Serveur d'exploration MERS

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design.

Identifieur interne : 001C52 ( PubMed/Curation ); précédent : 001C51; suivant : 001C53

A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design.

Auteurs : Robin P. Smith ; Samantha J. Riesenfeld ; Alisha K. Holloway ; Qiang Li ; Karl K. Murphy ; Natalie M. Feliciano ; Lorenzo Orecchia ; Nir Oksenberg ; Katherine S. Pollard ; Nadav Ahituv

Source :

RBID : pubmed:23867016

Descripteurs français

English descriptors

Abstract

Large-scale annotation efforts have improved our ability to coarsely predict regulatory elements throughout vertebrate genomes. However, it is unclear how complex spatiotemporal patterns of gene expression driven by these elements emerge from the activity of short, transcription factor binding sequences.

DOI: 10.1186/gb-2013-14-7-r72
PubMed: 23867016

Links toward previous steps (curation, corpus...)


Links to Exploration step

pubmed:23867016

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design.</title>
<author>
<name sortKey="Smith, Robin P" sort="Smith, Robin P" uniqKey="Smith R" first="Robin P" last="Smith">Robin P. Smith</name>
</author>
<author>
<name sortKey="Riesenfeld, Samantha J" sort="Riesenfeld, Samantha J" uniqKey="Riesenfeld S" first="Samantha J" last="Riesenfeld">Samantha J. Riesenfeld</name>
</author>
<author>
<name sortKey="Holloway, Alisha K" sort="Holloway, Alisha K" uniqKey="Holloway A" first="Alisha K" last="Holloway">Alisha K. Holloway</name>
</author>
<author>
<name sortKey="Li, Qiang" sort="Li, Qiang" uniqKey="Li Q" first="Qiang" last="Li">Qiang Li</name>
</author>
<author>
<name sortKey="Murphy, Karl K" sort="Murphy, Karl K" uniqKey="Murphy K" first="Karl K" last="Murphy">Karl K. Murphy</name>
</author>
<author>
<name sortKey="Feliciano, Natalie M" sort="Feliciano, Natalie M" uniqKey="Feliciano N" first="Natalie M" last="Feliciano">Natalie M. Feliciano</name>
</author>
<author>
<name sortKey="Orecchia, Lorenzo" sort="Orecchia, Lorenzo" uniqKey="Orecchia L" first="Lorenzo" last="Orecchia">Lorenzo Orecchia</name>
</author>
<author>
<name sortKey="Oksenberg, Nir" sort="Oksenberg, Nir" uniqKey="Oksenberg N" first="Nir" last="Oksenberg">Nir Oksenberg</name>
</author>
<author>
<name sortKey="Pollard, Katherine S" sort="Pollard, Katherine S" uniqKey="Pollard K" first="Katherine S" last="Pollard">Katherine S. Pollard</name>
</author>
<author>
<name sortKey="Ahituv, Nadav" sort="Ahituv, Nadav" uniqKey="Ahituv N" first="Nadav" last="Ahituv">Nadav Ahituv</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23867016</idno>
<idno type="pmid">23867016</idno>
<idno type="doi">10.1186/gb-2013-14-7-r72</idno>
<idno type="wicri:Area/PubMed/Corpus">001C52</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Corpus" wicri:corpus="PubMed">001C52</idno>
<idno type="wicri:Area/PubMed/Curation">001C52</idno>
<idno type="wicri:explorRef" wicri:stream="PubMed" wicri:step="Curation">001C52</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design.</title>
<author>
<name sortKey="Smith, Robin P" sort="Smith, Robin P" uniqKey="Smith R" first="Robin P" last="Smith">Robin P. Smith</name>
</author>
<author>
<name sortKey="Riesenfeld, Samantha J" sort="Riesenfeld, Samantha J" uniqKey="Riesenfeld S" first="Samantha J" last="Riesenfeld">Samantha J. Riesenfeld</name>
</author>
<author>
<name sortKey="Holloway, Alisha K" sort="Holloway, Alisha K" uniqKey="Holloway A" first="Alisha K" last="Holloway">Alisha K. Holloway</name>
</author>
<author>
<name sortKey="Li, Qiang" sort="Li, Qiang" uniqKey="Li Q" first="Qiang" last="Li">Qiang Li</name>
</author>
<author>
<name sortKey="Murphy, Karl K" sort="Murphy, Karl K" uniqKey="Murphy K" first="Karl K" last="Murphy">Karl K. Murphy</name>
</author>
<author>
<name sortKey="Feliciano, Natalie M" sort="Feliciano, Natalie M" uniqKey="Feliciano N" first="Natalie M" last="Feliciano">Natalie M. Feliciano</name>
</author>
<author>
<name sortKey="Orecchia, Lorenzo" sort="Orecchia, Lorenzo" uniqKey="Orecchia L" first="Lorenzo" last="Orecchia">Lorenzo Orecchia</name>
</author>
<author>
<name sortKey="Oksenberg, Nir" sort="Oksenberg, Nir" uniqKey="Oksenberg N" first="Nir" last="Oksenberg">Nir Oksenberg</name>
</author>
<author>
<name sortKey="Pollard, Katherine S" sort="Pollard, Katherine S" uniqKey="Pollard K" first="Katherine S" last="Pollard">Katherine S. Pollard</name>
</author>
<author>
<name sortKey="Ahituv, Nadav" sort="Ahituv, Nadav" uniqKey="Ahituv N" first="Nadav" last="Ahituv">Nadav Ahituv</name>
</author>
</analytic>
<series>
<title level="j">Genome biology</title>
<idno type="eISSN">1474-760X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Dissection</term>
<term>Embryo, Nonmammalian (metabolism)</term>
<term>Enhancer Elements, Genetic</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Ontology</term>
<term>Molecular Sequence Data</term>
<term>Nucleotide Motifs (genetics)</term>
<term>Oligonucleotides (genetics)</term>
<term>Organ Specificity (genetics)</term>
<term>Regulatory Sequences, Nucleic Acid (genetics)</term>
<term>Synthetic Biology (methods)</term>
<term>Zebrafish (embryology)</term>
<term>Zebrafish (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux</term>
<term>Biologie synthétique ()</term>
<term>Danio zébré (embryologie)</term>
<term>Danio zébré (génétique)</term>
<term>Dissection</term>
<term>Données de séquences moléculaires</term>
<term>Embryon non mammalien (métabolisme)</term>
<term>Gene Ontology</term>
<term>Motifs nucléotidiques (génétique)</term>
<term>Oligonucléotides (génétique)</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Spécificité d'organe (génétique)</term>
<term>Séquence nucléotidique</term>
<term>Séquences d'acides nucléiques régulatrices (génétique)</term>
<term>Éléments activateurs (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Oligonucleotides</term>
</keywords>
<keywords scheme="MESH" qualifier="embryologie" xml:lang="fr">
<term>Danio zébré</term>
</keywords>
<keywords scheme="MESH" qualifier="embryology" xml:lang="en">
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Nucleotide Motifs</term>
<term>Organ Specificity</term>
<term>Regulatory Sequences, Nucleic Acid</term>
<term>Zebrafish</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Danio zébré</term>
<term>Motifs nucléotidiques</term>
<term>Oligonucléotides</term>
<term>Spécificité d'organe</term>
<term>Séquences d'acides nucléiques régulatrices</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Embryo, Nonmammalian</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Synthetic Biology</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Embryon non mammalien</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Base Sequence</term>
<term>Dissection</term>
<term>Enhancer Elements, Genetic</term>
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Ontology</term>
