Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative evaluation of all hexamers as exonic splicing elements.

Identifieur interne : 001E70 ( PubMed/Curation ); précédent : 001E69; suivant : 001E71

Quantitative evaluation of all hexamers as exonic splicing elements.

Auteurs : Shengdong Ke [États-Unis] ; Shulian Shang ; Sergey M. Kalachikov ; Irina Morozova ; Lin Yu ; James J. Russo ; Jingyue Ju ; Lawrence A. Chasin

Source :

RBID : pubmed:21659425

Descripteurs français

English descriptors

Abstract

We describe a comprehensive quantitative measure of the splicing impact of a complete set of RNA 6-mer sequences by deep sequencing successfully spliced transcripts. All 4096 6-mers were substituted at five positions within two different internal exons in a 3-exon minigene, and millions of successfully spliced transcripts were sequenced after transfection of human cells. The results allowed the assignment of a relative splicing strength score to each mutant molecule. The effect of 6-mers on splicing often depended on their location; much of this context effect could be ascribed to the creation of different overlapping sequences at each site. Taking these overlaps into account, the splicing effect of each 6-mer could be quantified, and 6-mers could be designated as enhancers (ESEseqs) and silencers (ESSseqs), with an ESRseq score indicating their strength. Some 6-mers exhibited positional bias relative to the two splice sites. The distribution and conservation of these ESRseqs in and around human exons supported their classification. Predicted RNA secondary structure effects were also seen: Effective enhancers, silencers and 3' splice sites tend to be single stranded, and effective 5' splice sites tend to be double stranded. 6-mers that may form positive or negative synergy with another were also identified. Chromatin structure may also influence the splicing enhancement observed, as a good correspondence was found between splicing performance and the predicted nucleosome occupancy scores of 6-mers. This approach may prove of general use in defining nucleic acid regulatory motifs, substitute for functional SELEX in most cases, and provide insights about splicing mechanisms.

