Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

DNA charge transport over 34 nm.

Identifieur interne : 001E98 ( PubMed/Curation ); précédent : 001E97; suivant : 001E99

DNA charge transport over 34 nm.

Auteurs : Jason D. Slinker [États-Unis] ; Natalie B. Muren ; Sara E. Renfrew ; Jacqueline K. Barton

Source :

RBID : pubmed:21336329

Descripteurs français

English descriptors

Abstract

Molecular wires show promise in nanoscale electronics, but the synthesis of uniform, long conductive molecules is a significant challenge. Deoxyribonucleic acid (DNA) of precise length, by contrast, is synthesized easily, but its conductivity over the distances required for nanoscale devices has not been explored. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base-pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation accessible to protein binding. Similar electron-transfer rates measured through 100-mer and 17-mer monolayers are consistent with rate-limiting electron tunnelling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses that of most reports of molecular wires.

DOI: 10.1038/nchem.982
PubMed: 21336329

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21336329

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">DNA charge transport over 34 nm.</title>
<author>
<name sortKey="Slinker, Jason D" sort="Slinker, Jason D" uniqKey="Slinker J" first="Jason D" last="Slinker">Jason D. Slinker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Muren, Natalie B" sort="Muren, Natalie B" uniqKey="Muren N" first="Natalie B" last="Muren">Natalie B. Muren</name>
</author>
<author>
<name sortKey="Renfrew, Sara E" sort="Renfrew, Sara E" uniqKey="Renfrew S" first="Sara E" last="Renfrew">Sara E. Renfrew</name>
</author>
<author>
<name sortKey="Barton, Jacqueline K" sort="Barton, Jacqueline K" uniqKey="Barton J" first="Jacqueline K" last="Barton">Jacqueline K. Barton</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21336329</idno>
<idno type="pmid">21336329</idno>
<idno type="doi">10.1038/nchem.982</idno>
<idno type="wicri:Area/PubMed/Corpus">001E98</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E98</idno>
<idno type="wicri:Area/PubMed/Curation">001E98</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001E98</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">DNA charge transport over 34 nm.</title>
<author>
<name sortKey="Slinker, Jason D" sort="Slinker, Jason D" uniqKey="Slinker J" first="Jason D" last="Slinker">Jason D. Slinker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Muren, Natalie B" sort="Muren, Natalie B" uniqKey="Muren N" first="Natalie B" last="Muren">Natalie B. Muren</name>
</author>
<author>
<name sortKey="Renfrew, Sara E" sort="Renfrew, Sara E" uniqKey="Renfrew S" first="Sara E" last="Renfrew">Sara E. Renfrew</name>
</author>
<author>
<name sortKey="Barton, Jacqueline K" sort="Barton, Jacqueline K" uniqKey="Barton J" first="Jacqueline K" last="Barton">Jacqueline K. Barton</name>
</author>
</analytic>
<series>
<title level="j">Nature chemistry</title>
<idno type="eISSN">1755-4349</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>DNA (chemistry)</term>
<term>Electrochemical Techniques</term>
<term>Electrodes</term>
<term>Electron Transport</term>
<term>Gold (chemistry)</term>
<term>Kinetics</term>
<term>Nanotechnology</term>
<term>Oxazines</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ()</term>
<term>Cinétique</term>
<term>Nanotechnologie</term>
<term>Or ()</term>
<term>Oxazines</term>
<term>Oxydoréduction</term>
<term>Techniques électrochimiques</term>
<term>Transfert d'électrons</term>
<term>Électrodes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA</term>
<term>Gold</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Electrochemical Techniques</term>
<term>Electrodes</term>
<term>Electron Transport</term>
<term>Kinetics</term>
<term>Nanotechnology</term>
<term>Oxazines</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ADN</term>
<term>Cinétique</term>
<term>Nanotechnologie</term>
<term>Or</term>
<term>Oxazines</term>
<term>Oxydoréduction</term>
<term>Techniques électrochimiques</term>
<term>Transfert d'électrons</term>
<term>Électrodes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Molecular wires show promise in nanoscale electronics, but the synthesis of uniform, long conductive molecules is a significant challenge. Deoxyribonucleic acid (DNA) of precise length, by contrast, is synthesized easily, but its conductivity over the distances required for nanoscale devices has not been explored. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base-pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation accessible to protein binding. Similar electron-transfer rates measured through 100-mer and 17-mer monolayers are consistent with rate-limiting electron tunnelling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses that of most reports of molecular wires.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21336329</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>04</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1755-4349</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>3</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2011</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Nature chemistry</Title>
<ISOAbbreviation>Nat Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>DNA charge transport over 34 nm.</ArticleTitle>
<Pagination>
<MedlinePgn>228-33</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/nchem.982</ELocationID>
<Abstract>
<AbstractText>Molecular wires show promise in nanoscale electronics, but the synthesis of uniform, long conductive molecules is a significant challenge. Deoxyribonucleic acid (DNA) of precise length, by contrast, is synthesized easily, but its conductivity over the distances required for nanoscale devices has not been explored. Here we demonstrate DNA charge transport (CT) over 34 nm in 100-mer monolayers on gold. Multiplexed gold electrodes modified with 100-mer DNA yield sizable electrochemical signals from a distal, covalent Nile Blue redox probe. Significant signal attenuation upon incorporation of a single base-pair mismatch demonstrates that CT is DNA-mediated. Efficient cleavage of these 100-mers by a restriction enzyme indicates that the DNA adopts a native conformation accessible to protein binding. Similar electron-transfer rates measured through 100-mer and 17-mer monolayers are consistent with rate-limiting electron tunnelling through the saturated carbon linker. This DNA-mediated CT distance of 34 nm surpasses that of most reports of molecular wires.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Slinker</LastName>
<ForeName>Jason D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Muren</LastName>
<ForeName>Natalie B</ForeName>
<Initials>NB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Renfrew</LastName>
<ForeName>Sara E</ForeName>
<Initials>SE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Barton</LastName>
<ForeName>Jacqueline K</ForeName>
