Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics.

Identifieur interne : 001F94 ( PubMed/Curation ); précédent : 001F93; suivant : 001F95

A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics.

Auteurs : Hwankyu Lee [États-Unis] ; Alex H. De Vries ; Siewert-Jan Marrink ; Richard W. Pastor

Source :

RBID : pubmed:19754083

Descripteurs français

English descriptors

Abstract

A coarse-grained (CG) model for polyethylene oxide (PEO) and polyethylene glycol (PEG) developed within the framework of the MARTINI CG force field (FF) using the distributions of bonds, angles, and dihedrals from the CHARMM all-atom FF is presented. Densities of neat low molecular weight PEO agree with experiment, and the radius of gyration R(g) = 19.1 A +/- 0.7 for 76-mers of PEO (M(w) approximately 3400), in excellent agreement with neutron scattering results for an equal sized PEG. Simulations of 9, 18, 27, 36, 44, 67, 76, 90, 112, 135, and 158-mers of the CG PEO (442 < M(w) < 6998) at low concentration in water show the experimentally observed transition from ideal chain to real chain behavior at 1600 < M(w) < 2000, in excellent agreement with the dependence of experimentally observed hydrodynamic radii of PEG. Hydrodynamic radii of PEO calculated from diffusion coefficients of the higher M(w) PEO also agree well with experiment. R(g) calculated from both all-atom and CG simulations of PEO76 at 21 and 148 mg/cm(3) are found to be nearly equal. This lack of concentration dependence implies that apparent R(g) from scattering experiments at high concentration should not be taken to be the chain dimension. Simulations of PEO grafted to a nonadsorbing surface yield a mushroom to brush transition that is well described by the Alexander-de Gennes formalism.