<term>Molecular Sequence Data</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Biologie synthétique</term>
<term>Dissection</term>
<term>Données de séquences moléculaires</term>
<term>Gene Ontology</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Séquence nucléotidique</term>
<term>Éléments activateurs (génétique)</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Large-scale annotation efforts have improved our ability to coarsely predict regulatory elements throughout vertebrate genomes. However, it is unclear how complex spatiotemporal patterns of gene expression driven by these elements emerge from the activity of short, transcription factor binding sequences.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23867016</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>03</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1474-760X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jul</Month>
<Day>18</Day>
</PubDate>
</JournalIssue>
<Title>Genome biology</Title>
<ISOAbbreviation>Genome Biol.</ISOAbbreviation>
</Journal>
<ArticleTitle>A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design.</ArticleTitle>
<Pagination>
<MedlinePgn>R72</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/gb-2013-14-7-r72</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Large-scale annotation efforts have improved our ability to coarsely predict regulatory elements throughout vertebrate genomes. However, it is unclear how complex spatiotemporal patterns of gene expression driven by these elements emerge from the activity of short, transcription factor binding sequences.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We describe a comprehensive promoter extension assay in which the regulatory potential of all 6 base-pair (bp) sequences was tested in the context of a minimal promoter. To enable this large-scale screen, we developed algorithms that use a reverse-complement aware decomposition of the de Bruijn graph to design a library of DNA oligomers incorporating every 6-bp sequence exactly once. Our library multiplexes all 4,096 unique 6-mers into 184 double-stranded 15-bp oligomers, which is sufficiently compact for in vivo testing. We injected each multiplexed construct into zebrafish embryos and scored GFP expression in 15 tissues at two developmental time points. Twenty-seven constructs produced consistent expression patterns, with the majority doing so in only one tissue. Functional sequences are enriched near biologically relevant genes, match motifs for developmental transcription factors, and are required for enhancer activity. By concatenating tissue-specific functional sequences, we generated completely synthetic enhancers for the notochord, epidermis, spinal cord, forebrain and otic lateral line, and show that short regulatory sequences do not always function modularly.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This work introduces a unique in vivo catalog of short, functional regulatory sequences and demonstrates several important principles of regulatory element organization. Furthermore, we provide resources for designing compact, reverse-complement aware k-mer libraries.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Smith</LastName>
<ForeName>Robin P</ForeName>
<Initials>RP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Riesenfeld</LastName>
<ForeName>Samantha J</ForeName>
<Initials>SJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Holloway</LastName>
<ForeName>Alisha K</ForeName>
<Initials>AK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Qiang</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Murphy</LastName>
<ForeName>Karl K</ForeName>
<Initials>KK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Feliciano</LastName>
<ForeName>Natalie M</ForeName>
<Initials>NM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Orecchia</LastName>
<ForeName>Lorenzo</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oksenberg</LastName>
<ForeName>Nir</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pollard</LastName>
<ForeName>Katherine S</ForeName>
<Initials>KS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ahituv</LastName>
<ForeName>Nadav</ForeName>
<Initials>N</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>HL098179</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01HG005058</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 DK026743</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1R01NS079231</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HD059862</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM61390</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1R01HG006768</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1R01DK090382</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 NS079231</GrantID>
<Acronym>NS</Acronym>
<Agency>NINDS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HG006768</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U19 GM061390</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01HD059862</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 GM008568</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 DK090382</GrantID>
<Acronym>DK</Acronym>
<Agency>NIDDK NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM082901</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HG005058</GrantID>
<Acronym>HG</Acronym>
<Agency>NHGRI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>1F32HD069168</GrantID>
<Acronym>HD</Acronym>
<Agency>NICHD NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Genome Biol</MedlineTA>
<NlmUniqueID>100960660</NlmUniqueID>
<ISSNLinking>1474-7596</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009841">Oligonucleotides</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004210" MajorTopicYN="N">Dissection</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004625" MajorTopicYN="N">Embryo, Nonmammalian</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004742" MajorTopicYN="N">Enhancer Elements, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="Y">Gene Expression Regulation, Developmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063990" MajorTopicYN="N">Gene Ontology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059372" MajorTopicYN="N">Nucleotide Motifs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009841" MajorTopicYN="N">Oligonucleotides</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009928" MajorTopicYN="N">Organ Specificity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012045" MajorTopicYN="N">Regulatory Sequences, Nucleic Acid</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058615" MajorTopicYN="N">Synthetic Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015027" MajorTopicYN="N">Zebrafish</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="N">embryology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>07</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23867016</ArticleId>
