author>
<name sortKey="Azem, A" sort="Azem, A" uniqKey="Azem A" first="A" last="Azem">A. Azem</name>
</author>
<author>
<name sortKey="Viitanen, P V" sort="Viitanen, P V" uniqKey="Viitanen P" first="P V" last="Viitanen">P V Viitanen</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphate (metabolism)</term>
<term>Chaperonin 60 (chemistry)</term>
<term>Chaperonin 60 (genetics)</term>
<term>Chloroplasts (chemistry)</term>
<term>Cloning, Molecular</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
<term>Peas (chemistry)</term>
<term>Protein Conformation</term>
<term>Protein Folding</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adénosine triphosphate (métabolisme)</term>
<term>Chaperonine-60 ()</term>
<term>Chaperonine-60 (génétique)</term>
<term>Chloroplastes ()</term>
<term>Clonage moléculaire</term>
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Pliage des protéines</term>
<term>Pois ()</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Chaperonin 60</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chaperonin 60</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphate</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Chloroplasts</term>
<term>Peas</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chaperonine-60</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adénosine triphosphate</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cloning, Molecular</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Data</term>
<term>Protein Conformation</term>
<term>Protein Folding</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chaperonine-60</term>
<term>Chloroplastes</term>
<term>Clonage moléculaire</term>
<term>Conformation des protéines</term>
<term>Données de séquences moléculaires</term>
<term>Pliage des protéines</term>
<term>Pois</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Unlike the GroEL homologs of eubacteria and mitochondria, oligomer preparations of the higher plant chloroplast chaperonin 60 (cpn60) consist of roughly equal amounts of two divergent subunits, alpha and beta. The functional significance of these isoforms, their structural organization into tetradecamers, and their interactions with the unique binary chloroplast chaperonin 10 (cpn10) have not been elucidated. Toward this goal, we have cloned the alpha and beta subunits of the ch-cpn60 of pea (Pisum sativum), expressed them individually in Escherichia coli, and subjected the purified monomers to in vitro reconstitution experiments. In the absence of other factors, neither subunit (alone or in combination) spontaneously assembles into a higher order structure. However, in the presence of MgATP, the beta subunits form tetradecamers in a cooperative reaction that is potentiated by cpn10. In contrast, alpha subunits only assemble in the presence of beta subunits. Although beta and alpha/beta 14-mers are indistinguishable by electron microscopy and can both assist protein folding, their specificities for cpn10 are entirely different. Similar to the authentic chloroplast protein, the reconstituted alpha/beta 14-mers are functionally compatible with bacterial, mitochondrial, and chloroplast cpn10. In contrast, the folding reaction mediated by the reconstituted beta 14-mers is only efficient with mitochondrial cpn10. The ability to reconstitute two types of functional oligomer in vitro provides a unique tool, which will allow us to investigate the mechanism of this unusual chaperonin system.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">10766808</PMID>
<DateCompleted>
<Year>2000</Year>
<Month>05</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>05</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>275</Volume>
<Issue>16</Issue>
<PubDate>
<Year>2000</Year>
<Month>Apr</Month>
<Day>21</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J. Biol. Chem.</ISOAbbreviation>
</Journal>
<ArticleTitle>Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding.</ArticleTitle>
<Pagination>
<MedlinePgn>11829-35</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Unlike the GroEL homologs of eubacteria and mitochondria, oligomer preparations of the higher plant chloroplast chaperonin 60 (cpn60) consist of roughly equal amounts of two divergent subunits, alpha and beta. The functional significance of these isoforms, their structural organization into tetradecamers, and their interactions with the unique binary chloroplast chaperonin 10 (cpn10) have not been elucidated. Toward this goal, we have cloned the alpha and beta subunits of the ch-cpn60 of pea (Pisum sativum), expressed them individually in Escherichia coli, and subjected the purified monomers to in vitro reconstitution experiments. In the absence of other factors, neither subunit (alone or in combination) spontaneously assembles into a higher order structure. However, in the presence of MgATP, the beta subunits form tetradecamers in a cooperative reaction that is potentiated by cpn10. In contrast, alpha subunits only assemble in the presence of beta subunits. Although beta and alpha/beta 14-mers are indistinguishable by electron microscopy and can both assist protein folding, their specificities for cpn10 are entirely different. Similar to the authentic chloroplast protein, the reconstituted alpha/beta 14-mers are functionally compatible with bacterial, mitochondrial, and chloroplast cpn10. In contrast, the folding reaction mediated by the reconstituted beta 14-mers is only efficient with mitochondrial cpn10. The ability to reconstitute two types of functional oligomer in vitro provides a unique tool, which will allow us to investigate the mechanism of this unusual chaperonin system.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dickson</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Molecular Biology Division, Central Research and Development Department, E. I. DuPont de Nemours and Company, Experimental Station, Wilmington, Delaware 19880-0402, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weiss</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Howard</LastName>
<ForeName>R J</ForeName>
<Initials>RJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Alldrick</LastName>
<ForeName>S P</ForeName>
<Initials>SP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ellis</LastName>
<ForeName>R J</ForeName>
<Initials>RJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lorimer</LastName>
<ForeName>G</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Azem</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Viitanen</LastName>
<ForeName>P V</ForeName>
<Initials>PV</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>U21105</AccessionNumber>
<AccessionNumber>U21139</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018834">Chaperonin 60</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018834" MajorTopicYN="N">Chaperonin 60</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002736" MajorTopicYN="N">Chloroplasts</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018532" MajorTopicYN="N">Peas</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017510" MajorTopicYN="Y">Protein Folding</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2000</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">10766808</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.275.16.11829</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002596 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002596 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:10766808
   |texte=   Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:10766808" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021