Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Duplication count distributions in DNA sequences.

Identifieur interne : 002029 ( PubMed/Curation ); précédent : 002028; suivant : 002030

Duplication count distributions in DNA sequences.

Auteurs : Suzanne S. Sindi [États-Unis] ; Brian R. Hunt ; James A. Yorke

Source :

RBID : pubmed:19256873

Descripteurs français

English descriptors

Abstract

We study quantitative features of complex repetitive DNA in several genomes by studying sequences that are sufficiently long that they are unlikely to have repeated by chance. For each genome we study, we determine the number of identical copies, the "duplication count," of each sequence of length 40, that is of each "40-mer." We say a 40-mer is "repeated" if its duplication count is at least 2. We focus mainly on "complex" 40-mers, those without short internal repetitions. We find that we can classify most of the complex repeated 40-mers into two categories: one category has its copies clustered closely together on one chromosome, the other has its copies distributed widely across multiple chromosomes. For each genome and each of the categories above, we compute N(c), the number of 40-mers that have duplication count c, for each integer c. In each case, we observe a power-law-like decay in N(c) as c increases from 3 to 50 or higher. In particular, we find that N(c) decays much more slowly than would be predicted by evolutionary models where each 40-mer is equally likely to be duplicated. We also analyze an evolutionary model that does reflect the slow decay of N(c).

