Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A conserved lysine residue of plant Whirly proteins is necessary for higher order protein assembly and protection against DNA damage.

Identifieur interne : 001E47 ( PubMed/Curation ); précédent : 001E46; suivant : 001E48

A conserved lysine residue of plant Whirly proteins is necessary for higher order protein assembly and protection against DNA damage.

Auteurs : Laurent Cappadocia [Canada] ; Jean-Sébastien Parent ; Eric Zampini ; Etienne Lepage ; Jurgen Sygusch ; Normand Brisson

Source :

RBID : pubmed:21911368

Descripteurs français

English descriptors

Abstract

All organisms have evolved specialized DNA repair mechanisms in order to protect their genome against detrimental lesions such as DNA double-strand breaks. In plant organelles, these damages are repaired either through recombination or through a microhomology-mediated break-induced replication pathway. Whirly proteins are modulators of this second pathway in both chloroplasts and mitochondria. In this precise pathway, tetrameric Whirly proteins are believed to bind single-stranded DNA and prevent spurious annealing of resected DNA molecules with other regions in the genome. In this study, we add a new layer of complexity to this model by showing through atomic force microscopy that tetramers of the potato Whirly protein WHY2 further assemble into hexamers of tetramers, or 24-mers, upon binding long DNA molecules. This process depends on tetramer-tetramer interactions mediated by K67, a highly conserved residue among plant Whirly proteins. Mutation of this residue abolishes the formation of 24-mers without affecting the protein structure or the binding to short DNA molecules. Importantly, we show that an Arabidopsis Whirly protein mutated for this lysine is unable to rescue the sensitivity of a Whirly-less mutant plant to a DNA double-strand break inducing agent.

