Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Discriminating self from nonself with short peptides from large proteomes.

Identifieur interne : 002371 ( PubMed/Curation ); précédent : 002370; suivant : 002372

Discriminating self from nonself with short peptides from large proteomes.

Auteurs : Nigel J. Burroughs [Royaume-Uni] ; Rob J. De Boer ; Can Ke Mir

Source :

RBID : pubmed:15322777

Descripteurs français

English descriptors

Abstract

We studied whether the peptides of nine amino acids (9-mers) that are typically used in MHC class I presentation are sufficiently unique for self:nonself discrimination. The human proteome contains 28,783 proteins, comprising 10(7) distinct 9-mers. Enumerating distinct 9-mers for a variety of microorganisms we found that the average overlap, i.e., the probability that a foreign peptide also occurs in the human self, is about 0.2%. This self:nonself overlap increased when shorter peptides were used, e.g., was 30% for 6-mers and 3% for 7-mers. Predicting all 9-mers that are expected to be cleaved by the immunoproteasome and to be translocated by TAP, we find that about 25% of the self and the nonself 9-mers are processed successfully. For the HLA-A*0201 and HLA-A*0204 alleles, we predicted which of the processed 9-mers from each proteome are expected to be presented on the MHC. Both alleles prefer to present processed 9-mers to nonprocessed 9-mers, and both have small preference to present foreign peptides. Because a number of amino acids from each 9-mer bind the MHC, and are therefore not exposed to the TCR, antigen presentation seems to involve a significant loss of information. Our results show that this is not the case because the HLA molecules are fairly specific. Removing the two anchor residues from each presented peptide, we find that the self:nonself overlap of these exposed 7-mers resembles that of 9-mers. Summarizing, the 9-mers used in MHC class I presentation tend to carry sufficient information to detect nonself peptides amongst self peptides.

