Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystal structure of the carboxyltransferase subunit of the bacterial sodium ion pump glutaconyl-coenzyme A decarboxylase.

Identifieur interne : 002446 ( PubMed/Curation ); précédent : 002445; suivant : 002447

Crystal structure of the carboxyltransferase subunit of the bacterial sodium ion pump glutaconyl-coenzyme A decarboxylase.

Auteurs : Kerstin S. Wendt [Allemagne] ; Iris Schall ; Robert Huber ; Wolfgang Buckel ; Uwe Jacob

Source :

RBID : pubmed:12853465

Descripteurs français

English descriptors

Abstract

Glutaconyl-CoA decarboxylase is a biotin-dependent ion pump whereby the free energy of the glutaconyl-CoA decarboxylation to crotonyl-CoA drives the electrogenic transport of sodium ions from the cytoplasm into the periplasm. Here we present the crystal structure of the decarboxylase subunit (Gcdalpha) from Acidaminococcus fermentans and its complex with glutaconyl-CoA. The active sites of the dimeric Gcdalpha lie at the two interfaces between the mono mers, whereas the N-terminal domain provides the glutaconyl-CoA-binding site and the C-terminal domain binds the biotinyllysine moiety. The Gcdalpha catalyses the transfer of carbon dioxide from glutaconyl-CoA to a biotin carrier (Gcdgamma) that subsequently is decarboxylated by the carboxybiotin decarboxylation site within the actual Na(+) pump (Gcdbeta). The analysis of the active site lead to a novel mechanism for the biotin-dependent carboxy transfer whereby biotin acts as general acid. Furthermore, we propose a holoenzyme assembly in which the water-filled central channel of the Gcdalpha dimer lies co-axial with the ion channel (Gcdbeta). The central channel is blocked by arginines against passage of sodium ions which might enter the central channel through two side channels.