<Initials>JK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM061077</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>F32 EB007900</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM61077</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM061077-10</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM061077-12</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>F32EB007900</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM061077-11</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>01</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nat Chem</MedlineTA>
<NlmUniqueID>101499734</NlmUniqueID>
<ISSNLinking>1755-4330</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010078">Oxazines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2381-85-3</RegistryNumber>
<NameOfSubstance UI="C008619">Nile Blue</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-57-5</RegistryNumber>
<NameOfSubstance UI="D006046">Gold</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-49-2</RegistryNumber>
<NameOfSubstance UI="D004247">DNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D004247" MajorTopicYN="N">DNA</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055664" MajorTopicYN="N">Electrochemical Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004566" MajorTopicYN="N">Electrodes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004579" MajorTopicYN="N">Electron Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006046" MajorTopicYN="N">Gold</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036103" MajorTopicYN="N">Nanotechnology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010078" MajorTopicYN="N">Oxazines</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>10</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21336329</ArticleId>
<ArticleId IdType="pii">nchem.982</ArticleId>
<ArticleId IdType="doi">10.1038/nchem.982</ArticleId>
<ArticleId IdType="pmc">PMC3079570</ArticleId>
<ArticleId IdType="mid">NIHMS277095</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 1999 Feb;6(2):85-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10021416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Apr 1;398(6726):407-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10201370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Dec 15;27(24):4830-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10572185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Oct;18(10):1096-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11017050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2000 Dec 4;85(23):4992-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jan 12;291(5502):280-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11209072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Mar;20(3):282-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Soc Rev. 2003 Mar;32(2):96-103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12683106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2003 Oct;21(10):1192-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14520405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2004 Nov 24;126(46):15010-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15547981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioconjug Chem. 2005 Mar-Apr;16(2):312-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15769084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2005 Jul 27;127(29):10160-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16028914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11589-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16087871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phys Rev Lett. 2006 Jan 20;96(2):027801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16486641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Mar 16;440(7082):297-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16541064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioconjug Chem. 2007 Sep-Oct;18(5):1434-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17580927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nano Lett. 2008 Jan;8(1):26-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18052084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Mar 12;130(10):2924-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18271589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1482-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18556556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Nanotechnol. 2008 Mar;3(3):163-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18654489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2008 Nov 12;130(45):15150-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18855390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Mater. 2009 Jan;8(1):41-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19011616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2009 Mar 17;42(3):429-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19253984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemphyschem. 2009 Apr 14;10(6):963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19263452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2009 May;109(5):1948-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19301873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 May 21;459(7245):414-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Nanotechnol. 2009 Dec;4(12):844-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19893517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2010 Mar 3;132(8):2769-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20131780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 2010 Mar 1;49(10):1800-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20155768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2010 Mar 10;110(3):1642-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20214403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2010 Jul 7;132(26):8854-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20550115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jun 18;328(5985):1547-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20558715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem. 2009 May;1(2):156-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21378829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Angew Chem Int Ed Engl. 1999 Apr 1;38(7):941-945</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29711858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Nov 12;262(5136):1025-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7802858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Jan 15;283(5400):375-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9888851</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E98 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001E98 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:21336329
   |texte=   DNA charge transport over 34 nm.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:21336329" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021