Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Degradation of nanoRNA is performed by multiple redundant RNases in Bacillus subtilis.

Identifieur interne : 002009 ( PubMed/Curation ); précédent : 002008; suivant : 002010

Degradation of nanoRNA is performed by multiple redundant RNases in Bacillus subtilis.

Auteurs : Ming Fang [France] ; Wencke-Maria Zeisberg ; Ciaran Condon ; Vasily Ogryzko ; Antoine Danchin ; Undine Mechold

Source :

RBID : pubmed:19553197

Descripteurs français

English descriptors

Abstract

Escherichia coli possesses only one essential oligoribonuclease (Orn), an enzyme that can degrade oligoribonucleotides of five residues and shorter in length (nanoRNA). Firmicutes including Bacillus subtilis do not have an Orn homolog. We had previously identified YtqI (NrnA) as functional analog of Orn in B. subtilis. Screening a genomic library from B. subtilis for genes that can complement a conditional orn mutant, we identify here YngD (NrnB) as a second nanoRNase in B. subtilis. Like NrnA, NrnB is a member of the DHH/DHHA1 protein family of phosphoesterases. NrnB degrades nanoRNA 5-mers in vitro similarily to Orn. Low expression levels of NrnB are sufficient for orn complementation. YhaM, a known RNase present in B. subtilis, degrades nanoRNA efficiently in vitro but requires high levels of expression for only partial complementation of the orn(-) strain. A triple mutant (nrnA(-), nrnB(-), yhaM(-)) in B. subtilis is viable and shows almost no impairment in growth. Lastly, RNase J1 seems also to have some 5'-to-3' exoribonuclease activity on nanoRNA and thus can potentially finish degradation of RNA. We conclude that, unlike in E. coli, degradation of nanoRNA is performed in a redundant fashion in B. subtilis.

