Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thrombogenic collagen-mimetic peptides: Self-assembly of triple helix-based fibrils driven by hydrophobic interactions.

Identifieur interne : 002100 ( PubMed/Curation ); précédent : 002099; suivant : 002101

Thrombogenic collagen-mimetic peptides: Self-assembly of triple helix-based fibrils driven by hydrophobic interactions.

Auteurs : Mabel A. Cejas [États-Unis] ; William A. Kinney ; Cailin Chen ; Jeremy G. Vinter ; Harold R. Almond ; Karin M. Balss ; Cynthia A. Maryanoff ; Ute Schmidt ; Michael Breslav ; Andrew Mahan ; Eilyn Lacy ; Bruce E. Maryanoff

Source :

RBID : pubmed:18559857

Descripteurs français

English descriptors

Abstract

Collagens are integral structural proteins in animal tissues and play key functional roles in cellular modulation. We sought to discover collagen model peptides (CMPs) that would form triple helices and self-assemble into supramolecular fibrils exhibiting collagen-like biological activity without preorganizing the peptide chains by covalent linkages. This challenging objective was accomplished by placing aromatic groups on the ends of a representative 30-mer CMP, (GPO)(10), as with l-phenylalanine and l-pentafluorophenylalanine in 32-mer 1a. Computational studies on homologous 29-mers 1a'-d' (one less GPO), as pairs of triple helices interacting head-to-tail, yielded stabilization energies in the order 1a' > 1b' > 1c' > 1d', supporting the hypothesis that hydrophobic aromatic groups can drive CMP self-assembly. Peptides 1a-d were studied comparatively relative to structural properties and ability to stimulate human platelets. Although each 32-mer formed stable triple helices (CD) spectroscopy, only 1a and 1b self-assembled into micrometer-scale fibrils. Light microscopy images for 1a depicted long collagen-like fibrils, whereas images for 1d did not. Atomic force microscopy topographical images indicated that 1a and 1b self-organize into microfibrillar species, whereas 1c and 1d do not. Peptides 1a and 1b induced the aggregation of human blood platelets with a potency similar to type I collagen, whereas 1c was much less effective, and 1d was inactive (EC(50) potency: 1a/1b > 1c > 1d). Thus, 1a and 1b spontaneously self-assemble into thrombogenic collagen-mimetic materials because of hydrophobic aromatic interactions provided by the special end-groups. These findings have important implications for the design of biofunctional CMPs.

