Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Probing the structure of F-actin: cross-links constrain atomic models and modify actin dynamics.

Identifieur interne : 002546 ( PubMed/Curation ); précédent : 002545; suivant : 002547

Probing the structure of F-actin: cross-links constrain atomic models and modify actin dynamics.

Auteurs : A. Orlova [États-Unis] ; V E Galkin ; M S Vanloock ; E. Kim ; A. Shvetsov ; E. Reisler ; E H Egelman

Source :

RBID : pubmed:11545588

Descripteurs français

English descriptors

Abstract

Cross-links between protomers in F-actin can be used as a very sensitive probe of both the dynamics and structure of F-actin. We have characterized filaments formed from a previously described yeast actin Q41C mutant, where disulfide bonds can be formed between the Cys41 that is introduced into subdomain-2 and Cys374 on an adjacent protomer. We find that the distribution of cross-linked n-mers shows no cooperativity and corresponds to a random probability cross-linking reaction. The random distribution suggests that disulfide formation does not cause a significant perturbation of the F-actin structure. Consistent with this lack of perturbation, three-dimensional reconstructions of extensively cross-linked filaments, using a new approach to helical image analysis, show very small structural changes with respect to uncross-linked filaments. This finding is in conflict with refined models but in agreement with the original Holmes et al. model for F-actin. Under conditions where 94 % of the protomers are linked by disulfide bonds, the distribution of filament twist becomes more heterogeneous with respect to control filaments. A molecular model suggests that strain, introduced by the disulfide, is relieved by increasing the twist of the long-pitch actin helices. Disulfide formation makes yeast actin filaments approximately three times less flexible in terms of bending and similar, in this respect, to vertebrate skeletal muscle F-actin. These observations support previous reports that the rigidity of F-actin can be controlled by the position of subdomain-2, and that this region is more flexible in yeast F-actin than in skeletal muscle F-actin.