DOI: 10.1093/nar/gkr740
PubMed: 21911368

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:21911368

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A conserved lysine residue of plant Whirly proteins is necessary for higher order protein assembly and protection against DNA damage.</title>
<author>
<name sortKey="Cappadocia, Laurent" sort="Cappadocia, Laurent" uniqKey="Cappadocia L" first="Laurent" last="Cappadocia">Laurent Cappadocia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Université de Montréal, CP 6128, Station Centre-Ville, Montréal H3C 3J7, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry, Université de Montréal, CP 6128, Station Centre-Ville, Montréal H3C 3J7, Québec</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Parent, Jean Sebastien" sort="Parent, Jean Sebastien" uniqKey="Parent J" first="Jean-Sébastien" last="Parent">Jean-Sébastien Parent</name>
</author>
<author>
<name sortKey="Zampini, Eric" sort="Zampini, Eric" uniqKey="Zampini E" first="Eric" last="Zampini">Eric Zampini</name>
</author>
<author>
<name sortKey="Lepage, Etienne" sort="Lepage, Etienne" uniqKey="Lepage E" first="Etienne" last="Lepage">Etienne Lepage</name>
</author>
<author>
<name sortKey="Sygusch, Jurgen" sort="Sygusch, Jurgen" uniqKey="Sygusch J" first="Jurgen" last="Sygusch">Jurgen Sygusch</name>
</author>
<author>
<name sortKey="Brisson, Normand" sort="Brisson, Normand" uniqKey="Brisson N" first="Normand" last="Brisson">Normand Brisson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:21911368</idno>
<idno type="pmid">21911368</idno>
<idno type="doi">10.1093/nar/gkr740</idno>
<idno type="wicri:Area/PubMed/Corpus">001E47</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001E47</idno>
<idno type="wicri:Area/PubMed/Curation">001E47</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001E47</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A conserved lysine residue of plant Whirly proteins is necessary for higher order protein assembly and protection against DNA damage.</title>
<author>
<name sortKey="Cappadocia, Laurent" sort="Cappadocia, Laurent" uniqKey="Cappadocia L" first="Laurent" last="Cappadocia">Laurent Cappadocia</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Université de Montréal, CP 6128, Station Centre-Ville, Montréal H3C 3J7, Québec, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Biochemistry, Université de Montréal, CP 6128, Station Centre-Ville, Montréal H3C 3J7, Québec</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Parent, Jean Sebastien" sort="Parent, Jean Sebastien" uniqKey="Parent J" first="Jean-Sébastien" last="Parent">Jean-Sébastien Parent</name>
</author>
<author>
<name sortKey="Zampini, Eric" sort="Zampini, Eric" uniqKey="Zampini E" first="Eric" last="Zampini">Eric Zampini</name>
</author>
<author>
<name sortKey="Lepage, Etienne" sort="Lepage, Etienne" uniqKey="Lepage E" first="Etienne" last="Lepage">Etienne Lepage</name>
</author>
<author>
<name sortKey="Sygusch, Jurgen" sort="Sygusch, Jurgen" uniqKey="Sygusch J" first="Jurgen" last="Sygusch">Jurgen Sygusch</name>
</author>
<author>
<name sortKey="Brisson, Normand" sort="Brisson, Normand" uniqKey="Brisson N" first="Normand" last="Brisson">Normand Brisson</name>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (drug effects)</term>
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Ciprofloxacin (toxicity)</term>
<term>DNA Damage</term>
<term>DNA, Single-Stranded (metabolism)</term>
<term>DNA-Binding Proteins (chemistry)</term>
<term>DNA-Binding Proteins (genetics)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>DNA-Binding Proteins (ultrastructure)</term>
<term>Lysine (chemistry)</term>
<term>Microscopy, Atomic Force</term>
<term>Models, Molecular</term>
<term>Mutation</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Proteins (ultrastructure)</term>
<term>Protein Multimerization</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN simple brin (métabolisme)</term>
<term>Altération de l'ADN</term>
<term>Arabidopsis ()</term>
<term>Arabidopsis (génétique)</term>
<term>Ciprofloxacine (toxicité)</term>
<term>Lysine ()</term>
<term>Microscopie à force atomique</term>
<term>Modèles moléculaires</term>
<term>Multimérisation de protéines</term>
<term>Mutation</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines de liaison à l'ADN ()</term>
<term>Protéines de liaison à l'ADN (génétique)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Protéines de liaison à l'ADN (ultrastructure)</term>
<term>Protéines végétales ()</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéines végétales (ultrastructure)</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Lysine</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>DNA-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines de liaison à l'ADN</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>DNA, Single-Stranded</term>
<term>DNA-Binding Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ADN simple brin</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Ciprofloxacin</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Ciprofloxacine</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="ultrastructure" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>DNA Damage</term>
<term>Microscopy, Atomic Force</term>
<term>Models, Molecular</term>
<term>Mutation</term>
<term>Protein Multimerization</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Altération de l'ADN</term>
<term>Arabidopsis</term>
<term>Lysine</term>
<term>Microscopie à force atomique</term>
<term>Modèles moléculaires</term>
<term>Multimérisation de protéines</term>
<term>Mutation</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines végétales</term>
<term>Solanum tuberosum</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">All organisms have evolved specialized DNA repair mechanisms in order to protect their genome against detrimental lesions such as DNA double-strand breaks. In plant organelles, these damages are repaired either through recombination or through a microhomology-mediated break-induced replication pathway. Whirly proteins are modulators of this second pathway in both chloroplasts and mitochondria. In this precise pathway, tetrameric Whirly proteins are believed to bind single-stranded DNA and prevent spurious annealing of resected DNA molecules with other regions in the genome. In this study, we add a new layer of complexity to this model by showing through atomic force microscopy that tetramers of the potato Whirly protein WHY2 further assemble into hexamers of tetramers, or 24-mers, upon binding long DNA molecules. This process depends on tetramer-tetramer interactions mediated by K67, a highly conserved residue among plant Whirly proteins. Mutation of this residue abolishes the formation of 24-mers without affecting the protein structure or the binding to short DNA molecules. Importantly, we show that an Arabidopsis Whirly protein mutated for this lysine is unable to rescue the sensitivity of a Whirly-less mutant plant to a DNA double-strand break inducing agent.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21911368</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>02</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>40</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res.</ISOAbbreviation>
</Journal>
<ArticleTitle>A conserved lysine residue of plant Whirly proteins is necessary for higher order protein assembly and protection against DNA damage.</ArticleTitle>
<Pagination>
<MedlinePgn>258-69</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gkr740</ELocationID>
<Abstract>
<AbstractText>All organisms have evolved specialized DNA repair mechanisms in order to protect their genome against detrimental lesions such as DNA double-strand breaks. In plant organelles, these damages are repaired either through recombination or through a microhomology-mediated break-induced replication pathway. Whirly proteins are modulators of this second pathway in both chloroplasts and mitochondria. In this precise pathway, tetrameric Whirly proteins are believed to bind single-stranded DNA and prevent spurious annealing of resected DNA molecules with other regions in the genome. In this study, we add a new layer of complexity to this model by showing through atomic force microscopy that tetramers of the potato Whirly protein WHY2 further assemble into hexamers of tetramers, or 24-mers, upon binding long DNA molecules. This process depends on tetramer-tetramer interactions mediated by K67, a highly conserved residue among plant Whirly proteins. Mutation of this residue abolishes the formation of 24-mers without affecting the protein structure or the binding to short DNA molecules. Importantly, we show that an Arabidopsis Whirly protein mutated for this lysine is unable to rescue the sensitivity of a Whirly-less mutant plant to a DNA double-strand break inducing agent.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cappadocia</LastName>
<ForeName>Laurent</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Université de Montréal, CP 6128, Station Centre-Ville, Montréal H3C 3J7, Québec, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Parent</LastName>
<ForeName>Jean-Sébastien</ForeName>
<Initials>JS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zampini</LastName>
<ForeName>Eric</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lepage</LastName>
<ForeName>Etienne</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sygusch</LastName>
<ForeName>Jurgen</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brisson</LastName>
<ForeName>Normand</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>PDB</DataBankName>
<AccessionNumberList>
<AccessionNumber>3R9Y</AccessionNumber>
<AccessionNumber>3R9Z</AccessionNumber>