DOI: 10.1073/pnas.0800291105
PubMed: 18559857

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:18559857

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thrombogenic collagen-mimetic peptides: Self-assembly of triple helix-based fibrils driven by hydrophobic interactions.</title>
<author>
<name sortKey="Cejas, Mabel A" sort="Cejas, Mabel A" uniqKey="Cejas M" first="Mabel A" last="Cejas">Mabel A. Cejas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, PA 19477-0776, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, PA 19477-0776</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kinney, William A" sort="Kinney, William A" uniqKey="Kinney W" first="William A" last="Kinney">William A. Kinney</name>
</author>
<author>
<name sortKey="Chen, Cailin" sort="Chen, Cailin" uniqKey="Chen C" first="Cailin" last="Chen">Cailin Chen</name>
</author>
<author>
<name sortKey="Vinter, Jeremy G" sort="Vinter, Jeremy G" uniqKey="Vinter J" first="Jeremy G" last="Vinter">Jeremy G. Vinter</name>
</author>
<author>
<name sortKey="Almond, Harold R" sort="Almond, Harold R" uniqKey="Almond H" first="Harold R" last="Almond">Harold R. Almond</name>
</author>
<author>
<name sortKey="Balss, Karin M" sort="Balss, Karin M" uniqKey="Balss K" first="Karin M" last="Balss">Karin M. Balss</name>
</author>
<author>
<name sortKey="Maryanoff, Cynthia A" sort="Maryanoff, Cynthia A" uniqKey="Maryanoff C" first="Cynthia A" last="Maryanoff">Cynthia A. Maryanoff</name>
</author>
<author>
<name sortKey="Schmidt, Ute" sort="Schmidt, Ute" uniqKey="Schmidt U" first="Ute" last="Schmidt">Ute Schmidt</name>
</author>
<author>
<name sortKey="Breslav, Michael" sort="Breslav, Michael" uniqKey="Breslav M" first="Michael" last="Breslav">Michael Breslav</name>
</author>
<author>
<name sortKey="Mahan, Andrew" sort="Mahan, Andrew" uniqKey="Mahan A" first="Andrew" last="Mahan">Andrew Mahan</name>
</author>
<author>
<name sortKey="Lacy, Eilyn" sort="Lacy, Eilyn" uniqKey="Lacy E" first="Eilyn" last="Lacy">Eilyn Lacy</name>
</author>
<author>
<name sortKey="Maryanoff, Bruce E" sort="Maryanoff, Bruce E" uniqKey="Maryanoff B" first="Bruce E" last="Maryanoff">Bruce E. Maryanoff</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18559857</idno>
<idno type="pmid">18559857</idno>
<idno type="doi">10.1073/pnas.0800291105</idno>
<idno type="wicri:Area/PubMed/Corpus">002100</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002100</idno>
<idno type="wicri:Area/PubMed/Curation">002100</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002100</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thrombogenic collagen-mimetic peptides: Self-assembly of triple helix-based fibrils driven by hydrophobic interactions.</title>
<author>
<name sortKey="Cejas, Mabel A" sort="Cejas, Mabel A" uniqKey="Cejas M" first="Mabel A" last="Cejas">Mabel A. Cejas</name>
<affiliation wicri:level="1">
<nlm:affiliation>Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, PA 19477-0776, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, PA 19477-0776</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Kinney, William A" sort="Kinney, William A" uniqKey="Kinney W" first="William A" last="Kinney">William A. Kinney</name>
</author>
<author>
<name sortKey="Chen, Cailin" sort="Chen, Cailin" uniqKey="Chen C" first="Cailin" last="Chen">Cailin Chen</name>
</author>
<author>
<name sortKey="Vinter, Jeremy G" sort="Vinter, Jeremy G" uniqKey="Vinter J" first="Jeremy G" last="Vinter">Jeremy G. Vinter</name>
</author>
<author>
<name sortKey="Almond, Harold R" sort="Almond, Harold R" uniqKey="Almond H" first="Harold R" last="Almond">Harold R. Almond</name>
</author>
<author>
<name sortKey="Balss, Karin M" sort="Balss, Karin M" uniqKey="Balss K" first="Karin M" last="Balss">Karin M. Balss</name>
</author>
<author>
<name sortKey="Maryanoff, Cynthia A" sort="Maryanoff, Cynthia A" uniqKey="Maryanoff C" first="Cynthia A" last="Maryanoff">Cynthia A. Maryanoff</name>
</author>
<author>
<name sortKey="Schmidt, Ute" sort="Schmidt, Ute" uniqKey="Schmidt U" first="Ute" last="Schmidt">Ute Schmidt</name>
</author>
<author>
<name sortKey="Breslav, Michael" sort="Breslav, Michael" uniqKey="Breslav M" first="Michael" last="Breslav">Michael Breslav</name>
</author>
<author>
<name sortKey="Mahan, Andrew" sort="Mahan, Andrew" uniqKey="Mahan A" first="Andrew" last="Mahan">Andrew Mahan</name>
</author>
<author>
<name sortKey="Lacy, Eilyn" sort="Lacy, Eilyn" uniqKey="Lacy E" first="Eilyn" last="Lacy">Eilyn Lacy</name>
</author>
<author>
<name sortKey="Maryanoff, Bruce E" sort="Maryanoff, Bruce E" uniqKey="Maryanoff B" first="Bruce E" last="Maryanoff">Bruce E. Maryanoff</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomimetics</term>
<term>Circular Dichroism</term>
<term>Fibrillar Collagens (chemistry)</term>
<term>Fibrillar Collagens (metabolism)</term>
<term>Humans</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Microscopy, Atomic Force</term>
<term>Models, Molecular</term>
<term>Peptides (chemical synthesis)</term>
<term>Peptides (chemistry)</term>
<term>Thrombin (chemistry)</term>
<term>Thrombin (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biomimétique</term>
<term>Collagènes fibrillaires ()</term>
<term>Collagènes fibrillaires (métabolisme)</term>
<term>Dichroïsme circulaire</term>
<term>Humains</term>
<term>Interactions hydrophobes et hydrophiles</term>
<term>Microscopie à force atomique</term>
<term>Modèles moléculaires</term>
<term>Peptides ()</term>
<term>Peptides (synthèse chimique)</term>
<term>Thrombine ()</term>
<term>Thrombine (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Fibrillar Collagens</term>
<term>Peptides</term>
<term>Thrombin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fibrillar Collagens</term>
<term>Thrombin</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Collagènes fibrillaires</term>
<term>Thrombine</term>
</keywords>
<keywords scheme="MESH" qualifier="synthèse chimique" xml:lang="fr">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomimetics</term>
<term>Circular Dichroism</term>
<term>Humans</term>
<term>Hydrophobic and Hydrophilic Interactions</term>
<term>Microscopy, Atomic Force</term>
<term>Models, Molecular</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomimétique</term>
<term>Collagènes fibrillaires</term>
<term>Dichroïsme circulaire</term>
<term>Humains</term>
<term>Interactions hydrophobes et hydrophiles</term>
<term>Microscopie à force atomique</term>
