Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

DNA binding mediated by the wheat HMGa protein: a novel instance of selectivity against alternating GC sequence.

Identifieur interne : 002556 ( PubMed/Curation ); précédent : 002555; suivant : 002557

DNA binding mediated by the wheat HMGa protein: a novel instance of selectivity against alternating GC sequence.

Auteurs : Y L Chua [Singapour] ; K H Pwee ; R M Kini ; C Y Leng ; P K Hock

Source :

RBID : pubmed:11442059

Descripteurs français

English descriptors

Abstract

The high-mobility-group (HMG) chromosomal protein wheat HMGa was purified to homogeneity and tested for its binding characteristics to double-stranded DNA. Wheat HMGa was able to bind to P268, an A/T-rich fragment derived from the pea plastocyanin gene promoter, producing a small mobility shift in gel retardation assays where the bound complex was sensitive to addition of proteinase K but resistant to heat treatment of the protein, consistent with the identity of wheat HMGa as a putative HMG-I/Y protein. Gel retardation assays and southwestern hybridization analysis revealed that wheat HMGa could selectively interact with the DNA polynucleotides poly(dA).poly(dT), poly(dAdT).poly(dAdT), and poly(dG).poly(dC), but not with poly(dGdC).poly(dGdC). Surface plasmon resonance analysis determined the kinetic and affinity constants of sensor chip-immobilized wheat HMGa for double-stranded DNA 10-mers, revealing a good affinity of the protein for various dinucleotide combinations, except that of alternating GC sequence. Thus contrary to prior reports of a selectivity of wheat HMGa for A/T-rich DNA, the protein appears to be able to interact with sequences containing guanine and cytosine residues as well, except where G/C residues alternate directly in the primary sequence.