DOI: 10.1093/emboj/cdg358
PubMed: 12853465

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:12853465

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal structure of the carboxyltransferase subunit of the bacterial sodium ion pump glutaconyl-coenzyme A decarboxylase.</title>
<author>
<name sortKey="Wendt, Kerstin S" sort="Wendt, Kerstin S" uniqKey="Wendt K" first="Kerstin S" last="Wendt">Kerstin S. Wendt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schall, Iris" sort="Schall, Iris" uniqKey="Schall I" first="Iris" last="Schall">Iris Schall</name>
</author>
<author>
<name sortKey="Huber, Robert" sort="Huber, Robert" uniqKey="Huber R" first="Robert" last="Huber">Robert Huber</name>
</author>
<author>
<name sortKey="Buckel, Wolfgang" sort="Buckel, Wolfgang" uniqKey="Buckel W" first="Wolfgang" last="Buckel">Wolfgang Buckel</name>
</author>
<author>
<name sortKey="Jacob, Uwe" sort="Jacob, Uwe" uniqKey="Jacob U" first="Uwe" last="Jacob">Uwe Jacob</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:12853465</idno>
<idno type="pmid">12853465</idno>
<idno type="doi">10.1093/emboj/cdg358</idno>
<idno type="wicri:Area/PubMed/Corpus">002446</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002446</idno>
<idno type="wicri:Area/PubMed/Curation">002446</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002446</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crystal structure of the carboxyltransferase subunit of the bacterial sodium ion pump glutaconyl-coenzyme A decarboxylase.</title>
<author>
<name sortKey="Wendt, Kerstin S" sort="Wendt, Kerstin S" uniqKey="Wendt K" first="Kerstin S" last="Wendt">Kerstin S. Wendt</name>
<affiliation wicri:level="1">
<nlm:affiliation>Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Schall, Iris" sort="Schall, Iris" uniqKey="Schall I" first="Iris" last="Schall">Iris Schall</name>
</author>
<author>
<name sortKey="Huber, Robert" sort="Huber, Robert" uniqKey="Huber R" first="Robert" last="Huber">Robert Huber</name>
</author>
<author>
<name sortKey="Buckel, Wolfgang" sort="Buckel, Wolfgang" uniqKey="Buckel W" first="Wolfgang" last="Buckel">Wolfgang Buckel</name>
</author>
<author>
<name sortKey="Jacob, Uwe" sort="Jacob, Uwe" uniqKey="Jacob U" first="Uwe" last="Jacob">Uwe Jacob</name>
</author>
</analytic>
<series>
<title level="j">The EMBO journal</title>
<idno type="ISSN">0261-4189</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites</term>
<term>Biotin (metabolism)</term>
<term>Carboxy-Lyases (metabolism)</term>
<term>Crystallography, X-Ray</term>
<term>Dimerization</term>
<term>Gram-Negative Anaerobic Bacteria (enzymology)</term>
<term>Ion Channels (metabolism)</term>
<term>Ion Pumps (metabolism)</term>
<term>Models, Molecular</term>
<term>Protein Structure, Tertiary</term>
<term>Sodium (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bactéries anaérobies à Gram négatif (enzymologie)</term>
<term>Biotine (métabolisme)</term>
<term>Canaux ioniques (métabolisme)</term>
<term>Carboxy-lyases (métabolisme)</term>
<term>Cristallographie aux rayons X</term>
<term>Dimérisation</term>
<term>Modèles moléculaires</term>
<term>Pompes ioniques (métabolisme)</term>
<term>Sites de fixation</term>
<term>Sodium (métabolisme)</term>
<term>Structure tertiaire des protéines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Biotin</term>
<term>Carboxy-Lyases</term>
<term>Ion Channels</term>
<term>Ion Pumps</term>
<term>Sodium</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Bactéries anaérobies à Gram négatif</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Gram-Negative Anaerobic Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Biotine</term>
<term>Canaux ioniques</term>
<term>Carboxy-lyases</term>
<term>Pompes ioniques</term>
<term>Sodium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Crystallography, X-Ray</term>
<term>Dimerization</term>
<term>Models, Molecular</term>
<term>Protein Structure, Tertiary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cristallographie aux rayons X</term>
<term>Dimérisation</term>
<term>Modèles moléculaires</term>
<term>Sites de fixation</term>
<term>Structure tertiaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaconyl-CoA decarboxylase is a biotin-dependent ion pump whereby the free energy of the glutaconyl-CoA decarboxylation to crotonyl-CoA drives the electrogenic transport of sodium ions from the cytoplasm into the periplasm. Here we present the crystal structure of the decarboxylase subunit (Gcdalpha) from Acidaminococcus fermentans and its complex with glutaconyl-CoA. The active sites of the dimeric Gcdalpha lie at the two interfaces between the mono mers, whereas the N-terminal domain provides the glutaconyl-CoA-binding site and the C-terminal domain binds the biotinyllysine moiety. The Gcdalpha catalyses the transfer of carbon dioxide from glutaconyl-CoA to a biotin carrier (Gcdgamma) that subsequently is decarboxylated by the carboxybiotin decarboxylation site within the actual Na(+) pump (Gcdbeta). The analysis of the active site lead to a novel mechanism for the biotin-dependent carboxy transfer whereby biotin acts as general acid. Furthermore, we propose a holoenzyme assembly in which the water-filled central channel of the Gcdalpha dimer lies co-axial with the ion channel (Gcdbeta). The central channel is blocked by arginines against passage of sodium ions which might enter the central channel through two side channels.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">12853465</PMID>
<DateCompleted>
<Year>2003</Year>
<Month>09</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0261-4189</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>22</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2003</Year>
<Month>Jul</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>The EMBO journal</Title>
<ISOAbbreviation>EMBO J.</ISOAbbreviation>
</Journal>
<ArticleTitle>Crystal structure of the carboxyltransferase subunit of the bacterial sodium ion pump glutaconyl-coenzyme A decarboxylase.</ArticleTitle>
<Pagination>
<MedlinePgn>3493-502</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Glutaconyl-CoA decarboxylase is a biotin-dependent ion pump whereby the free energy of the glutaconyl-CoA decarboxylation to crotonyl-CoA drives the electrogenic transport of sodium ions from the cytoplasm into the periplasm. Here we present the crystal structure of the decarboxylase subunit (Gcdalpha) from Acidaminococcus fermentans and its complex with glutaconyl-CoA. The active sites of the dimeric Gcdalpha lie at the two interfaces between the mono mers, whereas the N-terminal domain provides the glutaconyl-CoA-binding site and the C-terminal domain binds the biotinyllysine moiety. The Gcdalpha catalyses the transfer of carbon dioxide from glutaconyl-CoA to a biotin carrier (Gcdgamma) that subsequently is decarboxylated by the carboxybiotin decarboxylation site within the actual Na(+) pump (Gcdbeta). The analysis of the active site lead to a novel mechanism for the biotin-dependent carboxy transfer whereby biotin acts as general acid. Furthermore, we propose a holoenzyme assembly in which the water-filled central channel of the Gcdalpha dimer lies co-axial with the ion channel (Gcdbeta). The central channel is blocked by arginines against passage of sodium ions which might enter the central channel through two side channels.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wendt</LastName>
<ForeName>Kerstin S</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>Max-Planck-Institut für Biochemie, Abteilung Strukturforschung, Am Klopferspitz 18a, D-82152 Martinsried, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schall</LastName>
<ForeName>Iris</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huber</LastName>
<ForeName>Robert</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Buckel</LastName>