<term>Modèles moléculaires</term>
<term>Peptides</term>
<term>Thrombine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Collagens are integral structural proteins in animal tissues and play key functional roles in cellular modulation. We sought to discover collagen model peptides (CMPs) that would form triple helices and self-assemble into supramolecular fibrils exhibiting collagen-like biological activity without preorganizing the peptide chains by covalent linkages. This challenging objective was accomplished by placing aromatic groups on the ends of a representative 30-mer CMP, (GPO)(10), as with l-phenylalanine and l-pentafluorophenylalanine in 32-mer 1a. Computational studies on homologous 29-mers 1a'-d' (one less GPO), as pairs of triple helices interacting head-to-tail, yielded stabilization energies in the order 1a' > 1b' > 1c' > 1d', supporting the hypothesis that hydrophobic aromatic groups can drive CMP self-assembly. Peptides 1a-d were studied comparatively relative to structural properties and ability to stimulate human platelets. Although each 32-mer formed stable triple helices (CD) spectroscopy, only 1a and 1b self-assembled into micrometer-scale fibrils. Light microscopy images for 1a depicted long collagen-like fibrils, whereas images for 1d did not. Atomic force microscopy topographical images indicated that 1a and 1b self-organize into microfibrillar species, whereas 1c and 1d do not. Peptides 1a and 1b induced the aggregation of human blood platelets with a potency similar to type I collagen, whereas 1c was much less effective, and 1d was inactive (EC(50) potency: 1a/1b > 1c > 1d). Thus, 1a and 1b spontaneously self-assemble into thrombogenic collagen-mimetic materials because of hydrophobic aromatic interactions provided by the special end-groups. These findings have important implications for the design of biofunctional CMPs.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18559857</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>08</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>105</Volume>
<Issue>25</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jun</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc. Natl. Acad. Sci. U.S.A.</ISOAbbreviation>
</Journal>
<ArticleTitle>Thrombogenic collagen-mimetic peptides: Self-assembly of triple helix-based fibrils driven by hydrophobic interactions.</ArticleTitle>
<Pagination>
<MedlinePgn>8513-8</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.0800291105</ELocationID>
<Abstract>
<AbstractText>Collagens are integral structural proteins in animal tissues and play key functional roles in cellular modulation. We sought to discover collagen model peptides (CMPs) that would form triple helices and self-assemble into supramolecular fibrils exhibiting collagen-like biological activity without preorganizing the peptide chains by covalent linkages. This challenging objective was accomplished by placing aromatic groups on the ends of a representative 30-mer CMP, (GPO)(10), as with l-phenylalanine and l-pentafluorophenylalanine in 32-mer 1a. Computational studies on homologous 29-mers 1a'-d' (one less GPO), as pairs of triple helices interacting head-to-tail, yielded stabilization energies in the order 1a' > 1b' > 1c' > 1d', supporting the hypothesis that hydrophobic aromatic groups can drive CMP self-assembly. Peptides 1a-d were studied comparatively relative to structural properties and ability to stimulate human platelets. Although each 32-mer formed stable triple helices (CD) spectroscopy, only 1a and 1b self-assembled into micrometer-scale fibrils. Light microscopy images for 1a depicted long collagen-like fibrils, whereas images for 1d did not. Atomic force microscopy topographical images indicated that 1a and 1b self-organize into microfibrillar species, whereas 1c and 1d do not. Peptides 1a and 1b induced the aggregation of human blood platelets with a potency similar to type I collagen, whereas 1c was much less effective, and 1d was inactive (EC(50) potency: 1a/1b > 1c > 1d). Thus, 1a and 1b spontaneously self-assemble into thrombogenic collagen-mimetic materials because of hydrophobic aromatic interactions provided by the special end-groups. These findings have important implications for the design of biofunctional CMPs.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cejas</LastName>
<ForeName>Mabel A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Research and Early Development, Johnson & Johnson Pharmaceutical Research & Development, Spring House, PA 19477-0776, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kinney</LastName>
<ForeName>William A</ForeName>
<Initials>WA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Cailin</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Vinter</LastName>
<ForeName>Jeremy G</ForeName>
<Initials>JG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Almond</LastName>
<ForeName>Harold R</ForeName>
<Initials>HR</Initials>
<Suffix>Jr</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Balss</LastName>
<ForeName>Karin M</ForeName>
<Initials>KM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maryanoff</LastName>
<ForeName>Cynthia A</ForeName>
<Initials>CA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schmidt</LastName>
<ForeName>Ute</ForeName>
<Initials>U</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Breslav</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mahan</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lacy</LastName>
<ForeName>Eilyn</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maryanoff</LastName>
<ForeName>Bruce E</ForeName>
<Initials>BE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>06</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024022">Fibrillar Collagens</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.21.5</RegistryNumber>
<NameOfSubstance UI="D013917">Thrombin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D032701" MajorTopicYN="N">Biomimetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002942" MajorTopicYN="N">Circular Dichroism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024022" MajorTopicYN="N">Fibrillar Collagens</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057927" MajorTopicYN="N">Hydrophobic and Hydrophilic Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018625" MajorTopicYN="N">Microscopy, Atomic Force</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013917" MajorTopicYN="N">Thrombin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>6</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18559857</ArticleId>
