Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.

Identifieur interne : 001D65 ( PubMed/Curation ); précédent : 001D64; suivant : 001D66

Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.

Auteurs : Berat Z. Haznedaroglu [États-Unis] ; Darryl Reeves ; Hamid Rismani-Yazdi ; Jordan Peccia

Source :

RBID : pubmed:22808927

Descripteurs français

English descriptors

Abstract

The k-mer hash length is a key factor affecting the output of de novo transcriptome assembly packages using de Bruijn graph algorithms. Assemblies constructed with varying single k-mer choices might result in the loss of unique contiguous sequences (contigs) and relevant biological information. A common solution to this problem is the clustering of single k-mer assemblies. Even though annotation is one of the primary goals of a transcriptome assembly, the success of assembly strategies does not consider the impact of k-mer selection on the annotation output. This study provides an in-depth k-mer selection analysis that is focused on the degree of functional annotation achieved for a non-model organism where no reference genome information is available. Individual k-mers and clustered assemblies (CA) were considered using three representative software packages. Pair-wise comparison analyses (between individual k-mers and CAs) were produced to reveal missing Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog identifiers (KOIs), and to determine a strategy that maximizes the recovery of biological information in a de novo transcriptome assembly.

DOI: 10.1186/1471-2105-13-170
PubMed: 22808927

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:22808927

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.</title>
<author>
<name sortKey="Haznedaroglu, Berat Z" sort="Haznedaroglu, Berat Z" uniqKey="Haznedaroglu B" first="Berat Z" last="Haznedaroglu">Berat Z. Haznedaroglu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Reeves, Darryl" sort="Reeves, Darryl" uniqKey="Reeves D" first="Darryl" last="Reeves">Darryl Reeves</name>
</author>
<author>
<name sortKey="Rismani Yazdi, Hamid" sort="Rismani Yazdi, Hamid" uniqKey="Rismani Yazdi H" first="Hamid" last="Rismani-Yazdi">Hamid Rismani-Yazdi</name>
</author>
<author>
<name sortKey="Peccia, Jordan" sort="Peccia, Jordan" uniqKey="Peccia J" first="Jordan" last="Peccia">Jordan Peccia</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22808927</idno>
<idno type="pmid">22808927</idno>
<idno type="doi">10.1186/1471-2105-13-170</idno>
<idno type="wicri:Area/PubMed/Corpus">001D65</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001D65</idno>
<idno type="wicri:Area/PubMed/Curation">001D65</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001D65</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.</title>
<author>
<name sortKey="Haznedaroglu, Berat Z" sort="Haznedaroglu, Berat Z" uniqKey="Haznedaroglu B" first="Berat Z" last="Haznedaroglu">Berat Z. Haznedaroglu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Reeves, Darryl" sort="Reeves, Darryl" uniqKey="Reeves D" first="Darryl" last="Reeves">Darryl Reeves</name>
</author>
<author>
<name sortKey="Rismani Yazdi, Hamid" sort="Rismani Yazdi, Hamid" uniqKey="Rismani Yazdi H" first="Hamid" last="Rismani-Yazdi">Hamid Rismani-Yazdi</name>
</author>
<author>
<name sortKey="Peccia, Jordan" sort="Peccia, Jordan" uniqKey="Peccia J" first="Jordan" last="Peccia">Jordan Peccia</name>
</author>
</analytic>
<series>
<title level="j">BMC bioinformatics</title>
<idno type="eISSN">1471-2105</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms</term>
<term>Gene Expression Profiling (methods)</term>
<term>Genome</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Molecular Sequence Annotation</term>
<term>Sequence Analysis, DNA</term>
<term>Software</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de profil d'expression de gènes ()</term>
<term>Analyse de séquence d'ADN</term>
<term>Annotation de séquence moléculaire</term>
<term>Génome</term>
<term>Logiciel</term>
<term>Séquençage nucléotidique à haut débit</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Gene Expression Profiling</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Genome</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Molecular Sequence Annotation</term>
<term>Sequence Analysis, DNA</term>
<term>Software</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de séquence d'ADN</term>
<term>Annotation de séquence moléculaire</term>
<term>Génome</term>
<term>Logiciel</term>
<term>Séquençage nucléotidique à haut débit</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The k-mer hash length is a key factor affecting the output of de novo transcriptome assembly packages using de Bruijn graph algorithms. Assemblies constructed with varying single k-mer choices might result in the loss of unique contiguous sequences (contigs) and relevant biological information. A common solution to this problem is the clustering of single k-mer assemblies. Even though annotation is one of the primary goals of a transcriptome assembly, the success of assembly strategies does not consider the impact of k-mer selection on the annotation output. This study provides an in-depth k-mer selection analysis that is focused on the degree of functional annotation achieved for a non-model organism where no reference genome information is available. Individual k-mers and clustered assemblies (CA) were considered using three representative software packages. Pair-wise comparison analyses (between individual k-mers and CAs) were produced to reveal missing Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog identifiers (KOIs), and to determine a strategy that maximizes the recovery of biological information in a de novo transcriptome assembly.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">22808927</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2105</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<PubDate>
<Year>2012</Year>
<Month>Jul</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>BMC bioinformatics</Title>
<ISOAbbreviation>BMC Bioinformatics</ISOAbbreviation>
</Journal>
<ArticleTitle>Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.</ArticleTitle>
<Pagination>