<AccessionNumber>3RA0</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P30 EB009998</GrantID>
<Acronym>EB</Acronym>
<Agency>NIBIB NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>09</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004277">DNA, Single-Stranded</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C503333">Whirly1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C503335">Whirly3 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5E8K9I0O4U</RegistryNumber>
<NameOfSubstance UI="D002939">Ciprofloxacin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3Z4F929H6</RegistryNumber>
<NameOfSubstance UI="D008239">Lysine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002939" MajorTopicYN="N">Ciprofloxacin</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004249" MajorTopicYN="Y">DNA Damage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004277" MajorTopicYN="N">DNA, Single-Stranded</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008239" MajorTopicYN="N">Lysine</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018625" MajorTopicYN="N">Microscopy, Atomic Force</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055503" MajorTopicYN="N">Protein Multimerization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>9</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21911368</ArticleId>
<ArticleId IdType="pii">gkr740</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkr740</ArticleId>
<ArticleId IdType="pmc">PMC3245945</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(8):e58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17392343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2008 Nov-Dec;43(6):393-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19037758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jul;232(2):471-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20473685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Aug;147(4):1800-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18678751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20383002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1996 Apr;77 ( Pt 4):587-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8627246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Apr 16;285(16):12078-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20139406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2010 Sep;77(5):1289-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20633229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Jan;18(1):176-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16326926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2006 Feb;106(2):753-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16464023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(11):2728-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18007608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2003 Jul;269(4):454-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12768414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2008 Sep;15(9):939-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19172747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Apr;33(6):1037-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9154985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1986 Feb 20;187(4):603-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3519979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jan;56(409):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15557293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2008 Mar 15;94(6):2269-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18065449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Aug 6;394(6693):595-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9707123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys Chem. 1997 Feb 28;64(1-3):235-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9127948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(14):e115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1995 Feb 14;34(6):2058-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7849064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jun;22(6):1849-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20551348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Feb;49(3):442-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17217467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2009 Nov;71(4-5):437-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19669906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:373-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8068-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1518831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 1998 Apr;5(4):294-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9546221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1987;56:289-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3304136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Feb;10(2):95-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W375-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17452350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1990 Dec;54(4):342-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2087220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):299-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20180912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(19):5935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15534364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1993 Dec;10(5):1067-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7934857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2000 Aug;7(8):648-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10932248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Feb 4;286(5):3387-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21123176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 May;156(1):254-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21427281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 May;102(1):145-153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14693-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19666500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Feb 17;311(5763):996-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16484493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 Mar;43(6):1505-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11971263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Apr;273(2):115-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15744502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8073-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1518832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2008 Feb;161(2):172-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18068378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2005 Jul 4;579(17):3707-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Sep;36(16):5152-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18676978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 Apr;274(8):2054-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17371503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Jun 12;453(7197):885-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18496527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2010 Dec;13(6):773-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20951079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2007 Sep 21;372(3):774-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18423020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Aug;12(8):1477-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10948264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Apr;46(1):85-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16553897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Jun;61(10):2575-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20406785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2004 Feb;6(2):229-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14960277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Biol. 2002 Jul;9(7):512-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12080340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Apr;42(6):819-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10890530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Nov 1;25(21):4379-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9336471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Jun;61(10):2535-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20513654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1994;63:527-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7979247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Jan;5(1):e1000327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19180184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jun;141(2):357-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16760488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Feb 17;356(2):288-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16376379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 Nov 1;64(Pt 11):1056-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18997341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20643920</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001E47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001E47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:21911368
   |texte=   A conserved lysine residue of plant Whirly proteins is necessary for higher order protein assembly and protection against DNA damage.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:21911368" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021