<ArticleId IdType="pii">0800291105</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.0800291105</ArticleId>
<ArticleId IdType="pmc">PMC2438399</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cardiovasc Res. 1999 Feb;41(2):450-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10341844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Surgery. 1999 Sep;126(3):510-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10486603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 1999 Oct 15;94(8):2704-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10515874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Chem. 1999 Dec 16;42(25):5254-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10602710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2002 Feb;19(1):49-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11902439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Mar 29;295(5564):2400-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11923524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2002 Jul 2;8(13):2860-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12489214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2003 Jul 15;102(2):449-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12649139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Apr 25;300(5619):625-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12714741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2003 Aug 25;42(33):3903-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1955 Sep 24;176(4482):593-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13265783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1961 Oct;3:483-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14491907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomed Mater Res B Appl Biomater. 2004 Apr 15;69(1):18-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15015205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Apr 26;44(16):6034-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15835892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Protein Chem. 2005;70:341-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15837520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2005 Aug 15;106(4):1268-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15886326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Thromb Haemost. 2005 Jul;94(1):107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16113793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2005 Dec 1;15(23):5230-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16185864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3028-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16488977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Dyn. 2006 Sep;235(9):2493-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16786597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Nov 3;281(44):33283-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16963782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2006 Sep;39(9):576-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16981673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2006 Nov 13;45(44):7324-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17054297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 15;281(50):38117-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17082192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Matrix Biol. 2007 Apr;26(3):146-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17141492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2007 Feb 28;129(8):2202-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17269769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2007;46(14):2366-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17370285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2007 Aug;40(8):644-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17489541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Aug 10;282(32):23005-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17576764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2007 Nov 28;129(47):14780-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17985903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 1988 Mar 1;110(6):1657-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27557051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1973 Mar 23;303(1):198-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4702003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1981 Jul 25;256(14):7118-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7251588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1995 Mar 1;306 ( Pt 2):337-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7534064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Oct 7;266(5182):75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7695699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Aided Mol Des. 1994 Dec;8(6):653-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7738602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1993 Dec;65(6):2644-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8312498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biopolymers. 1996;40(4):345-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8765606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 1997;32(2):141-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9145286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Apr 16;392(6677):666-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9565027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 19;273(25):15458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9624131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Jun 19;273(25):15598-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9624151</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002100 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002100 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:18559857
   |texte=   Thrombogenic collagen-mimetic peptides: Self-assembly of triple helix-based fibrils driven by hydrophobic interactions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:18559857" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021