DOI: 10.1101/gr.119628.110
PubMed: 21659425

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21659425

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative evaluation of all hexamers as exonic splicing elements.</title>
<author>
<name sortKey="Ke, Shengdong" sort="Ke, Shengdong" uniqKey="Ke S" first="Shengdong" last="Ke">Shengdong Ke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Columbia University, New York, New York 10027, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Columbia University, New York, New York 10027</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shang, Shulian" sort="Shang, Shulian" uniqKey="Shang S" first="Shulian" last="Shang">Shulian Shang</name>
</author>
<author>
<name sortKey="Kalachikov, Sergey M" sort="Kalachikov, Sergey M" uniqKey="Kalachikov S" first="Sergey M" last="Kalachikov">Sergey M. Kalachikov</name>
</author>
<author>
<name sortKey="Morozova, Irina" sort="Morozova, Irina" uniqKey="Morozova I" first="Irina" last="Morozova">Irina Morozova</name>
</author>
<author>
<name sortKey="Yu, Lin" sort="Yu, Lin" uniqKey="Yu L" first="Lin" last="Yu">Lin Yu</name>
</author>
<author>
<name sortKey="Russo, James J" sort="Russo, James J" uniqKey="Russo J" first="James J" last="Russo">James J. Russo</name>
</author>
<author>
<name sortKey="Ju, Jingyue" sort="Ju, Jingyue" uniqKey="Ju J" first="Jingyue" last="Ju">Jingyue Ju</name>
</author>
<author>
<name sortKey="Chasin, Lawrence A" sort="Chasin, Lawrence A" uniqKey="Chasin L" first="Lawrence A" last="Chasin">Lawrence A. Chasin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21659425</idno>
<idno type="pmid">21659425</idno>
<idno type="doi">10.1101/gr.119628.110</idno>
<idno type="wicri:Area/PubMed/Corpus">001E70</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E70</idno>
<idno type="wicri:Area/PubMed/Curation">001E70</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001E70</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantitative evaluation of all hexamers as exonic splicing elements.</title>
<author>
<name sortKey="Ke, Shengdong" sort="Ke, Shengdong" uniqKey="Ke S" first="Shengdong" last="Ke">Shengdong Ke</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biological Sciences, Columbia University, New York, New York 10027, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Columbia University, New York, New York 10027</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Shang, Shulian" sort="Shang, Shulian" uniqKey="Shang S" first="Shulian" last="Shang">Shulian Shang</name>
</author>
<author>
<name sortKey="Kalachikov, Sergey M" sort="Kalachikov, Sergey M" uniqKey="Kalachikov S" first="Sergey M" last="Kalachikov">Sergey M. Kalachikov</name>
</author>
<author>
<name sortKey="Morozova, Irina" sort="Morozova, Irina" uniqKey="Morozova I" first="Irina" last="Morozova">Irina Morozova</name>
</author>
<author>
<name sortKey="Yu, Lin" sort="Yu, Lin" uniqKey="Yu L" first="Lin" last="Yu">Lin Yu</name>
</author>
<author>
<name sortKey="Russo, James J" sort="Russo, James J" uniqKey="Russo J" first="James J" last="Russo">James J. Russo</name>
</author>
<author>
<name sortKey="Ju, Jingyue" sort="Ju, Jingyue" uniqKey="Ju J" first="Jingyue" last="Ju">Jingyue Ju</name>
</author>
<author>
<name sortKey="Chasin, Lawrence A" sort="Chasin, Lawrence A" uniqKey="Chasin L" first="Lawrence A" last="Chasin">Lawrence A. Chasin</name>
</author>
</analytic>
<series>
<title level="j">Genome research</title>
<idno type="eISSN">1549-5469</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromatin (genetics)</term>
<term>Exons (genetics)</term>
<term>Humans</term>
<term>Nucleic Acid Conformation</term>
<term>RNA (genetics)</term>
<term>RNA Splice Sites</term>
<term>RNA Splicing (genetics)</term>
<term>Regulatory Sequences, Ribonucleic Acid</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN (génétique)</term>
<term>Chromatine (génétique)</term>
<term>Conformation d'acide nucléique</term>
<term>Exons (génétique)</term>
<term>Humains</term>
<term>Sites d'épissage d'ARN</term>
<term>Séquences régulatrices de l'acide ribonucléique</term>
<term>Épissage des ARN (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chromatin</term>
<term>RNA</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Exons</term>
<term>RNA Splicing</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN</term>
<term>Chromatine</term>
<term>Exons</term>
<term>Épissage des ARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humans</term>
<term>Nucleic Acid Conformation</term>
<term>RNA Splice Sites</term>
<term>Regulatory Sequences, Ribonucleic Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation d'acide nucléique</term>
<term>Humains</term>
<term>Sites d'épissage d'ARN</term>
<term>Séquences régulatrices de l'acide ribonucléique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We describe a comprehensive quantitative measure of the splicing impact of a complete set of RNA 6-mer sequences by deep sequencing successfully spliced transcripts. All 4096 6-mers were substituted at five positions within two different internal exons in a 3-exon minigene, and millions of successfully spliced transcripts were sequenced after transfection of human cells. The results allowed the assignment of a relative splicing strength score to each mutant molecule. The effect of 6-mers on splicing often depended on their location; much of this context effect could be ascribed to the creation of different overlapping sequences at each site. Taking these overlaps into account, the splicing effect of each 6-mer could be quantified, and 6-mers could be designated as enhancers (ESEseqs) and silencers (ESSseqs), with an ESRseq score indicating their strength. Some 6-mers exhibited positional bias relative to the two splice sites. The distribution and conservation of these ESRseqs in and around human exons supported their classification. Predicted RNA secondary structure effects were also seen: Effective enhancers, silencers and 3' splice sites tend to be single stranded, and effective 5' splice sites tend to be double stranded. 6-mers that may form positive or negative synergy with another were also identified. Chromatin structure may also influence the splicing enhancement observed, as a good correspondence was found between splicing performance and the predicted nucleosome occupancy scores of 6-mers. This approach may prove of general use in defining nucleic acid regulatory motifs, substitute for functional SELEX in most cases, and provide insights about splicing mechanisms.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21659425</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1549-5469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2011</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Genome research</Title>
<ISOAbbreviation>Genome Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantitative evaluation of all hexamers as exonic splicing elements.</ArticleTitle>
<Pagination>
<MedlinePgn>1360-74</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1101/gr.119628.110</ELocationID>
<Abstract>
<AbstractText>We describe a comprehensive quantitative measure of the splicing impact of a complete set of RNA 6-mer sequences by deep sequencing successfully spliced transcripts. All 4096 6-mers were substituted at five positions within two different internal exons in a 3-exon minigene, and millions of successfully spliced transcripts were sequenced after transfection of human cells. The results allowed the assignment of a relative splicing strength score to each mutant molecule. The effect of 6-mers on splicing often depended on their location; much of this context effect could be ascribed to the creation of different overlapping sequences at each site. Taking these overlaps into account, the splicing effect of each 6-mer could be quantified, and 6-mers could be designated as enhancers (ESEseqs) and silencers (ESSseqs), with an ESRseq score indicating their strength. Some 6-mers exhibited positional bias relative to the two splice sites. The distribution and conservation of these ESRseqs in and around human exons supported their classification. Predicted RNA secondary structure effects were also seen: Effective enhancers, silencers and 3' splice sites tend to be single stranded, and effective 5' splice sites tend to be double stranded. 6-mers that may form positive or negative synergy with another were also identified. Chromatin structure may also influence the splicing enhancement observed, as a good correspondence was found between splicing performance and the predicted nucleosome occupancy scores of 6-mers. This approach may prove of general use in defining nucleic acid regulatory motifs, substitute for functional SELEX in most cases, and provide insights about splicing mechanisms.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ke</LastName>