DOI: 10.1023/a:1010696604330
PubMed: 11442059

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:11442059

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">DNA binding mediated by the wheat HMGa protein: a novel instance of selectivity against alternating GC sequence.</title>
<author>
<name sortKey="Chua, Y L" sort="Chua, Y L" uniqKey="Chua Y" first="Y L" last="Chua">Y L Chua</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Molecular Biology Laboratory, National University of Singapore, Republic of Singapore.</nlm:affiliation>
<orgName type="university">Université nationale de Singapour</orgName>
<country>Singapour</country>
</affiliation>
</author>
<author>
<name sortKey="Pwee, K H" sort="Pwee, K H" uniqKey="Pwee K" first="K H" last="Pwee">K H Pwee</name>
</author>
<author>
<name sortKey="Kini, R M" sort="Kini, R M" uniqKey="Kini R" first="R M" last="Kini">R M Kini</name>
</author>
<author>
<name sortKey="Leng, C Y" sort="Leng, C Y" uniqKey="Leng C" first="C Y" last="Leng">C Y Leng</name>
</author>
<author>
<name sortKey="Hock, P K" sort="Hock, P K" uniqKey="Hock P" first="P K" last="Hock">P K Hock</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11442059</idno>
<idno type="pmid">11442059</idno>
<idno type="doi">10.1023/a:1010696604330</idno>
<idno type="wicri:Area/PubMed/Corpus">002556</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002556</idno>
<idno type="wicri:Area/PubMed/Curation">002556</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002556</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">DNA binding mediated by the wheat HMGa protein: a novel instance of selectivity against alternating GC sequence.</title>
<author>
<name sortKey="Chua, Y L" sort="Chua, Y L" uniqKey="Chua Y" first="Y L" last="Chua">Y L Chua</name>
<affiliation wicri:level="4">
<nlm:affiliation>Plant Molecular Biology Laboratory, National University of Singapore, Republic of Singapore.</nlm:affiliation>
<orgName type="university">Université nationale de Singapour</orgName>
<country>Singapour</country>
</affiliation>
</author>
<author>
<name sortKey="Pwee, K H" sort="Pwee, K H" uniqKey="Pwee K" first="K H" last="Pwee">K H Pwee</name>
</author>
<author>
<name sortKey="Kini, R M" sort="Kini, R M" uniqKey="Kini R" first="R M" last="Kini">R M Kini</name>
</author>
<author>
<name sortKey="Leng, C Y" sort="Leng, C Y" uniqKey="Leng C" first="C Y" last="Leng">C Y Leng</name>
</author>
<author>
<name sortKey="Hock, P K" sort="Hock, P K" uniqKey="Hock P" first="P K" last="Hock">P K Hock</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="ISSN">0167-4412</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence</term>
<term>Chromatography, High Pressure Liquid</term>
<term>DNA Primers</term>
<term>DNA, Plant (metabolism)</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>High Mobility Group Proteins (metabolism)</term>
<term>Kinetics</term>
<term>Promoter Regions, Genetic</term>
<term>Protein Binding</term>
<term>Surface Plasmon Resonance</term>
<term>Triticum (genetics)</term>
<term>Triticum (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (métabolisme)</term>
<term>Amorces ADN</term>
<term>Chromatographie en phase liquide à haute performance</term>
<term>Cinétique</term>
<term>Liaison aux protéines</term>
<term>Protéines HMG (métabolisme)</term>
<term>Régions promotrices (génétique)</term>
<term>Résonance plasmonique de surface</term>
<term>Séquence nucléotidique</term>
<term>Triticum (génétique)</term>
<term>Triticum (métabolisme)</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Plant</term>
<term>High Mobility Group Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>DNA Primers</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN des plantes</term>
<term>Protéines HMG</term>
<term>Triticum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Chromatography, High Pressure Liquid</term>
<term>Electrophoresis, Polyacrylamide Gel</term>
<term>Kinetics</term>
<term>Promoter Regions, Genetic</term>
<term>Protein Binding</term>
<term>Surface Plasmon Resonance</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Amorces ADN</term>
<term>Chromatographie en phase liquide à haute performance</term>
<term>Cinétique</term>
<term>Liaison aux protéines</term>
<term>Régions promotrices (génétique)</term>
<term>Résonance plasmonique de surface</term>
<term>Séquence nucléotidique</term>
<term>Électrophorèse sur gel de polyacrylamide</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The high-mobility-group (HMG) chromosomal protein wheat HMGa was purified to homogeneity and tested for its binding characteristics to double-stranded DNA. Wheat HMGa was able to bind to P268, an A/T-rich fragment derived from the pea plastocyanin gene promoter, producing a small mobility shift in gel retardation assays where the bound complex was sensitive to addition of proteinase K but resistant to heat treatment of the protein, consistent with the identity of wheat HMGa as a putative HMG-I/Y protein. Gel retardation assays and southwestern hybridization analysis revealed that wheat HMGa could selectively interact with the DNA polynucleotides poly(dA).poly(dT), poly(dAdT).poly(dAdT), and poly(dG).poly(dC), but not with poly(dGdC).poly(dGdC). Surface plasmon resonance analysis determined the kinetic and affinity constants of sensor chip-immobilized wheat HMGa for double-stranded DNA 10-mers, revealing a good affinity of the protein for various dinucleotide combinations, except that of alternating GC sequence. Thus contrary to prior reports of a selectivity of wheat HMGa for A/T-rich DNA, the protein appears to be able to interact with sequences containing guanine and cytosine residues as well, except where G/C residues alternate directly in the primary sequence.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11442059</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>07</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>22</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0167-4412</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>46</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2001</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>DNA binding mediated by the wheat HMGa protein: a novel instance of selectivity against alternating GC sequence.</ArticleTitle>
<Pagination>
<MedlinePgn>193-204</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The high-mobility-group (HMG) chromosomal protein wheat HMGa was purified to homogeneity and tested for its binding characteristics to double-stranded DNA. Wheat HMGa was able to bind to P268, an A/T-rich fragment derived from the pea plastocyanin gene promoter, producing a small mobility shift in gel retardation assays where the bound complex was sensitive to addition of proteinase K but resistant to heat treatment of the protein, consistent with the identity of wheat HMGa as a putative HMG-I/Y protein. Gel retardation assays and southwestern hybridization analysis revealed that wheat HMGa could selectively interact with the DNA polynucleotides poly(dA).poly(dT), poly(dAdT).poly(dAdT), and poly(dG).poly(dC), but not with poly(dGdC).poly(dGdC). Surface plasmon resonance analysis determined the kinetic and affinity constants of sensor chip-immobilized wheat HMGa for double-stranded DNA 10-mers, revealing a good affinity of the protein for various dinucleotide combinations, except that of alternating GC sequence. Thus contrary to prior reports of a selectivity of wheat HMGa for A/T-rich DNA, the protein appears to be able to interact with sequences containing guanine and cytosine residues as well, except where G/C residues alternate directly in the primary sequence.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chua</LastName>