DOI: 10.1093/nar/gkp527
PubMed: 19553197

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19553197

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Degradation of nanoRNA is performed by multiple redundant RNases in Bacillus subtilis.</title>
<author>
<name sortKey="Fang, Ming" sort="Fang, Ming" uniqKey="Fang M" first="Ming" last="Fang">Ming Fang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut Pasteur, URA 2171, Unité de Génétique des Génomes Bactériens, 75724 Paris Cedex 15, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut Pasteur, URA 2171, Unité de Génétique des Génomes Bactériens, 75724 Paris Cedex 15</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zeisberg, Wencke Maria" sort="Zeisberg, Wencke Maria" uniqKey="Zeisberg W" first="Wencke-Maria" last="Zeisberg">Wencke-Maria Zeisberg</name>
</author>
<author>
<name sortKey="Condon, Ciaran" sort="Condon, Ciaran" uniqKey="Condon C" first="Ciaran" last="Condon">Ciaran Condon</name>
</author>
<author>
<name sortKey="Ogryzko, Vasily" sort="Ogryzko, Vasily" uniqKey="Ogryzko V" first="Vasily" last="Ogryzko">Vasily Ogryzko</name>
</author>
<author>
<name sortKey="Danchin, Antoine" sort="Danchin, Antoine" uniqKey="Danchin A" first="Antoine" last="Danchin">Antoine Danchin</name>
</author>
<author>
<name sortKey="Mechold, Undine" sort="Mechold, Undine" uniqKey="Mechold U" first="Undine" last="Mechold">Undine Mechold</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19553197</idno>
<idno type="pmid">19553197</idno>
<idno type="doi">10.1093/nar/gkp527</idno>
<idno type="wicri:Area/PubMed/Corpus">002009</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">002009</idno>
<idno type="wicri:Area/PubMed/Curation">002009</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">002009</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Degradation of nanoRNA is performed by multiple redundant RNases in Bacillus subtilis.</title>
<author>
<name sortKey="Fang, Ming" sort="Fang, Ming" uniqKey="Fang M" first="Ming" last="Fang">Ming Fang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institut Pasteur, URA 2171, Unité de Génétique des Génomes Bactériens, 75724 Paris Cedex 15, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut Pasteur, URA 2171, Unité de Génétique des Génomes Bactériens, 75724 Paris Cedex 15</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Zeisberg, Wencke Maria" sort="Zeisberg, Wencke Maria" uniqKey="Zeisberg W" first="Wencke-Maria" last="Zeisberg">Wencke-Maria Zeisberg</name>
</author>
<author>
<name sortKey="Condon, Ciaran" sort="Condon, Ciaran" uniqKey="Condon C" first="Ciaran" last="Condon">Ciaran Condon</name>
</author>
<author>
<name sortKey="Ogryzko, Vasily" sort="Ogryzko, Vasily" uniqKey="Ogryzko V" first="Vasily" last="Ogryzko">Vasily Ogryzko</name>
</author>
<author>
<name sortKey="Danchin, Antoine" sort="Danchin, Antoine" uniqKey="Danchin A" first="Antoine" last="Danchin">Antoine Danchin</name>
</author>
<author>
<name sortKey="Mechold, Undine" sort="Mechold, Undine" uniqKey="Mechold U" first="Undine" last="Mechold">Undine Mechold</name>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacillus subtilis (enzymology)</term>
<term>Bacillus subtilis (genetics)</term>
<term>DNA (metabolism)</term>
<term>Genetic Complementation Test</term>
<term>Mutation</term>
<term>Oligoribonucleotides (chemistry)</term>
<term>Oligoribonucleotides (metabolism)</term>
<term>Phylogeny</term>
<term>RNA (chemistry)</term>
<term>RNA (metabolism)</term>
<term>Ribonucleases (classification)</term>
<term>Ribonucleases (genetics)</term>
<term>Ribonucleases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN (métabolisme)</term>
<term>ARN ()</term>
<term>ARN (métabolisme)</term>
<term>Bacillus subtilis (enzymologie)</term>
<term>Bacillus subtilis (génétique)</term>
<term>Mutation</term>
<term>Oligoribonucléotides ()</term>
<term>Oligoribonucléotides (métabolisme)</term>
<term>Phylogénie</term>
<term>Ribonucléases ()</term>
<term>Ribonucléases (génétique)</term>
<term>Ribonucléases (métabolisme)</term>
<term>Test de complémentation</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Oligoribonucleotides</term>
<term>RNA</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Ribonucleases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Ribonucleases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA</term>
<term>Oligoribonucleotides</term>
<term>RNA</term>
<term>Ribonucleases</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Bacillus subtilis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Bacillus subtilis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacillus subtilis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bacillus subtilis</term>
<term>Ribonucléases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN</term>
<term>ARN</term>
<term>Oligoribonucléotides</term>
<term>Ribonucléases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Complementation Test</term>
<term>Mutation</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN</term>
<term>Mutation</term>
<term>Oligoribonucléotides</term>
<term>Phylogénie</term>
<term>Ribonucléases</term>
<term>Test de complémentation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Escherichia coli possesses only one essential oligoribonuclease (Orn), an enzyme that can degrade oligoribonucleotides of five residues and shorter in length (nanoRNA). Firmicutes including Bacillus subtilis do not have an Orn homolog. We had previously identified YtqI (NrnA) as functional analog of Orn in B. subtilis. Screening a genomic library from B. subtilis for genes that can complement a conditional orn mutant, we identify here YngD (NrnB) as a second nanoRNase in B. subtilis. Like NrnA, NrnB is a member of the DHH/DHHA1 protein family of phosphoesterases. NrnB degrades nanoRNA 5-mers in vitro similarily to Orn. Low expression levels of NrnB are sufficient for orn complementation. YhaM, a known RNase present in B. subtilis, degrades nanoRNA efficiently in vitro but requires high levels of expression for only partial complementation of the orn(-) strain. A triple mutant (nrnA(-), nrnB(-), yhaM(-)) in B. subtilis is viable and shows almost no impairment in growth. Lastly, RNase J1 seems also to have some 5'-to-3' exoribonuclease activity on nanoRNA and thus can potentially finish degradation of RNA. We conclude that, unlike in E. coli, degradation of nanoRNA is performed in a redundant fashion in B. subtilis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19553197</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>09</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>37</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2009</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Degradation of nanoRNA is performed by multiple redundant RNases in Bacillus subtilis.</ArticleTitle>
<Pagination>
<MedlinePgn>5114-25</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gkp527</ELocationID>
<Abstract>