<ForeName>Wolfgang</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jacob</LastName>
<ForeName>Uwe</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>EMBO J</MedlineTA>
<NlmUniqueID>8208664</NlmUniqueID>
<ISSNLinking>0261-4189</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007473">Ion Channels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016623">Ion Pumps</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6SO6U10H04</RegistryNumber>
<NameOfSubstance UI="D001710">Biotin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9NEZ333N27</RegistryNumber>
<NameOfSubstance UI="D012964">Sodium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.-</RegistryNumber>
<NameOfSubstance UI="D002262">Carboxy-Lyases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.-</RegistryNumber>
<NameOfSubstance UI="C023060">glutaconyl CoA decarboxylase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001710" MajorTopicYN="N">Biotin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002262" MajorTopicYN="N">Carboxy-Lyases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019281" MajorTopicYN="N">Dimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006089" MajorTopicYN="N">Gram-Negative Anaerobic Bacteria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007473" MajorTopicYN="N">Ion Channels</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016623" MajorTopicYN="N">Ion Pumps</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017434" MajorTopicYN="N">Protein Structure, Tertiary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012964" MajorTopicYN="N">Sodium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12853465</ArticleId>
<ArticleId IdType="doi">10.1093/emboj/cdg358</ArticleId>
<ArticleId IdType="pmc">PMC165628</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 1999 Jan;31(2):473-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10027965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1999 Apr;55(Pt 4):941-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10089342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):492-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10089361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 Apr 20;38(16):5045-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10213607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):235-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Mar 14;39(10):2509-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10704200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Apr 25;39(16):4630-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10769118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2000 Jul 25;39(29):8448-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10913250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2000 Aug;56(Pt 8):1020-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10944342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 May 1;1505(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11248184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 May 1;1505(1):15-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11248185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2001 Oct;57(3):263-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11759672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2002 Feb;35(2):113-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11851389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 Sep 25;124(38):11334-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12236748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Mar 28;299(5615):2064-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12663926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):869-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr A. 1991 Mar 1;47 ( Pt 2):110-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2025413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 1990 Mar-Apr;141(3):332-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2177912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1990 Dec 17;277(1-2):156-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2269346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1986 Apr 15;156(2):251-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2422027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1986 Apr 15;156(2):259-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2422028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1989;58:195-221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2673009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:472-494</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1988 Jul 15;175(1):175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3042395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1986 Oct 7;25(20):6077-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3790507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1974 Mar;117(3):1248-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4813895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Z. 1965 Aug 6;342(3):256-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5866982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1982 Nov 1;148(1):35-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6293874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1983 Dec 1;137(1-2):107-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6418543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1983 Nov 2;136(2):427-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6628393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1983 May 16;132(3):579-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6852015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1980 Sep;127(2):167-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7000026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1995 Jun 1;230(2):788-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7607253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1994 Jan 15;297 ( Pt 2):249-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8297327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Sep 5;233(1):123-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8377180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 1993 Jan;6(1):37-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8433969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Apr 15;15(8):1842-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 1996 Feb;24(1):274-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8674685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jun 25;35(25):8103-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8679561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 1996 Feb;5(2):212-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8745398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1995 Dec 15;3(12):1407-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8747466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 1996 Nov;166(5):350-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8929282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1997 Dec 1;250(2):590-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9428714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1998 Aug 15;6(8):957-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9739087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002446 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002446 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:12853465
   |texte=   Crystal structure of the carboxyltransferase subunit of the bacterial sodium ion pump glutaconyl-coenzyme A decarboxylase.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:12853465" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021