DOI: 10.1021/jp9058966
PubMed: 19754083

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:19754083

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics.</title>
<author>
<name sortKey="Lee, Hwankyu" sort="Lee, Hwankyu" uniqKey="Lee H" first="Hwankyu" last="Lee">Hwankyu Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Vries, Alex H" sort="De Vries, Alex H" uniqKey="De Vries A" first="Alex H" last="De Vries">Alex H. De Vries</name>
</author>
<author>
<name sortKey="Marrink, Siewert Jan" sort="Marrink, Siewert Jan" uniqKey="Marrink S" first="Siewert-Jan" last="Marrink">Siewert-Jan Marrink</name>
</author>
<author>
<name sortKey="Pastor, Richard W" sort="Pastor, Richard W" uniqKey="Pastor R" first="Richard W" last="Pastor">Richard W. Pastor</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19754083</idno>
<idno type="pmid">19754083</idno>
<idno type="doi">10.1021/jp9058966</idno>
<idno type="wicri:Area/PubMed/Corpus">001F94</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F94</idno>
<idno type="wicri:Area/PubMed/Curation">001F94</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001F94</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics.</title>
<author>
<name sortKey="Lee, Hwankyu" sort="Lee, Hwankyu" uniqKey="Lee H" first="Hwankyu" last="Lee">Hwankyu Lee</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="De Vries, Alex H" sort="De Vries, Alex H" uniqKey="De Vries A" first="Alex H" last="De Vries">Alex H. De Vries</name>
</author>
<author>
<name sortKey="Marrink, Siewert Jan" sort="Marrink, Siewert Jan" uniqKey="Marrink S" first="Siewert-Jan" last="Marrink">Siewert-Jan Marrink</name>
</author>
<author>
<name sortKey="Pastor, Richard W" sort="Pastor, Richard W" uniqKey="Pastor R" first="Richard W" last="Pastor">Richard W. Pastor</name>
</author>
</analytic>
<series>
<title level="j">The journal of physical chemistry. B</title>
<idno type="ISSN">1520-6106</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Simulation</term>
<term>Models, Chemical</term>
<term>Molecular Conformation</term>
<term>Molecular Weight</term>
<term>Polyethylene Glycols (chemistry)</term>
<term>Water (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Conformation moléculaire</term>
<term>Eau ()</term>
<term>Masse moléculaire</term>
<term>Modèles chimiques</term>
<term>Polyéthylène glycols ()</term>
<term>Simulation numérique</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Polyethylene Glycols</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Models, Chemical</term>
<term>Molecular Conformation</term>
<term>Molecular Weight</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation moléculaire</term>
<term>Eau</term>
<term>Masse moléculaire</term>
<term>Modèles chimiques</term>
<term>Polyéthylène glycols</term>
<term>Simulation numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A coarse-grained (CG) model for polyethylene oxide (PEO) and polyethylene glycol (PEG) developed within the framework of the MARTINI CG force field (FF) using the distributions of bonds, angles, and dihedrals from the CHARMM all-atom FF is presented. Densities of neat low molecular weight PEO agree with experiment, and the radius of gyration R(g) = 19.1 A +/- 0.7 for 76-mers of PEO (M(w) approximately 3400), in excellent agreement with neutron scattering results for an equal sized PEG. Simulations of 9, 18, 27, 36, 44, 67, 76, 90, 112, 135, and 158-mers of the CG PEO (442 < M(w) < 6998) at low concentration in water show the experimentally observed transition from ideal chain to real chain behavior at 1600 < M(w) < 2000, in excellent agreement with the dependence of experimentally observed hydrodynamic radii of PEG. Hydrodynamic radii of PEO calculated from diffusion coefficients of the higher M(w) PEO also agree well with experiment. R(g) calculated from both all-atom and CG simulations of PEO76 at 21 and 148 mg/cm(3) are found to be nearly equal. This lack of concentration dependence implies that apparent R(g) from scattering experiments at high concentration should not be taken to be the chain dimension. Simulations of PEO grafted to a nonadsorbing surface yield a mushroom to brush transition that is well described by the Alexander-de Gennes formalism.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19754083</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>12</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>10</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1520-6106</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>113</Volume>
<Issue>40</Issue>
<PubDate>
<Year>2009</Year>
<Month>Oct</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>The journal of physical chemistry. B</Title>
<ISOAbbreviation>J Phys Chem B</ISOAbbreviation>
</Journal>
<ArticleTitle>A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics.</ArticleTitle>
<Pagination>
<MedlinePgn>13186-94</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/jp9058966</ELocationID>
<Abstract>
<AbstractText>A coarse-grained (CG) model for polyethylene oxide (PEO) and polyethylene glycol (PEG) developed within the framework of the MARTINI CG force field (FF) using the distributions of bonds, angles, and dihedrals from the CHARMM all-atom FF is presented. Densities of neat low molecular weight PEO agree with experiment, and the radius of gyration R(g) = 19.1 A +/- 0.7 for 76-mers of PEO (M(w) approximately 3400), in excellent agreement with neutron scattering results for an equal sized PEG. Simulations of 9, 18, 27, 36, 44, 67, 76, 90, 112, 135, and 158-mers of the CG PEO (442 < M(w) < 6998) at low concentration in water show the experimentally observed transition from ideal chain to real chain behavior at 1600 < M(w) < 2000, in excellent agreement with the dependence of experimentally observed hydrodynamic radii of PEG. Hydrodynamic radii of PEO calculated from diffusion coefficients of the higher M(w) PEO also agree well with experiment. R(g) calculated from both all-atom and CG simulations of PEO76 at 21 and 148 mg/cm(3) are found to be nearly equal. This lack of concentration dependence implies that apparent R(g) from scattering experiments at high concentration should not be taken to be the chain dimension. Simulations of PEO grafted to a nonadsorbing surface yield a mushroom to brush transition that is well described by the Alexander-de Gennes formalism.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Hwankyu</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>de Vries</LastName>
<ForeName>Alex H</ForeName>
<Initials>AH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Marrink</LastName>
<ForeName>Siewert-Jan</ForeName>
<Initials>SJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pastor</LastName>
<ForeName>Richard W</ForeName>
<Initials>RW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ZIA HL000340-04</GrantID>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Phys Chem B</MedlineTA>
<NlmUniqueID>101157530</NlmUniqueID>
<ISSNLinking>1520-5207</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3WJQ0SDW1A</RegistryNumber>
<NameOfSubstance UI="D011092">Polyethylene Glycols</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="Y">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008968" MajorTopicYN="Y">Molecular Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011092" MajorTopicYN="N">Polyethylene Glycols</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>9</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>12</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19754083</ArticleId>
<ArticleId IdType="doi">10.1021/jp9058966</ArticleId>
<ArticleId IdType="pmc">PMC2937831</ArticleId>
<ArticleId IdType="mid">NIHMS232078</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Phys Chem B. 2009 Apr 30;113(17):5855-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19351117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2008 Oct 2;112(39):12279-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18767788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10792-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10984514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2007 May;3(3):1120-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26627431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2008 Dec 25;112(51):16357-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19367859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1997 Mar 27;232(3):731-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9126345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Drug Discov. 2003 Mar;2(3):214-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12612647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1992 Jun;6(9):2716-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1612296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3318-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7724560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2007 Jul 12;111(27):7812-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17569554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 Oct;1768(10):2578-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1995 May;68(5):1903-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7612833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9895674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 May;1768(5):1160-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1995 May;68(5):1921-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7612834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2008 Aug;95(4):1590-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioconjug Chem. 2008 Aug;19(8):1660-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18610944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1990 Jul 30;268(1):235-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2384160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioconjug Chem. 1994 Sep-Oct;5(5):390-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7849067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2003 Jan;84(1):350-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12524288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Mater. 2004 Sep;3(9):638-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15300242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1991 Jul 1;1066(1):29-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2065067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Nov 11;105(45):17367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10803-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1991 Sep 30;1068(2):133-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1911826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11460-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1763060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph. 1996 Feb;14(1):33-8, 27-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8744570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2006 May;2(3):598-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26626667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioconjug Chem. 2000 Nov-Dec;11(6):910-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11087341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Pharmacokinet. 2001;40(7):539-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11510630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4810-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2008 Oct 30;112(43):13561-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18839987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2008 Jul 3;112(26):7778-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18543869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomaterials. 2002 Nov;23(22):4315-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12219821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioconjug Chem. 1995 Nov-Dec;6(6):639-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8608176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Theory Comput. 2008 May;4(5):819-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26621095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2008 Apr 15;94(8):2994-3002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18192351</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F94 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001F94 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:19754083
   |texte=   A coarse-grained model for polyethylene oxide and polyethylene glycol: conformation and hydrodynamics.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:19754083" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021