<MedlinePgn>170</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2105-13-170</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The k-mer hash length is a key factor affecting the output of de novo transcriptome assembly packages using de Bruijn graph algorithms. Assemblies constructed with varying single k-mer choices might result in the loss of unique contiguous sequences (contigs) and relevant biological information. A common solution to this problem is the clustering of single k-mer assemblies. Even though annotation is one of the primary goals of a transcriptome assembly, the success of assembly strategies does not consider the impact of k-mer selection on the annotation output. This study provides an in-depth k-mer selection analysis that is focused on the degree of functional annotation achieved for a non-model organism where no reference genome information is available. Individual k-mers and clustered assemblies (CA) were considered using three representative software packages. Pair-wise comparison analyses (between individual k-mers and CAs) were produced to reveal missing Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog identifiers (KOIs), and to determine a strategy that maximizes the recovery of biological information in a de novo transcriptome assembly.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Analyses of single k-mer assemblies resulted in the generation of various quantities of contigs and functional annotations within the selection window of k-mers (k-19 to k-63). For each k-mer in this window, generated assemblies contained certain unique contigs and KOIs that were not present in the other k-mer assemblies. Producing a non-redundant CA of k-mers 19 to 63 resulted in a more complete functional annotation than any single k-mer assembly. However, a fraction of unique annotations remained (~0.19 to 0.27% of total KOIs) in the assemblies of individual k-mers (k-19 to k-63) that were not present in the non-redundant CA. A workflow to recover these unique annotations is presented.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study demonstrated that different k-mer choices result in various quantities of unique contigs per single k-mer assembly which affects biological information that is retrievable from the transcriptome. This undesirable effect can be minimized, but not eliminated, with clustering of multi-k assemblies with redundancy removal. The complete extraction of biological information in de novo transcriptomics studies requires both the production of a CA and efforts to identify unique contigs that are present in individual k-mer assemblies but not in the CA.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Haznedaroglu</LastName>
<ForeName>Berat Z</ForeName>
<Initials>BZ</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reeves</LastName>
<ForeName>Darryl</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rismani-Yazdi</LastName>
<ForeName>Hamid</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Peccia</LastName>
<ForeName>Jordan</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>RR19895</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T15 LM07056</GrantID>
<Acronym>LM</Acronym>
<Agency>NLM NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Bioinformatics</MedlineTA>
<NlmUniqueID>100965194</NlmUniqueID>
<ISSNLinking>1471-2105</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016678" MajorTopicYN="N">Genome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="Y">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="Y">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="Y">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012984" MajorTopicYN="N">Software</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>02</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>06</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>7</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22808927</ArticleId>
<ArticleId IdType="pii">1471-2105-13-170</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2105-13-170</ArticleId>
<ArticleId IdType="pmc">PMC3489510</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Biotechnol. 2011 Jul;29(7):599-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21747384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Jul;29(7):644-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21572440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Apr 15;28(8):1086-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22368243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Mar 22;19(5):651-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651724</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2006 Jul 1;22(13):1658-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16731699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W182-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17526522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 May;18(5):821-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2008 Dec;81(4):629-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18795284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2009 Dec;100(23):5988-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19560349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Feb;20(2):265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20019144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Oct;20(10):1432-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20693479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010;11:485</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20875133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 Nov;7(11):909-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2011 Feb;18(1):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(3):e17915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21423806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(4):e19175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21559467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hum Genet. 2011 Jun;56(6):406-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21525877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21679424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Oct;12(10):671-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21897427</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D65 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001D65 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:22808927
   |texte=   Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:22808927" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021