DOI: 10.1006/jmbi.2001.4945
PubMed: 11545588

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:11545588

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Probing the structure of F-actin: cross-links constrain atomic models and modify actin dynamics.</title>
<author>
<name sortKey="Orlova, A" sort="Orlova, A" uniqKey="Orlova A" first="A" last="Orlova">A. Orlova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0733, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0733</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Galkin, V E" sort="Galkin, V E" uniqKey="Galkin V" first="V E" last="Galkin">V E Galkin</name>
</author>
<author>
<name sortKey="Vanloock, M S" sort="Vanloock, M S" uniqKey="Vanloock M" first="M S" last="Vanloock">M S Vanloock</name>
</author>
<author>
<name sortKey="Kim, E" sort="Kim, E" uniqKey="Kim E" first="E" last="Kim">E. Kim</name>
</author>
<author>
<name sortKey="Shvetsov, A" sort="Shvetsov, A" uniqKey="Shvetsov A" first="A" last="Shvetsov">A. Shvetsov</name>
</author>
<author>
<name sortKey="Reisler, E" sort="Reisler, E" uniqKey="Reisler E" first="E" last="Reisler">E. Reisler</name>
</author>
<author>
<name sortKey="Egelman, E H" sort="Egelman, E H" uniqKey="Egelman E" first="E H" last="Egelman">E H Egelman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11545588</idno>
<idno type="pmid">11545588</idno>
<idno type="doi">10.1006/jmbi.2001.4945</idno>
<idno type="wicri:Area/PubMed/Corpus">002546</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002546</idno>
<idno type="wicri:Area/PubMed/Curation">002546</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002546</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Probing the structure of F-actin: cross-links constrain atomic models and modify actin dynamics.</title>
<author>
<name sortKey="Orlova, A" sort="Orlova, A" uniqKey="Orlova A" first="A" last="Orlova">A. Orlova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0733, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0733</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Galkin, V E" sort="Galkin, V E" uniqKey="Galkin V" first="V E" last="Galkin">V E Galkin</name>
</author>
<author>
<name sortKey="Vanloock, M S" sort="Vanloock, M S" uniqKey="Vanloock M" first="M S" last="Vanloock">M S Vanloock</name>
</author>
<author>
<name sortKey="Kim, E" sort="Kim, E" uniqKey="Kim E" first="E" last="Kim">E. Kim</name>
</author>
<author>
<name sortKey="Shvetsov, A" sort="Shvetsov, A" uniqKey="Shvetsov A" first="A" last="Shvetsov">A. Shvetsov</name>
</author>
<author>
<name sortKey="Reisler, E" sort="Reisler, E" uniqKey="Reisler E" first="E" last="Reisler">E. Reisler</name>
</author>
<author>
<name sortKey="Egelman, E H" sort="Egelman, E H" uniqKey="Egelman E" first="E H" last="Egelman">E H Egelman</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular biology</title>
<idno type="ISSN">0022-2836</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Actins (chemistry)</term>
<term>Actins (genetics)</term>
<term>Actins (metabolism)</term>
<term>Algorithms</term>
<term>Animals</term>
<term>Deoxyribonuclease I (metabolism)</term>
<term>Disulfides (chemistry)</term>
<term>Image Processing, Computer-Assisted</term>
<term>Microscopy, Electron</term>
<term>Models, Molecular</term>
<term>Models, Statistical</term>
<term>Muscle, Skeletal (chemistry)</term>
<term>Mutation</term>
<term>Protein Conformation</term>
<term>Yeasts (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Actines ()</term>
<term>Actines (génétique)</term>
<term>Actines (métabolisme)</term>
<term>Algorithmes</term>
<term>Animaux</term>
<term>Conformation des protéines</term>
<term>Deoxyribonuclease I (métabolisme)</term>
<term>Disulfures ()</term>
<term>Levures ()</term>
<term>Microscopie électronique</term>
<term>Modèles moléculaires</term>
<term>Modèles statistiques</term>
<term>Muscles squelettiques ()</term>
<term>Mutation</term>
<term>Traitement d'image par ordinateur</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Actins</term>
<term>Disulfides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Actins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Actins</term>
<term>Deoxyribonuclease I</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Muscle, Skeletal</term>
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Actines</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Actines</term>
<term>Deoxyribonuclease I</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Image Processing, Computer-Assisted</term>
<term>Microscopy, Electron</term>
<term>Models, Molecular</term>
<term>Models, Statistical</term>
<term>Mutation</term>
<term>Protein Conformation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Actines</term>
<term>Algorithmes</term>
<term>Animaux</term>
<term>Conformation des protéines</term>
<term>Disulfures</term>
<term>Levures</term>
<term>Microscopie électronique</term>
<term>Modèles moléculaires</term>
<term>Modèles statistiques</term>
<term>Muscles squelettiques</term>
<term>Mutation</term>
<term>Traitement d'image par ordinateur</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cross-links between protomers in F-actin can be used as a very sensitive probe of both the dynamics and structure of F-actin. We have characterized filaments formed from a previously described yeast actin Q41C mutant, where disulfide bonds can be formed between the Cys41 that is introduced into subdomain-2 and Cys374 on an adjacent protomer. We find that the distribution of cross-linked n-mers shows no cooperativity and corresponds to a random probability cross-linking reaction. The random distribution suggests that disulfide formation does not cause a significant perturbation of the F-actin structure. Consistent with this lack of perturbation, three-dimensional reconstructions of extensively cross-linked filaments, using a new approach to helical image analysis, show very small structural changes with respect to uncross-linked filaments. This finding is in conflict with refined models but in agreement with the original Holmes et al. model for F-actin. Under conditions where 94 % of the protomers are linked by disulfide bonds, the distribution of filament twist becomes more heterogeneous with respect to control filaments. A molecular model suggests that strain, introduced by the disulfide, is relieved by increasing the twist of the long-pitch actin helices. Disulfide formation makes yeast actin filaments approximately three times less flexible in terms of bending and similar, in this respect, to vertebrate skeletal muscle F-actin. These observations support previous reports that the rigidity of F-actin can be controlled by the position of subdomain-2, and that this region is more flexible in yeast F-actin than in skeletal muscle F-actin.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11545588</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>10</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0022-2836</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>312</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2001</Year>
<Month>Sep</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Journal of molecular biology</Title>
<ISOAbbreviation>J. Mol. Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>Probing the structure of F-actin: cross-links constrain atomic models and modify actin dynamics.</ArticleTitle>
<Pagination>
<MedlinePgn>95-106</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Cross-links between protomers in F-actin can be used as a very sensitive probe of both the dynamics and structure of F-actin. We have characterized filaments formed from a previously described yeast actin Q41C mutant, where disulfide bonds can be formed between the Cys41 that is introduced into subdomain-2 and Cys374 on an adjacent protomer. We find that the distribution of cross-linked n-mers shows no cooperativity and corresponds to a random probability cross-linking reaction. The random distribution suggests that disulfide formation does not cause a significant perturbation of the F-actin structure. Consistent with this lack of perturbation, three-dimensional reconstructions of extensively cross-linked filaments, using a new approach to helical image analysis, show very small structural changes with respect to uncross-linked filaments. This finding is in conflict with refined models but in agreement with the original Holmes et al. model for F-actin. Under conditions where 94 % of the protomers are linked by disulfide bonds, the distribution of filament twist becomes more heterogeneous with respect to control filaments. A molecular model suggests that strain, introduced by the disulfide, is relieved by increasing the twist of the long-pitch actin helices. Disulfide formation makes yeast actin filaments approximately three times less flexible in terms of bending and similar, in this respect, to vertebrate skeletal muscle F-actin. These observations support previous reports that the rigidity of F-actin can be controlled by the position of subdomain-2, and that this region is more flexible in yeast F-actin than in skeletal muscle F-actin.</AbstractText>
<CopyrightInformation>Copyright 2001 Academic Press.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Orlova</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0733, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Galkin</LastName>
<ForeName>V E</ForeName>
<Initials>VE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>VanLoock</LastName>
<ForeName>M S</ForeName>
<Initials>MS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Shvetsov</LastName>
<ForeName>A</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reisler</LastName>
<ForeName>E</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Egelman</LastName>
<ForeName>E H</ForeName>
<Initials>EH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AR022031</GrantID>
<Acronym>AR</Acronym>
<Agency>NIAMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AR 22031</GrantID>
<Acronym>AR</Acronym>
<Agency>NIAMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AR42023</GrantID>
<Acronym>AR</Acronym>
<Agency>NIAMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Biol</MedlineTA>
<NlmUniqueID>2985088R</NlmUniqueID>
<ISSNLinking>0022-2836</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000199">Actins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.21.1</RegistryNumber>
<NameOfSubstance UI="D003850">Deoxyribonuclease I</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000199" MajorTopicYN="N">Actins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003850" MajorTopicYN="N">Deoxyribonuclease I</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007091" MajorTopicYN="N">Image Processing, Computer-Assisted</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008854" MajorTopicYN="N">Microscopy, Electron</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="N">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018482" MajorTopicYN="N">Muscle, Skeletal</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11545588</ArticleId>
<ArticleId IdType="doi">10.1006/jmbi.2001.4945</ArticleId>
<ArticleId IdType="pii">S0022-2836(01)94945-9</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002546 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002546 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:11545588
   |texte=   Probing the structure of F-actin: cross-links constrain atomic models and modify actin dynamics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:11545588" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021