Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Automated mass action model space generation and analysis methods for two-reactant combinatorially complex equilibriums: an analysis of ATP-induced ribonucleotide reductase R1 hexamerization data.

Identifieur interne : 001F82 ( PubMed/Curation ); précédent : 001F81; suivant : 001F83

Automated mass action model space generation and analysis methods for two-reactant combinatorially complex equilibriums: an analysis of ATP-induced ribonucleotide reductase R1 hexamerization data.

Auteurs : Tomas Radivoyevitch [États-Unis]

Source :

RBID : pubmed:20003203

Descripteurs français

English descriptors

Abstract

Ribonucleotide reductase is the main control point of dNTP production. It has two subunits, R1, and R2 or p53R2. R1 has 5 possible catalytic site states (empty or filled with 1 of 4 NDPs), 5 possible s-site states (empty or filled with ATP, dATP, dTTP or dGTP), 3 possible a-site states (empty or filled with ATP or dATP), perhaps two possible h-site states (empty or filled with ATP), and all of this is folded into an R1 monomer-dimer-tetramer-hexamer equilibrium where R1 j-mers can be bound by variable numbers of R2 or p53R2 dimers. Trillions of RNR complexes are possible as a result. The problem is to determine which are needed in models to explain available data. This problem is intractable for 10 reactants, but it can be solved for 2 and is here for R1 and ATP.