<ForeName>Shengdong</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Columbia University, New York, New York 10027, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shang</LastName>
<ForeName>Shulian</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kalachikov</LastName>
<ForeName>Sergey M</ForeName>
<Initials>SM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Morozova</LastName>
<ForeName>Irina</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yu</LastName>
<ForeName>Lin</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Russo</LastName>
<ForeName>James J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ju</LastName>
<ForeName>Jingyue</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chasin</LastName>
<ForeName>Lawrence A</ForeName>
<Initials>LA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM072740</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R56 GM072740</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM072740</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>06</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genome Res</MedlineTA>
<NlmUniqueID>9518021</NlmUniqueID>
<ISSNLinking>1088-9051</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002843">Chromatin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D022821">RNA Splice Sites</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D038621">Regulatory Sequences, Ribonucleic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>63231-63-0</RegistryNumber>
<NameOfSubstance UI="D012313">RNA</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002843" MajorTopicYN="N">Chromatin</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005091" MajorTopicYN="N">Exons</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009690" MajorTopicYN="N">Nucleic Acid Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012313" MajorTopicYN="N">RNA</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022821" MajorTopicYN="N">RNA Splice Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012326" MajorTopicYN="N">RNA Splicing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038621" MajorTopicYN="N">Regulatory Sequences, Ribonucleic Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21659425</ArticleId>
<ArticleId IdType="pii">gr.119628.110</ArticleId>
<ArticleId IdType="doi">10.1101/gr.119628.110</ArticleId>
<ArticleId IdType="pmc">PMC3149502</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS Genet. 2007 May 25;3(5):e85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17530930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2006 Aug 15;15(16):2490-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16825284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(13):4359-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17576688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Aug 1;21(15):1833-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17671086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Nov;3(11):e204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18020710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2007;623:85-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18380342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Apr;18(4):533-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18204002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Aug;18(8):1247-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18456862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Oct;18(10):1643-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18799692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2008 Dec;40(12):1416-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Nov 27;456(7221):464-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Feb;16(2):130-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19136955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1766-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19179398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Feb 27;33(4):438-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19250905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Mar;19(3):381-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19116412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Mar 19;458(7236):362-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19092803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Mar 26;458(7237):475-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19325628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(1):R11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19178699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2009 Jul;27(7):667-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Sep;16(9):990-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2009 Sep;16(9):996-1001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Oct;19(10):1732-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19687145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Oct 23;36(2):245-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Oct;37(19):e126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2009 Dec;15(12):2385-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19861426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Dec 25;36(6):996-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20064465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Feb 19;327(5968):996-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2010 Sep;17(9):1114-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20711188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(8):R84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20704715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1995 Nov;15(11):6291-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7565782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11309499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 7;276(36):33833-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11454855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Aug 9;297(5583):1007-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12114529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Jun 1;18(11):1241-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15145827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1987 Sep 11;15(17):7155-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3658675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5547-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1319065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Mar 1;13(5):1197-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7510636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 May 26;268(5214):1173-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7761834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1995 Jul 17;14(14):3540-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7543047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1148-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9037021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Apr;17(4):2143-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9121463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Jul 1;12(13):1998-2012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9649504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 Mar;19(3):1705-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10022858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 1999 Mar;5(3):468-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10094314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15700-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15505203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Dec;24(24):10505-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15572659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Dec 17;119(6):831-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15607979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Jun;15(6):768-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15930489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Jun 1;19(11):1306-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15937219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(16):7323-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Jun 23;22(6):769-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16793546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Jul;17(7):1023-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17525134</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E70 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001E70 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:21659425
   |texte=   Quantitative evaluation of all hexamers as exonic splicing elements.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:21659425" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021