<ArticleId IdType="pii">gb-2013-14-7-r72</ArticleId>
<ArticleId IdType="doi">10.1186/gb-2013-14-7-r72</ArticleId>
<ArticleId IdType="pmc">PMC4054837</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Comput Biol. 2000;7(3-4):503-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11108476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2012 Jun;30(6):521-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22609971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Apr 23;338(2):207-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15066426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W217-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1990 Sep;10(9):4720-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2388624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1993 May;194(1):128-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8480416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1993 Nov;119(3):762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8187640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1995 Dec 29;83(7):1091-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8548797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 2004;77:201-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15602913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2006 Jul;3(7):511-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16791208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Nov;24(11):1429-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16998473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006;7:429</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17018151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17130149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2006;1(3):1297-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17406414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(2):R24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17324271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2007 Jun;17(6):877-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Sep 14;361(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17632082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Aug;3(8):e145</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17784790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D768-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D102-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ugeskr Laeger. 2008 Jan 28;170(5):328-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Dec 12;135(6):1053-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19070576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jan 23;323(5913):524-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Feb 12;457(7231):854-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19212405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 May 7;459(7243):108-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19295514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2009 Jun;93(6):509-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19268701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 26;324(5935):1720-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19443739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 10;461(7261):199-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2009 Dec;27(12):1173-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19915551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2010 Jan 15;337(2):484-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19850031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2538-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Mar;20(3):381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20075146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2010 Mar 16;18(3):359-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20230745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 May;20(5):565-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20363979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 May;28(5):495-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2010 Sep;42(9):806-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 Sep;28(9):970-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Feb 10;470(7333):279-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21160473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2011 Apr;12(4):283-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21358745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 5;473(7345):43-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21441907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Jun;29(6):480-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21654662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Jul;29(7):659-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21706015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2011 Sep 15;357(2):450-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21435340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Oct;21(10):1757-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21750106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2011 Nov;29(11):987-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22068540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Dec;21(12):2167-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21875935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D918-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22086951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2012 Mar;30(3):265-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22371081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2012 Mar;30(3):271-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22371084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Apr;36(4):325-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15054485</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MersV1/Data/PubMed/Curation
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd -nk 001C52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MersV1
   |flux=    PubMed
   |étape=   Curation
   |type=    RBID
   |clé=     pubmed:23867016
   |texte=   A compact, in vivo screen of all 6-mers reveals drivers of tissue-specific expression and guides synthetic regulatory element design.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/PubMed/Curation/RBID.i   -Sk "pubmed:23867016" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/PubMed/Curation/biblio.hfd   \
       | NlmPubMed2Wicri -a MersV1 

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Mon Apr 20 23:26:43 2020. Site generation: Sat Mar 27 09:06:09 2021