DOI: 10.1103/PhysRevE.78.061912
PubMed: 19256873

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19256873

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Duplication count distributions in DNA sequences.</title>
<author>
<name sortKey="Sindi, Suzanne S" sort="Sindi, Suzanne S" uniqKey="Sindi S" first="Suzanne S" last="Sindi">Suzanne S. Sindi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742, USA. suzanne_sindi@brown.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hunt, Brian R" sort="Hunt, Brian R" uniqKey="Hunt B" first="Brian R" last="Hunt">Brian R. Hunt</name>
</author>
<author>
<name sortKey="Yorke, James A" sort="Yorke, James A" uniqKey="Yorke J" first="James A" last="Yorke">James A. Yorke</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:19256873</idno>
<idno type="pmid">19256873</idno>
<idno type="doi">10.1103/PhysRevE.78.061912</idno>
<idno type="wicri:Area/PubMed/Corpus">002029</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002029</idno>
<idno type="wicri:Area/PubMed/Curation">002029</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002029</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Duplication count distributions in DNA sequences.</title>
<author>
<name sortKey="Sindi, Suzanne S" sort="Sindi, Suzanne S" uniqKey="Sindi S" first="Suzanne S" last="Sindi">Suzanne S. Sindi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742, USA. suzanne_sindi@brown.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Hunt, Brian R" sort="Hunt, Brian R" uniqKey="Hunt B" first="Brian R" last="Hunt">Brian R. Hunt</name>
</author>
<author>
<name sortKey="Yorke, James A" sort="Yorke, James A" uniqKey="Yorke J" first="James A" last="Yorke">James A. Yorke</name>
</author>
</analytic>
<series>
<title level="j">Physical review. E, Statistical, nonlinear, and soft matter physics</title>
<idno type="ISSN">1539-3755</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Biophysical Phenomena</term>
<term>Chromosomes (genetics)</term>
<term>DNA (chemistry)</term>
<term>DNA (genetics)</term>
<term>Gene Duplication</term>
<term>Genomics</term>
<term>Humans</term>
<term>Markov Chains</term>
<term>Models, Chemical</term>
<term>Models, Genetic</term>
<term>Multigene Family</term>
<term>Repetitive Sequences, Nucleic Acid</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ()</term>
<term>ADN (génétique)</term>
<term>Animaux</term>
<term>Chaines de Markov</term>
<term>Chromosomes (génétique)</term>
<term>Duplication de gène</term>
<term>Famille multigénique</term>
<term>Génomique</term>
<term>Humains</term>
<term>Modèles chimiques</term>
<term>Modèles génétiques</term>
<term>Phénomènes biophysiques</term>
<term>Séquence nucléotidique</term>
<term>Séquences répétées d'acides nucléiques</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chromosomes</term>
<term>DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN</term>
<term>Chromosomes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Biophysical Phenomena</term>
<term>Gene Duplication</term>
<term>Genomics</term>
<term>Humans</term>
<term>Markov Chains</term>
<term>Models, Chemical</term>
<term>Models, Genetic</term>
<term>Multigene Family</term>
<term>Repetitive Sequences, Nucleic Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN</term>
<term>Animaux</term>
<term>Chaines de Markov</term>
<term>Duplication de gène</term>
<term>Famille multigénique</term>
<term>Génomique</term>
<term>Humains</term>
<term>Modèles chimiques</term>
<term>Modèles génétiques</term>
<term>Phénomènes biophysiques</term>
<term>Séquence nucléotidique</term>
<term>Séquences répétées d'acides nucléiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We study quantitative features of complex repetitive DNA in several genomes by studying sequences that are sufficiently long that they are unlikely to have repeated by chance. For each genome we study, we determine the number of identical copies, the "duplication count," of each sequence of length 40, that is of each "40-mer." We say a 40-mer is "repeated" if its duplication count is at least 2. We focus mainly on "complex" 40-mers, those without short internal repetitions. We find that we can classify most of the complex repeated 40-mers into two categories: one category has its copies clustered closely together on one chromosome, the other has its copies distributed widely across multiple chromosomes. For each genome and each of the categories above, we compute N(c), the number of 40-mers that have duplication count c, for each integer c. In each case, we observe a power-law-like decay in N(c) as c increases from 3 to 50 or higher. In particular, we find that N(c) decays much more slowly than would be predicted by evolutionary models where each 40-mer is equally likely to be duplicated. We also analyze an evolutionary model that does reflect the slow decay of N(c).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19256873</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>04</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1539-3755</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>78</Volume>
<Issue>6 Pt 1</Issue>
<PubDate>
<Year>2008</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Physical review. E, Statistical, nonlinear, and soft matter physics</Title>
<ISOAbbreviation>Phys Rev E Stat Nonlin Soft Matter Phys</ISOAbbreviation>
</Journal>
<ArticleTitle>Duplication count distributions in DNA sequences.</ArticleTitle>
<Pagination>
<MedlinePgn>061912</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>We study quantitative features of complex repetitive DNA in several genomes by studying sequences that are sufficiently long that they are unlikely to have repeated by chance. For each genome we study, we determine the number of identical copies, the "duplication count," of each sequence of length 40, that is of each "40-mer." We say a 40-mer is "repeated" if its duplication count is at least 2. We focus mainly on "complex" 40-mers, those without short internal repetitions. We find that we can classify most of the complex repeated 40-mers into two categories: one category has its copies clustered closely together on one chromosome, the other has its copies distributed widely across multiple chromosomes. For each genome and each of the categories above, we compute N(c), the number of 40-mers that have duplication count c, for each integer c. In each case, we observe a power-law-like decay in N(c) as c increases from 3 to 50 or higher. In particular, we find that N(c) decays much more slowly than would be predicted by evolutionary models where each 40-mer is equally likely to be duplicated. We also analyze an evolutionary model that does reflect the slow decay of N(c).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sindi</LastName>
<ForeName>Suzanne S</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20742, USA. suzanne_sindi@brown.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hunt</LastName>
<ForeName>Brian R</ForeName>
<Initials>BR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yorke</LastName>
<ForeName>James A</ForeName>
<Initials>JA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 HG002945-01</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1R01HG0294501</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>12</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Phys Rev E Stat Nonlin Soft Matter Phys</MedlineTA>
<NlmUniqueID>101136452</NlmUniqueID>
<ISSNLinking>1539-3755</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055592" MajorTopicYN="N">Biophysical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002875" MajorTopicYN="N">Chromosomes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008390" MajorTopicYN="N">Markov Chains</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="N">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="Y">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012091" MajorTopicYN="N">Repetitive Sequences, Nucleic Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2008</Year>
<Month>04</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19256873</ArticleId>
<ArticleId IdType="pmc">PMC3121164</ArticleId>
<ArticleId IdType="mid">NIHMS300696</ArticleId>
<ArticleId IdType="doi">10.1103/PhysRevE.78.061912</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Phys Rev Lett. 1994 Dec 5;73(23):3169-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10057305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 1996 Mar 11;76(11):1977</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10060572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1999 Jul;9(7):629-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10413401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2000 Aug;10(8):1108-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10958629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 2000 Sep;109(6):365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11072791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Feb 16;291(5507):1304-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11181995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Feb 15;409(6822):860-921</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11237011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2001 Jan;55(1):1-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11263730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Nov 2;313(4):673-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11697896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Jan;3(1):65-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11823792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jun 1;30(11):2478-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12034836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002 Jul 25;3(8):RESEARCH0040</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12186647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2002 Oct 14;2:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12379152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Nov 14;420(6912):218-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12432406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002;3(12):RESEARCH0084</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12537573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2002 Dec;981:111-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12547677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2003 Jan 10;90(1):018101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12570650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2003 Nov;1(2):E45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14624247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 12;303(5664):1626-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15016989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10349-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15240876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Nov;14(11):2245-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15520288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2005;110(1-4):462-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16093699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2005 Dec;15(6):640-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Chem. 1996 Mar;20(1):35-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16718864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2007 May;14(4):479-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D25-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18073190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D588-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18160408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Sep 15;371(6494):215-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8078581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10774-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Dec 11;282(5396):2012-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9851916</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002029 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002029 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:19256873
   |texte=   Duplication count distributions in DNA sequences.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:19256873" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021