DOI: 10.1186/1745-6150-4-50
PubMed: 20003203

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:20003203

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Automated mass action model space generation and analysis methods for two-reactant combinatorially complex equilibriums: an analysis of ATP-induced ribonucleotide reductase R1 hexamerization data.</title>
<author>
<name sortKey="Radivoyevitch, Tomas" sort="Radivoyevitch, Tomas" uniqKey="Radivoyevitch T" first="Tomas" last="Radivoyevitch">Tomas Radivoyevitch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA. txr24@case.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106</wicri:regionArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:20003203</idno>
<idno type="pmid">20003203</idno>
<idno type="doi">10.1186/1745-6150-4-50</idno>
<idno type="wicri:Area/PubMed/Corpus">001F82</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001F82</idno>
<idno type="wicri:Area/PubMed/Curation">001F82</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001F82</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Automated mass action model space generation and analysis methods for two-reactant combinatorially complex equilibriums: an analysis of ATP-induced ribonucleotide reductase R1 hexamerization data.</title>
<author>
<name sortKey="Radivoyevitch, Tomas" sort="Radivoyevitch, Tomas" uniqKey="Radivoyevitch T" first="Tomas" last="Radivoyevitch">Tomas Radivoyevitch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA. txr24@case.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106</wicri:regionArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biology direct</title>
<idno type="eISSN">1745-6150</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adenosine Triphosphate (metabolism)</term>
<term>Catalytic Domain</term>
<term>Computer Simulation</term>
<term>Deoxyadenine Nucleotides (metabolism)</term>
<term>Deoxyguanine Nucleotides (metabolism)</term>
<term>Humans</term>
<term>Least-Squares Analysis</term>
<term>Models, Biological</term>
<term>Nonlinear Dynamics</term>
<term>Protein Multimerization</term>
<term>Protein Subunits</term>
<term>Ribonucleotide Reductases (antagonists & inhibitors)</term>
<term>Ribonucleotide Reductases (chemistry)</term>
<term>Ribonucleotide Reductases (metabolism)</term>
<term>Substrate Specificity</term>
<term>Thymine Nucleotides (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adénosine triphosphate (métabolisme)</term>
<term>Domaine catalytique</term>
<term>Dynamique non linéaire</term>
<term>Humains</term>
<term>Modèles biologiques</term>
<term>Multimérisation de protéines</term>
<term>Méthode des moindres carrés</term>
<term>Nucléotide désoxyadenylique (métabolisme)</term>
<term>Nucléotide désoxyguanylique (métabolisme)</term>
<term>Nucléotides thymidyliques (métabolisme)</term>
<term>Ribonucleotide reductases ()</term>
<term>Ribonucleotide reductases (antagonistes et inhibiteurs)</term>
<term>Ribonucleotide reductases (métabolisme)</term>
<term>Simulation numérique</term>
<term>Sous-unités de protéines</term>
<term>Spécificité du substrat</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Ribonucleotide Reductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Ribonucleotide Reductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adenosine Triphosphate</term>
<term>Deoxyadenine Nucleotides</term>
<term>Deoxyguanine Nucleotides</term>
<term>Ribonucleotide Reductases</term>
<term>Thymine Nucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Ribonucleotide reductases</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Adénosine triphosphate</term>
<term>Nucléotide désoxyadenylique</term>
<term>Nucléotide désoxyguanylique</term>
<term>Nucléotides thymidyliques</term>
<term>Ribonucleotide reductases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalytic Domain</term>
<term>Computer Simulation</term>
<term>Humans</term>
<term>Least-Squares Analysis</term>
<term>Models, Biological</term>
<term>Nonlinear Dynamics</term>
<term>Protein Multimerization</term>
<term>Protein Subunits</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Domaine catalytique</term>
<term>Dynamique non linéaire</term>
<term>Humains</term>
<term>Modèles biologiques</term>
<term>Multimérisation de protéines</term>
<term>Méthode des moindres carrés</term>
<term>Ribonucleotide reductases</term>
<term>Simulation numérique</term>
<term>Sous-unités de protéines</term>
<term>Spécificité du substrat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ribonucleotide reductase is the main control point of dNTP production. It has two subunits, R1, and R2 or p53R2. R1 has 5 possible catalytic site states (empty or filled with 1 of 4 NDPs), 5 possible s-site states (empty or filled with ATP, dATP, dTTP or dGTP), 3 possible a-site states (empty or filled with ATP or dATP), perhaps two possible h-site states (empty or filled with ATP), and all of this is folded into an R1 monomer-dimer-tetramer-hexamer equilibrium where R1 j-mers can be bound by variable numbers of R2 or p53R2 dimers. Trillions of RNR complexes are possible as a result. The problem is to determine which are needed in models to explain available data. This problem is intractable for 10 reactants, but it can be solved for 2 and is here for R1 and ATP.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20003203</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>03</Month>
<Day>04</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1745-6150</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>4</Volume>
<PubDate>
<Year>2009</Year>
<Month>Dec</Month>
<Day>09</Day>
</PubDate>
</JournalIssue>
<Title>Biology direct</Title>
<ISOAbbreviation>Biol. Direct</ISOAbbreviation>
</Journal>
<ArticleTitle>Automated mass action model space generation and analysis methods for two-reactant combinatorially complex equilibriums: an analysis of ATP-induced ribonucleotide reductase R1 hexamerization data.</ArticleTitle>
<Pagination>
<MedlinePgn>50</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1745-6150-4-50</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Ribonucleotide reductase is the main control point of dNTP production. It has two subunits, R1, and R2 or p53R2. R1 has 5 possible catalytic site states (empty or filled with 1 of 4 NDPs), 5 possible s-site states (empty or filled with ATP, dATP, dTTP or dGTP), 3 possible a-site states (empty or filled with ATP or dATP), perhaps two possible h-site states (empty or filled with ATP), and all of this is folded into an R1 monomer-dimer-tetramer-hexamer equilibrium where R1 j-mers can be bound by variable numbers of R2 or p53R2 dimers. Trillions of RNR complexes are possible as a result. The problem is to determine which are needed in models to explain available data. This problem is intractable for 10 reactants, but it can be solved for 2 and is here for R1 and ATP.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Thousands of ATP-induced R1 hexamerization models with up to three (s, a and h) ATP binding sites per R1 subunit were automatically generated via hypotheses that complete dissociation constants are infinite and/or that binary dissociation constants are equal. To limit the model space size, it was assumed that s-sites are always filled in oligomers and never filled in monomers, and to interpret model terms it was assumed that a-sites fill before h-sites. The models were fitted to published dynamic light scattering data. As the lowest Akaike Information Criterion (AIC) of the 3-parameter models was greater than the lowest of the 2-parameter models, only models with up to 3 parameters were fitted. Models with sums of squared errors less than twice the minimum were then partitioned into two groups: those that contained no occupied h-site terms (508 models) and those that contained at least one (1580 models). Normalized AIC densities of these two groups of models differed significantly in favor of models that did not include an h-site term (Kolmogorov-Smirnov p < 1 x 10(-15)); consistent with this, 28 of the top 30 models (ranked by AICs) did not include an h-site term and 28/30 > 508/2088 with p < 2 x 10(-15). Finally, 99 of the 2088 models did not have any terms with ATP/R1 ratios >1.5, but of the top 30, there were 14 such models (14/30 > 99/2088 with p < 3 x 10(-16)), i.e. the existence of R1 hexamers with >3 a-sites occupied by ATP is also not supported by this dataset.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The analysis presented suggests that three a-sites may not be occupied by ATP in R1 hexamers under the conditions of the data analyzed. If a-sites fill before h-sites, this implies that the dataset analyzed can be explained without the existence of an h-site.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Radivoyevitch</LastName>