<AbstractText>Escherichia coli possesses only one essential oligoribonuclease (Orn), an enzyme that can degrade oligoribonucleotides of five residues and shorter in length (nanoRNA). Firmicutes including Bacillus subtilis do not have an Orn homolog. We had previously identified YtqI (NrnA) as functional analog of Orn in B. subtilis. Screening a genomic library from B. subtilis for genes that can complement a conditional orn mutant, we identify here YngD (NrnB) as a second nanoRNase in B. subtilis. Like NrnA, NrnB is a member of the DHH/DHHA1 protein family of phosphoesterases. NrnB degrades nanoRNA 5-mers in vitro similarily to Orn. Low expression levels of NrnB are sufficient for orn complementation. YhaM, a known RNase present in B. subtilis, degrades nanoRNA efficiently in vitro but requires high levels of expression for only partial complementation of the orn(-) strain. A triple mutant (nrnA(-), nrnB(-), yhaM(-)) in B. subtilis is viable and shows almost no impairment in growth. Lastly, RNase J1 seems also to have some 5'-to-3' exoribonuclease activity on nanoRNA and thus can potentially finish degradation of RNA. We conclude that, unlike in E. coli, degradation of nanoRNA is performed in a redundant fashion in B. subtilis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fang</LastName>
<ForeName>Ming</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Institut Pasteur, URA 2171, Unité de Génétique des Génomes Bactériens, 75724 Paris Cedex 15, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zeisberg</LastName>
<ForeName>Wencke-Maria</ForeName>
<Initials>WM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Condon</LastName>
<ForeName>Ciaran</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ogryzko</LastName>
<ForeName>Vasily</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Danchin</LastName>
<ForeName>Antoine</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mechold</LastName>
<ForeName>Undine</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009843">Oligoribonucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>63231-63-0</RegistryNumber>
<NameOfSubstance UI="D012313">RNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.1.-</RegistryNumber>
<NameOfSubstance UI="D012260">Ribonucleases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001412" MajorTopicYN="N">Bacillus subtilis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005816" MajorTopicYN="N">Genetic Complementation Test</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009843" MajorTopicYN="N">Oligoribonucleotides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012313" MajorTopicYN="N">RNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012260" MajorTopicYN="N">Ribonucleases</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>9</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19553197</ArticleId>
<ArticleId IdType="pii">gkp527</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkp527</ArticleId>
<ArticleId IdType="pmc">PMC2731908</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Gene. 1984 Jul-Aug;29(1-2):21-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6092222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2008;447:259-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19161848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Jul;177(14):4121-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7608087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Jul;177(14):4137-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7608090</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1998 Jan;23(1):17-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9478130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 May;180(10):2779-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9573169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 Jul;29(1):261-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9701819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1998 Nov;144 ( Pt 11):3097-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9846745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4372-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10200269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Oct;181(19):6098-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10498723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Apr;187(8):2758-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Nov;187(22):7655-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16267290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(8):2364-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16682444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Jul 28;360(5):921-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16806266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 6;281(40):29769-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16893880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D237-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17135202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2007 Mar;13(3):317-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Mar 30;282(13):9302-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17215253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 May 18;129(4):681-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17512403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2007 Jun;10(3):271-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10811905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5908-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11972066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jun 14;277(24):21624-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11948193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8342-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2002 Nov;184(22):6250-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12399495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4678-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2003 Oct;149(Pt 10):3023-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14523133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2004 Feb;5(2):137-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14998490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(4):R27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15059260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(13):4552-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 20;283(25):17158-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Oct;70(1):183-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18713320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1988 Mar 11;52(5):697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3125985</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002009 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 002009 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:19553197
   |texte=   Degradation of nanoRNA is performed by multiple redundant RNases in Bacillus subtilis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:19553197" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021