DOI: 10.1007/s00251-004-0691-0
PubMed: 15322777

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:15322777

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Discriminating self from nonself with short peptides from large proteomes.</title>
<author>
<name sortKey="Burroughs, Nigel J" sort="Burroughs, Nigel J" uniqKey="Burroughs N" first="Nigel J" last="Burroughs">Nigel J. Burroughs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Mathematics Institute, University of Warwick, Coventry, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Mathematics Institute, University of Warwick, Coventry</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Boer, Rob J" sort="De Boer, Rob J" uniqKey="De Boer R" first="Rob J" last="De Boer">Rob J. De Boer</name>
</author>
<author>
<name sortKey="Ke Mir, Can" sort="Ke Mir, Can" uniqKey="Ke Mir C" first="Can" last="Ke Mir">Can Ke Mir</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15322777</idno>
<idno type="pmid">15322777</idno>
<idno type="doi">10.1007/s00251-004-0691-0</idno>
<idno type="wicri:Area/PubMed/Corpus">002371</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002371</idno>
<idno type="wicri:Area/PubMed/Curation">002371</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002371</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Discriminating self from nonself with short peptides from large proteomes.</title>
<author>
<name sortKey="Burroughs, Nigel J" sort="Burroughs, Nigel J" uniqKey="Burroughs N" first="Nigel J" last="Burroughs">Nigel J. Burroughs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Mathematics Institute, University of Warwick, Coventry, UK.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Mathematics Institute, University of Warwick, Coventry</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Boer, Rob J" sort="De Boer, Rob J" uniqKey="De Boer R" first="Rob J" last="De Boer">Rob J. De Boer</name>
</author>
<author>
<name sortKey="Ke Mir, Can" sort="Ke Mir, Can" uniqKey="Ke Mir C" first="Can" last="Ke Mir">Can Ke Mir</name>
</author>
</analytic>
<series>
<title level="j">Immunogenetics</title>
<idno type="ISSN">0093-7711</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antigen Presentation (immunology)</term>
<term>Autoantigens (immunology)</term>
<term>Humans</term>
<term>Oligopeptides (immunology)</term>
<term>Proteome (immunology)</term>
<term>Self Tolerance (immunology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Autoantigènes (immunologie)</term>
<term>Autotolérance (immunologie)</term>
<term>Humains</term>
<term>Oligopeptides (immunologie)</term>
<term>Protéome (immunologie)</term>
<term>Présentation d'antigène (immunologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="immunology" xml:lang="en">
<term>Autoantigens</term>
<term>Oligopeptides</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Autoantigènes</term>
<term>Autotolérance</term>
<term>Oligopeptides</term>
<term>Protéome</term>
<term>Présentation d'antigène</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Antigen Presentation</term>
<term>Self Tolerance</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Humains</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We studied whether the peptides of nine amino acids (9-mers) that are typically used in MHC class I presentation are sufficiently unique for self:nonself discrimination. The human proteome contains 28,783 proteins, comprising 10(7) distinct 9-mers. Enumerating distinct 9-mers for a variety of microorganisms we found that the average overlap, i.e., the probability that a foreign peptide also occurs in the human self, is about 0.2%. This self:nonself overlap increased when shorter peptides were used, e.g., was 30% for 6-mers and 3% for 7-mers. Predicting all 9-mers that are expected to be cleaved by the immunoproteasome and to be translocated by TAP, we find that about 25% of the self and the nonself 9-mers are processed successfully. For the HLA-A*0201 and HLA-A*0204 alleles, we predicted which of the processed 9-mers from each proteome are expected to be presented on the MHC. Both alleles prefer to present processed 9-mers to nonprocessed 9-mers, and both have small preference to present foreign peptides. Because a number of amino acids from each 9-mer bind the MHC, and are therefore not exposed to the TCR, antigen presentation seems to involve a significant loss of information. Our results show that this is not the case because the HLA molecules are fairly specific. Removing the two anchor residues from each presented peptide, we find that the self:nonself overlap of these exposed 7-mers resembles that of 9-mers. Summarizing, the 9-mers used in MHC class I presentation tend to carry sufficient information to detect nonself peptides amongst self peptides.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15322777</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>10</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0093-7711</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>56</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2004</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Immunogenetics</Title>
<ISOAbbreviation>Immunogenetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Discriminating self from nonself with short peptides from large proteomes.</ArticleTitle>
<Pagination>
<MedlinePgn>311-20</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We studied whether the peptides of nine amino acids (9-mers) that are typically used in MHC class I presentation are sufficiently unique for self:nonself discrimination. The human proteome contains 28,783 proteins, comprising 10(7) distinct 9-mers. Enumerating distinct 9-mers for a variety of microorganisms we found that the average overlap, i.e., the probability that a foreign peptide also occurs in the human self, is about 0.2%. This self:nonself overlap increased when shorter peptides were used, e.g., was 30% for 6-mers and 3% for 7-mers. Predicting all 9-mers that are expected to be cleaved by the immunoproteasome and to be translocated by TAP, we find that about 25% of the self and the nonself 9-mers are processed successfully. For the HLA-A*0201 and HLA-A*0204 alleles, we predicted which of the processed 9-mers from each proteome are expected to be presented on the MHC. Both alleles prefer to present processed 9-mers to nonprocessed 9-mers, and both have small preference to present foreign peptides. Because a number of amino acids from each 9-mer bind the MHC, and are therefore not exposed to the TCR, antigen presentation seems to involve a significant loss of information. Our results show that this is not the case because the HLA molecules are fairly specific. Removing the two anchor residues from each presented peptide, we find that the self:nonself overlap of these exposed 7-mers resembles that of 9-mers. Summarizing, the 9-mers used in MHC class I presentation tend to carry sufficient information to detect nonself peptides amongst self peptides.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Burroughs</LastName>
<ForeName>Nigel J</ForeName>
<Initials>NJ</Initials>
<AffiliationInfo>
<Affiliation>Mathematics Institute, University of Warwick, Coventry, UK.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Boer</LastName>
<ForeName>Rob J</ForeName>
<Initials>RJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keşmir</LastName>
<ForeName>Can</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>07</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Immunogenetics</MedlineTA>
<NlmUniqueID>0420404</NlmUniqueID>
<ISSNLinking>0093-7711</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001324">Autoantigens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009842">Oligopeptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017951" MajorTopicYN="N">Antigen Presentation</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001324" MajorTopicYN="N">Autoantigens</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009842" MajorTopicYN="N">Oligopeptides</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017634" MajorTopicYN="N">Self Tolerance</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2004</Year>
<Month>02</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2004</Year>
<Month>05</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>8</Month>
<Day>24</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15322777</ArticleId>
<ArticleId IdType="doi">10.1007/s00251-004-0691-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Immunol. 2000 Nov;1(5):413-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2000 Feb 15;164(4):1898-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10657639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2004 Apr;20(4):495-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15084277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12504-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9770515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 May;15(5):583-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9580988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 3;290(5493):972-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunogenetics. 1999 Nov;50(3-4):213-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10602881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Jan 15;427(6971):252-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14724640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2002 Sep;76(17):8757-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12163596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunol. 2003 Jul;15(7):781-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12807816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2000 Jan 17;191(2):239-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10637269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Apr 12;296(5566):298-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11951031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 1994;12:181-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7516668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Nov 2;313(4):673-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11697896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunogenetics. 2003 Oct;55(7):437-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12955356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Immunol. 2002 May;14(5):525-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11978782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunogenetics. 2003 Mar;54(12):830-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 1994;12:991-1045</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8011301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 1994 Jan 1;152(1):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8254189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2003 Aug 15;171(4):1741-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12902473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 1993;11:403-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8476568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Inst Pasteur Immunol. 1986 Jul-Aug;137D(1):3-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3489434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2003 Dec;3(12):952-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14647477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng. 2002 Apr;15(4):287-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11983929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2000 Mar;14(3):431-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10698957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tissue Antigens. 2003 Nov;62(5):378-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2000 Jan;12(1):107-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10661410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Apr 23;304(5670):587-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15001714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Sep 10;74(5):929-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8104103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 May 15;89(10):4643-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1374910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Sep;52(3):2939-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9963739</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002371 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002371 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:15322777
   |texte=   Discriminating self from nonself with short peptides from large proteomes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:15322777" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021