<ForeName>Tomas</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA. txr24@case.edu</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>K25 CA104791</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K25 CA104791-05</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>K25CA104791</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>12</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biol Direct</MedlineTA>
<NlmUniqueID>101258412</NlmUniqueID>
<ISSNLinking>1745-6150</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003838">Deoxyadenine Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003848">Deoxyguanine Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021122">Protein Subunits</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013942">Thymine Nucleotides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8C2O37Y44Q</RegistryNumber>
<NameOfSubstance UI="C029603">deoxyguanosine triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>8L70Q75FXE</RegistryNumber>
<NameOfSubstance UI="D000255">Adenosine Triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.17.4.-</RegistryNumber>
<NameOfSubstance UI="D012264">Ribonucleotide Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K8KCC8SH6N</RegistryNumber>
<NameOfSubstance UI="C026600">2'-deoxyadenosine triphosphate</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>QOP4K539MU</RegistryNumber>
<NameOfSubstance UI="C024157">thymidine 5'-triphosphate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000255" MajorTopicYN="N">Adenosine Triphosphate</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020134" MajorTopicYN="N">Catalytic Domain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003838" MajorTopicYN="N">Deoxyadenine Nucleotides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003848" MajorTopicYN="N">Deoxyguanine Nucleotides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016018" MajorTopicYN="N">Least-Squares Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017711" MajorTopicYN="N">Nonlinear Dynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021122" MajorTopicYN="N">Protein Subunits</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012264" MajorTopicYN="N">Ribonucleotide Reductases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013942" MajorTopicYN="N">Thymine Nucleotides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>12</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>12</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20003203</ArticleId>
<ArticleId IdType="pii">1745-6150-4-50</ArticleId>
<ArticleId IdType="doi">10.1186/1745-6150-4-50</ArticleId>
<ArticleId IdType="pmc">PMC2799446</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Pathol. 2000 Feb;156(2):537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10666383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Chemother Pharmacol. 2010 Mar;65(4):679-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19639316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2000 Aug 31;19(37):4283-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10980602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Jan 15;41(2):462-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11781084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Invest. 2002;20(1):102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11852992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2002 Aug;8(8):2536-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12171881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2002 Dec 1;62(23):6796-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12460887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Mar 1;19(4):524-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12611808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2003 Nov 26;125(47):14613-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14624612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Anticancer Ther. 2004 Jun;4(3):345-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1979;48:133-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">382982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 1992 Sep;42(3):518-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1406603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 1998;431:657-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9598147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 1998 Oct;153(4):1181-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9777949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 1999 Apr;8(4):661-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10072435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Genet Cytogenet. 1999 Jul 1;112(1):2-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10432927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2005 Feb 1;77(3):785-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15679345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D689-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4022-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16537479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Cancer. 2006;6:104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16638124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 22;281(38):27705-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16861739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2007 Jun;6(6):1858-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17575114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14324-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17726094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2008;2:15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18248678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2008 May 15;80(10):3890-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18399662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncol Rep. 2008 Aug;20(2):279-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18636187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lab Chip. 2009 Mar 7;9(5):692-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19224019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Mar 2;404(6773):42-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10716435</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F82 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001F82 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:20003203
   |texte=   Automated mass action model space generation and analysis methods for two-reactant combinatorially complex equilibriums: an analysis of ATP-induced ribonucleotide reductase R1 hexamerization data.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:20003203" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021