<ForeName>Y L</ForeName>
<Initials>YL</Initials>
<AffiliationInfo>
<Affiliation>Plant Molecular Biology Laboratory, National University of Singapore, Republic of Singapore.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pwee</LastName>
<ForeName>K H</ForeName>
<Initials>KH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kini</LastName>
<ForeName>R M</ForeName>
<Initials>RM</Initials>
</Author>
<Author ValidYN="N">
<LastName>Leng</LastName>
<ForeName>C Y</ForeName>
<Initials>CY</Initials>
</Author>
<Author ValidYN="N">
<LastName>Hock</LastName>
<ForeName>P K</ForeName>
<Initials>PK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006609">High Mobility Group Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Plant Mol Biol 2001 Nov;47(4):569</RefSource>
<Note>Leng, CY [corrected to Chua, YL]; Hock, PK [corrected to Pwee, KH]</Note>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004591" MajorTopicYN="N">Electrophoresis, Polyacrylamide Gel</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006609" MajorTopicYN="N">High Mobility Group Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020349" MajorTopicYN="N">Surface Plasmon Resonance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014908" MajorTopicYN="N">Triticum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11442059</ArticleId>
<ArticleId IdType="doi">10.1023/a:1010696604330</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Chromatogr. 1987 Sep 18;405:327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3693471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Jan;16(1):95-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1840685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr. 1992 Apr 24;597(1-2):397-410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1517343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Dec;26(6):1907-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7858226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 May 5;263(13):6392-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2834377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1993 Aug;12(8):3237-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8344261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1997 Aug;4(8):657-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9253416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1987 Sep;84(18):6531-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3498164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1996 Jun;31(3):607-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8790293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1994 Feb 25;76(4):609-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7510215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Oct 5;268(28):21137-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8407950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1994 May 3;33(17):5347-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8172908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1991 Sep 11;19(17):4768</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1891368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Jun 1;18(11):3074-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10357819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1998 Jul;37(5):885-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9678583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Mar;3(3):437-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8220452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Feb;33(3):537-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9049273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Apr 1;28(7):1618-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10710428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 Jan;2(1):85-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2152106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Apr 1;230(1):1-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10196467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 May 25;265(15):8573-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1692833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Jul;17(7):3649-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9199299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1992 Nov 27;71(5):777-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1330326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1989 Nov;109(5):1975-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2808516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Feb;6(2):287-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8148649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1990 Feb 14;166(3):1110-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2154972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Oct 10;259(19):12007-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6480596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1994 Dec;26(6):1893-906</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7858225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 1991 Nov;11(5):620-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1804254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Mar 25;22(6):1115-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8152915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1996 Aug 23;225(3):1073-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8780736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Apr;11(4):703-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9161031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Clin Pathol. 1998 Mar;109(3):251-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9495195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Apr;18(2):173-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10363369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1990 Jun 15;265(17):9771-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2351673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Apr 16;35(15):5063-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8664299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Feb 15;27(4):1063-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9927740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1995 Feb;7(2):185-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7704044</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002556 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002556 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:11442059
   |texte=   DNA binding mediated by the wheat HMGa protein: a novel instance of selectivity against alternating GC sequence.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:11442059" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021